
Sparse Linear Systems Software

Chapter 3

Multicore and
Multiprocessor Systems:

Part V

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 148/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one matrix vector product (performing the main work),

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one dot,

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

two axpy,

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one nrm2,

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

and a nonstandard axpy operation with result in x.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 149/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The key ingredient in the CG method is the sparse matrix vector product
(SpMVP).

We learned in part 1 of the lecture that sparse matrix operations are
bandwidth limited, i.e., the crucial point is always the data transfer for
matrix pattern and entries to the processing units.

On the other hand, the SpMVP is trivially parallel due to data
parallelism. On multicore architectures the obvious questions are:

What is the optimal number of threads to use?

How should the data be distributed among the threads?

First one: treated in the exercises.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 150/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The second questions is investigated a lot in the literature. We will only
sketch a small selection of approaches considering x = Ab for x , b ∈ Rn

and A ∈ Rn×n sparse with properties specified separately in the method
descriptions.

Naive row blocking. (e.g., using OpenMP parallel for)

If the matrix A is banded with moderate bandwidth and the number of
entries per row is almost the same for all rows, simply grouping the rows
in blocks of rows will likely do a good job.

The bandwidth limitations guarantee data locality on b.

Furthermore, the similar lengths of the sparse rows will automatically
provide a proper load balancing.

This provides the easiest form of 1d-partitioning.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 151/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The second questions is investigated a lot in the literature. We will only
sketch a small selection of approaches considering x = Ab for x , b ∈ Rn

and A ∈ Rn×n sparse with properties specified separately in the method
descriptions.

Naive row blocking. (e.g., using OpenMP parallel for)

If the matrix A is banded with moderate bandwidth and the number of
entries per row is almost the same for all rows, simply grouping the rows
in blocks of rows will likely do a good job.

The bandwidth limitations guarantee data locality on b.

Furthermore, the similar lengths of the sparse rows will automatically
provide a proper load balancing.

This provides the easiest form of 1d-partitioning.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 151/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The simplest form of 2d-partitioning of the matrix A uses (blocks of)
columns and (blocks of) rows at the same time. It is usually referred to
as hypergraph partitioning since the choice fit the following definition.

Definition (Hypergraph)

A hypergraph is an ordered pair (V, E) of sets. It is a generalization of a
graph that consists of vertices (in the set V) and hyperedges in the set E .
In contrast to an edge in a graph a hyperedge can be an arbitrary subset
of V and not just a pair.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 152/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

Example

Schematic representation of a hypergraph with seven vertices and four
hyperedges.

v1

e 1 v2 v3

v5
v6

v7

v4

e 2

e 4
e 3

Image source: https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 153/337

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The idea of hypergraph partitioning is to use the hyperedges to find the
optimal partitioning of the vertices into k equal sets for optimal
balancing of the workload and data communication.

The problem of finding the optimal
partition is however np-hard.
Therefore cheap heuristics are
employed to approximate the
optimal partition.

An interesting variant especially for
symmetric patterns is the corner
symmetric partitioning.

13

“Corner” Symmetric Partitioning

• 1-D partitions reflected across diagonal
Figure: Corner symmetric partitioning
of the arrowhead matrix with 2
partitions.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 154/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products



∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


8

1 2

7

435

6

Figure: arrowhead matrix pattern and connectivity graph.

The central node 8 is called vertex separator. The identification of such a (group of) node(s) is
the central question in the graph model based partitioning. Successive application of this idea
leads to the nested dissection scheme.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 155/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Matrix Vector Products



∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


8

1 2

7

435

6

Figure: arrowhead matrix pattern and connectivity graph.

The central node 8 is called vertex separator. The identification of such a (group of) node(s) is
the central question in the graph model based partitioning. Successive application of this idea
leads to the nested dissection scheme.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 155/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Preconditioning

Recall:
A preconditioner is an invertible linear operator P that approximates the
action of A−1 for a linear system Ax = b.

Invertibility required to ensure proper preservation of solution,

preconditioner need not be formed as a matrix, as long as its action
on a vector can be provided as a function,

main purpose of the preconditioner is the grouping of eigenvalues,
ideally in a single cluster at +1.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 156/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Preconditioned CG

Algorithm 5: Preconditioned Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, A−1 ≈ P ∈ Rn×n

Output: x = A−1b
1 r0 = b − Ax0, p0 = z0 = Pr0, α0 = (r0, p0);
2 for m = 0 : n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)2
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;
8 zm+1 = Prm+1;
9 αm+1 = (rm+1, zm+1)2;

10 pm+1 = zm+1 +
αm+1
αm

pm;

11 else
12 STOP;

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 157/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Diagonal/Jacobi Preconditioner

Let D ∈ Rn×n be a diagonal matrix containing the diagonal of A. Then
P = D−1 is called Jacobi or diagonal preconditioner.

Properties

+ embarrassingly parallel in computation and application,

+ storage requirement n double numbers,

− only useful for diagonally dominant systems.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 158/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Approximate Inverse (SPAI) Preconditioning

The basic idea of SPAI is to find the best matrix P approximating A−1,
while maintaining the sparsity pattern of A.

min
P(P)=P(A)

||AP − I ||2F = min
P(P)=P(A)

n∑
j=1

||Apj − ej ||2F︸ ︷︷ ︸
n independent least squares problems

+ only SpMVP needed for the application,

+ n independent least squares problems allow two multicore
approaches:

rely on threaded BLAS when solving the least squares problems
sequentially via dgeqrs() from LAPACK,
use sequential BLAS with OpenMP for parallel solution of the least
squares problems.

− efficient preconditioning requires additional fill-in, which leads to
extra storage and computation complexity.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 159/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Sparse Approximate Inverse (SPAI) Preconditioning

The basic idea of SPAI is to find the best matrix P approximating A−1,
while maintaining the sparsity pattern of A.

min
P(P)=P(A)

||AP − I ||2F = min
P(P)=P(A)

n∑
j=1

||Apj − ej ||2F︸ ︷︷ ︸
n independent least squares problems

+ only SpMVP needed for the application,

+ n independent least squares problems allow two multicore
approaches:

rely on threaded BLAS when solving the least squares problems
sequentially via dgeqrs() from LAPACK,
use sequential BLAS with OpenMP for parallel solution of the least
squares problems.

− efficient preconditioning requires additional fill-in, which leads to
extra storage and computation complexity.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 159/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

1

2

34

6 5

(a) initial graph G0

H0 =


1 ∗ ∗
∗ 2 ∗ ∗
∗ 3 ∗
∗ 4
∗ 5 ∗

∗ ∗ 6


(b) corresponding submatrix 0

Figure: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 160/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

2

34

6 5

(c) elimination graph G1

H1 =


2 ∗ ∗ ∗
∗ 3 ∗
∗ 4
∗ 5 ∗

∗ ∗ 6


(d) corresponding submatrix 1

Figure: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 160/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

34

6 5

(e) elimination graph G2

H2 =


3 ∗ ∗ ∗
∗ 4 ∗
∗ 5 ∗
∗ ∗ ∗ 6


(f) corresponding submatrix 2

Figure: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 160/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

4

6 5

(g) elimination graph G3

H3 =

4 ∗ ∗
∗ 5 ∗
∗ ∗ 6


(h) corresponding submatrix 3

Figure: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 160/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

1

2

34

6 5

(a) The filled graph G+(A) = G(F)

F =


1 ∗ ∗
∗ 2 ∗ ∗ ∗
∗ 3 ∗ ∗ ∗
∗ ∗ 4 ∗ ∗
∗ ∗ 5 ∗

∗ ∗ ∗ ∗ ∗ 6


(b) The final matrix F = L + LT with fill.

Figure: The filled graph and matrix of a Cholesky decomposition example.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 161/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Now

L =


1
∗ 2
∗ 3
∗ ∗ 4
∗ ∗ 5

∗ ∗ ∗ ∗ ∗ 6


and thus, the forward elimination is purely sequential. Are we lost?

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 162/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =



1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10



Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 163/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =



1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10



Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 163/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =



1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10



Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 163/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Definition (column pattern)

The j-th column pattern P∗j is the set of row indices of all non-diagonal
nonzero entries in the j-th column.

Definition (Supernode)

A supernode is a set of contiguous column indices

I(p) = {p, p + 1, . . . , p + q − 1},

such that for all columns i ∈ I(p) we have

P∗i = P∗(p+q−1) ∪ {i + 1, ,̇p + q − 1}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 164/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal
blocks that have the identically same pattern in
each column below the diagonal block.

Column modifications in forward substitution
can be expressed in terms of supernodes rather
than single diagonal entries.

Inside the supernode block operations we can
exploit parallelism.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 165/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal
blocks that have the identically same pattern in
each column below the diagonal block.

Column modifications in forward substitution
can be expressed in terms of supernodes rather
than single diagonal entries.

Inside the supernode block operations we can
exploit parallelism.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 165/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal
blocks that have the identically same pattern in
each column below the diagonal block.

Column modifications in forward substitution
can be expressed in terms of supernodes rather
than single diagonal entries.

Inside the supernode block operations we can
exploit parallelism.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 165/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =



1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10



2

3

4

5

6

7

89

10

1

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 166/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed
independently

+ a simple task pool scheduling the independent
tasks enables parallel execution and load
balancing

− elimination tree must be computed to enable
proper scheduling and identification of
independent tasks

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 167/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed
independently

+ a simple task pool scheduling the independent
tasks enables parallel execution and load
balancing

− elimination tree must be computed to enable
proper scheduling and identification of
independent tasks

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 167/337

Sparse Linear Systems Software

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed
independently

+ a simple task pool scheduling the independent
tasks enables parallel execution and load
balancing

− elimination tree must be computed to enable
proper scheduling and identification of
independent tasks

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 167/337

Sparse Linear Systems Software

Relevant Software and Libraries

Dense Linear Algebra
1 OpenBLAS based on the earlier GotoBLAS project OpenBLAS

implements a complete set of optimized BLAS routines. On a
machine with a single socket it is likely the fastest BLAS
implementation one can get. a

2 Intel® Math Kernel Library (MKL) is Intel®s optimized
implementation of BLAS and LAPACK. It is the strongest opponent
of OpenBLAS on single socket systems. On a system with several
sockets no other BLAS library outperforms MKL. b

3 PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of
the linear algebra subsystem on multicore architectures. c

ahttp://xianyi.github.io/OpenBLAS/
bhttp://software.intel.com/en-us/intel-mkl
chttp://icl.cs.utk.edu/plasma/software/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 168/337

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Sparse Linear Systems Software

Relevant Software and Libraries

Dense Linear Algebra
1 OpenBLAS based on the earlier GotoBLAS project OpenBLAS

implements a complete set of optimized BLAS routines. On a
machine with a single socket it is likely the fastest BLAS
implementation one can get. a

2 Intel® Math Kernel Library (MKL) is Intel®s optimized
implementation of BLAS and LAPACK. It is the strongest opponent
of OpenBLAS on single socket systems. On a system with several
sockets no other BLAS library outperforms MKL. b

3 PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of
the linear algebra subsystem on multicore architectures. c

ahttp://xianyi.github.io/OpenBLAS/
bhttp://software.intel.com/en-us/intel-mkl
chttp://icl.cs.utk.edu/plasma/software/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 168/337

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Sparse Linear Systems Software

Relevant Software and Libraries

Dense Linear Algebra
1 OpenBLAS based on the earlier GotoBLAS project OpenBLAS

implements a complete set of optimized BLAS routines. On a
machine with a single socket it is likely the fastest BLAS
implementation one can get. a

2 Intel® Math Kernel Library (MKL) is Intel®s optimized
implementation of BLAS and LAPACK. It is the strongest opponent
of OpenBLAS on single socket systems. On a system with several
sockets no other BLAS library outperforms MKL. b

3 PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of
the linear algebra subsystem on multicore architectures. c

ahttp://xianyi.github.io/OpenBLAS/
bhttp://software.intel.com/en-us/intel-mkl
chttp://icl.cs.utk.edu/plasma/software/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 168/337

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Sparse Linear Systems Software

Relevant Software and Libraries

Sparse Linear Algebra
1 UMFPACK comes as part of the SuiteSparse package of software

libraries for sparse linear systems of equations. Uses thread parallel
multifrontal techniques to solve linear systems of equations. a

2 Boost uBLAS “is a C++ template class library that provides BLAS
level 1, 2, 3 functionality for dense, packed and sparse matrices.”b

3 MTL the Matrix Template Library provides an easy to use template
based C++ interface to linear algebra operations. It relies on Boost
for fast and efficient codes.
c

4 SuperLU MT Supernode based multithreaded LU decomposition.d

ahttp://www.cise.ufl.edu/research/sparse/umfpack/
bhttp:

//www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
chttp://www.simunova.com/en/node/24
dhttp://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 169/337

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/node/24
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Sparse Linear Systems Software

Relevant Software and Libraries

Sparse Linear Algebra
1 UMFPACK comes as part of the SuiteSparse package of software

libraries for sparse linear systems of equations. Uses thread parallel
multifrontal techniques to solve linear systems of equations. a

2 Boost uBLAS “is a C++ template class library that provides BLAS
level 1, 2, 3 functionality for dense, packed and sparse matrices.”b

3 MTL the Matrix Template Library provides an easy to use template
based C++ interface to linear algebra operations. It relies on Boost
for fast and efficient codes.
c

4 SuperLU MT Supernode based multithreaded LU decomposition.d

ahttp://www.cise.ufl.edu/research/sparse/umfpack/
bhttp:

//www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
chttp://www.simunova.com/en/node/24
dhttp://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 169/337

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/node/24
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Sparse Linear Systems Software

Relevant Software and Libraries

Sparse Linear Algebra
1 UMFPACK comes as part of the SuiteSparse package of software

libraries for sparse linear systems of equations. Uses thread parallel
multifrontal techniques to solve linear systems of equations. a

2 Boost uBLAS “is a C++ template class library that provides BLAS
level 1, 2, 3 functionality for dense, packed and sparse matrices.”b

3 MTL the Matrix Template Library provides an easy to use template
based C++ interface to linear algebra operations. It relies on Boost
for fast and efficient codes.
c

4 SuperLU MT Supernode based multithreaded LU decomposition.d

ahttp://www.cise.ufl.edu/research/sparse/umfpack/
bhttp:

//www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
chttp://www.simunova.com/en/node/24
dhttp://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 169/337

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/node/24
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Sparse Linear Systems Software

Relevant Software and Libraries

Sparse Linear Algebra
1 UMFPACK comes as part of the SuiteSparse package of software

libraries for sparse linear systems of equations. Uses thread parallel
multifrontal techniques to solve linear systems of equations. a

2 Boost uBLAS “is a C++ template class library that provides BLAS
level 1, 2, 3 functionality for dense, packed and sparse matrices.”b

3 MTL the Matrix Template Library provides an easy to use template
based C++ interface to linear algebra operations. It relies on Boost
for fast and efficient codes.
c

4 SuperLU MT Supernode based multithreaded LU decomposition.d

ahttp://www.cise.ufl.edu/research/sparse/umfpack/
bhttp:

//www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
chttp://www.simunova.com/en/node/24
dhttp://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 169/337

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/node/24
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Sparse Linear Systems Software

Relevant Software and Libraries

PThreads and Scheduling/Memory Control
1 nptl is the Native POSIX Linux Thread library that currently

provides PThread support on most Linux platforms. a

2 likwid (Like I Knew What I Do) is a light weight library that
supports software developers to design high performance scientific
computing programs with little overhead. b

3 numactl referred to as libnuma by several Linux distributions,
numactl is a small program/library that can be used to control
placement of process memory in NUMA environments. The library
version seems to be preferred by the Linux kernel policies. c

ahttp://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
bhttp://code.google.com/p/likwid/
chttp://oss.sgi.com/projects/libnuma/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 170/337

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

Sparse Linear Systems Software

Relevant Software and Libraries

PThreads and Scheduling/Memory Control
1 nptl is the Native POSIX Linux Thread library that currently

provides PThread support on most Linux platforms. a

2 likwid (Like I Knew What I Do) is a light weight library that
supports software developers to design high performance scientific
computing programs with little overhead. b

3 numactl referred to as libnuma by several Linux distributions,
numactl is a small program/library that can be used to control
placement of process memory in NUMA environments. The library
version seems to be preferred by the Linux kernel policies. c

ahttp://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
bhttp://code.google.com/p/likwid/
chttp://oss.sgi.com/projects/libnuma/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 170/337

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

Sparse Linear Systems Software

Relevant Software and Libraries

PThreads and Scheduling/Memory Control
1 nptl is the Native POSIX Linux Thread library that currently

provides PThread support on most Linux platforms. a

2 likwid (Like I Knew What I Do) is a light weight library that
supports software developers to design high performance scientific
computing programs with little overhead. b

3 numactl referred to as libnuma by several Linux distributions,
numactl is a small program/library that can be used to control
placement of process memory in NUMA environments. The library
version seems to be preferred by the Linux kernel policies. c

ahttp://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
bhttp://code.google.com/p/likwid/
chttp://oss.sgi.com/projects/libnuma/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 170/337

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

