
Tree Reduction Dense Linear Systems

Chapter 3

Multicore and
Multiprocessor Systems:

Part IV

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 132/337



Tree Reduction Dense Linear Systems

Tree Reduction
The OpenMP reduction minimal example revisited: Data Sharing

Example (OpenMP reduction minimal example)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
a[i] = b[i] = i * 1.0;

sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);
}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 133/337



Tree Reduction Dense Linear Systems

Tree Reduction
The OpenMP reduction minimal example revisited

The main properties of the reduction are

accumulation of data via a binary operator (here +)

intrinsically sequential operation causing a race condition in
multi-thread based implementations (since every iteration step
depend on the result of its predecessor.)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 134/337



Tree Reduction Dense Linear Systems

Tree Reduction
Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]

+ + s[5]

+ s[5]

+

Figure: Tree reduction basic idea.

ideally the number of elements is a power of 2

best splitting of the actual data depends on the hardware used

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 135/337



Tree Reduction Dense Linear Systems

Tree Reduction
Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]

+ + s[5]

+ s[5]

+

Figure: Tree reduction basic idea.

ideally the number of elements is a power of 2

best splitting of the actual data depends on the hardware used

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 135/337



Tree Reduction Dense Linear Systems

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal
cores. How do we compute the accumulation in parallel?

Basically 2
choices

1 Task pool approach: define a task pool and feed it with n/2 = 50
work packages accumulating 2 elements in 1. When these are done,
schedule the next 25 and so on by further binary accumulation of 2
intermediate results per work package.

2 #Processors=#Threads approach: Divide the work by the
number of threads, i.e. on our 4 cores each gets 25 subsequent
indices to sum up. The reduction is then performed on the results of
the threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 136/337



Tree Reduction Dense Linear Systems

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal
cores. How do we compute the accumulation in parallel? Basically 2
choices

1 Task pool approach: define a task pool and feed it with n/2 = 50
work packages accumulating 2 elements in 1. When these are done,
schedule the next 25 and so on by further binary accumulation of 2
intermediate results per work package.

2 #Processors=#Threads approach: Divide the work by the
number of threads, i.e. on our 4 cores each gets 25 subsequent
indices to sum up. The reduction is then performed on the results of
the threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 136/337



Tree Reduction Dense Linear Systems

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal
cores. How do we compute the accumulation in parallel? Basically 2
choices

1 Task pool approach: define a task pool and feed it with n/2 = 50
work packages accumulating 2 elements in 1. When these are done,
schedule the next 25 and so on by further binary accumulation of 2
intermediate results per work package.

2 #Processors=#Threads approach: Divide the work by the
number of threads, i.e. on our 4 cores each gets 25 subsequent
indices to sum up. The reduction is then performed on the results of
the threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 136/337



Tree Reduction Dense Linear Systems

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal
cores. How do we compute the accumulation in parallel? Basically 2
choices

1 Task pool approach: define a task pool and feed it with n/2 = 50
work packages accumulating 2 elements in 1. When these are done,
schedule the next 25 and so on by further binary accumulation of 2
intermediate results per work package.

2 #Processors=#Threads approach: Divide the work by the
number of threads, i.e. on our 4 cores each gets 25 subsequent
indices to sum up. The reduction is then performed on the results of
the threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 136/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 1: Gaussian elimination – row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 ;
3 ;
4 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
5 for i = k + 1 : n do
6 for j = k + 1 : n do
7 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 137/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 1: Gaussian elimination – row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 ;
3 ;
4 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
5 for i = k + 1 : n do
6 for j = k + 1 : n do
7 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.
Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 137/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 2: Gaussian elimination – Outer product formulation

Input: A ∈ Rn×n allowing LU decomposition
Output: L,U ∈ Rn×n such that A = LU stored in A stored in A

1 for k = 1 : n − 1 do
2 rows= k + 1 : n;
3 A(rows, k) = A(rows, k)/A(k , k);
4 A(rows,rows) = A(rows,rows)− A(rows, k)A(k ,rows);

Idea of the blocked version
Replace the rank-1 update by a rank-r update ,

Thus replace the O(n2) / O(n2) operation per data ratio the more
desirable O(n3) / O(n2) ratio,

Therefore exploit the fast local caches of modern CPUs more
optimally.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 138/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 2: Gaussian elimination – Outer product formulation

Input: A ∈ Rn×n allowing LU decomposition
Output: L,U ∈ Rn×n such that A = LU stored in A stored in A

1 for k = 1 : n − 1 do
2 rows= k + 1 : n;
3 A(rows, k) = A(rows, k)/A(k , k);
4 A(rows,rows) = A(rows,rows)− A(rows, k)A(k ,rows);

Idea of the blocked version
Replace the rank-1 update by a rank-r update ,

Thus replace the O(n2) / O(n2) operation per data ratio the more
desirable O(n3) / O(n2) ratio,

Therefore exploit the fast local caches of modern CPUs more
optimally.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 138/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 3: Gaussian elimination – Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve W Ũ = A(`+ 1 : n, k : `) and store W in A;

7 Perform the rank-r update:
A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;

8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and
the rank-r update. It is used to optimize the data portions for the cache.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 139/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 3: Gaussian elimination – Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve W Ũ = A(`+ 1 : n, k : `) and store W in A;
7 Perform the rank-r update:

A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;
8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and
the rank-r update. It is used to optimize the data portions for the cache.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 139/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

A

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

A11

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

A(1 : `, ` + 1 : n)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

A(` + 1 : n, 1 : `)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

W

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

W A(` + 1 : n, ` + 1 : n)−WZ

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

A22

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Repetition blocked algorithms

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 140/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the
block outer product elimination in Algorithm 6.

Threaded BLAS available
Compute line 4 with the sequential version of the LU

Exploite the threaded BLAS for the block operations in lines 5–7

Netlib BLAS
Compute line 4 with the sequential version of the LU

Employ OpenMP/PThreads to perform the BLAS calls for the block
operations in lines 5–7 in parallel.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 141/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the
block outer product elimination in Algorithm 6.

Threaded BLAS available
Compute line 4 with the sequential version of the LU

Exploite the threaded BLAS for the block operations in lines 5–7

Netlib BLAS
Compute line 4 with the sequential version of the LU

Employ OpenMP/PThreads to perform the BLAS calls for the block
operations in lines 5–7 in parallel.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 141/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

Both these approaches fall into the class of parallel codes described by
the following definition.

Definition (Fork-Join Parallelism)

An algorithm that performs a loop where certain parts need to be
performed in a sequential way, but others can be done in parallel is called
fork-join-parallel.

...· · · · · ·

Figure: A sketch of the fork-join execution model.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 142/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

Advantages

Easy to achieve,

many threaded BLAS implementations available,

Basically usable from any user code that requires linear
system solves

Disadvantages

very naive implementation,

sequential fraction limits the speedup (Amdahl’s law),

i.e., only useful for small numbers of cores.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 143/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the
graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not
appear by construction.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 144/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the
graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not
appear by construction.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 144/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the
graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not
appear by construction.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 144/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the
graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not
appear by construction.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 144/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 145/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Title Suppressed Due to Excessive Length 13

Fig. 3. The dependency graph of Algorithm 2 on a matrix with p = q = 3.

critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQRT subroutine have the highest priority and
then three other priority levels can be defined for DTSQRT, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle time
is almost completely eliminated since only very loose synchronization is required
between the threads. Figure 4 shows part of the execution flow of Algorithm 2 on
a 8-cores machine (2-way Quad Clovertown) when tasks are dynamically sched-
uled based on dependencies in the DAG. Each line in the execution flow shows
which tasks are performed by one of the threads involved in the factorization.

Figure 4 shows that all the idle times, which represent the major scalability
limit of the fork-join approach, can be removed thanks to the very low synchro-
nization requirements of the graph driven execution. The graph driven execution
also provides some degree of adaptivity since tasks are scheduled to threads de-
pending on the availability of execution units.

5 Performance Results

The performance of the tiled algorithms for Cholesky, QR ad LU factorizations
with dynamic scheduling of tasks has been measured on the system described in
Table 2 and compared to the performance of the MKL-9.1 implementations and
to the fork-join approach, i.e., the standard algorithm for block factorizations of
LAPACK associated with multithreaded BLAS (MKL-9.1).

Figures 5, 6, 7 report the performance of the Cholesky, QR and LU factor-
izations for the tiled algorithms with dynamic scheduling, the MKL-9.1 imple-

Figure: Dependency graph of Algorithm 6 for a 3× 3 block subdivision.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 146/337



Tree Reduction Dense Linear Systems

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Figure: The superiority of DAG scheduling of tasks over fork-join parallelism.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 147/337


