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Chapter 2

Performance Measures:
Part I
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Time Measurement and Operation Counts
The Single Processor Case

Definition
In general we call the time elapsed between issuing a command and
receiving its results the runtime, or execution time of the corresponding
process. Some authors also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called
CPU time of the process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the
process.

system CPU time: Time spent in execution of operating system
routines called by the process.

waiting time: Time spent waiting for time slices, completion of
I/O, memory fetches. . .

That means the time we have to wait for a response of the program
includes the waiting times besides the CPU time.
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Time Measurement and Operation Counts
Instructions: Timings and Counts

clock rate and cycle time

The clock rate of a processor tells us how often it can switch instructions
per second. Closely related is the (clock) cycle time, i.e., the time
elapsed between two subsequent clock ticks.

Example

A CPU with a clock rate of 3.5 GHz = 3.5 109 1/s executes 3.5 109 clock
ticks per second. The length of a clock cycle thus is

1/(3.5 109) s = 1/3.5 10−9 s ≈ 0.29 ns
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Time Measurement and Operation Counts
Instructions: Timings and Counts

Different instructions require different times to get executed. This is
represented by the so called cycles per instruction (CPI) of the
corresponding instruction. An average CPI is connected to a process A
via CPI(A).

This number determines the total user CPU time together with the
number of instructions and cycle time via

TU CPU (A) = ninstr (A) · CPI (A) · tcycle

Clever choices of the instructions can influence the values of ninstr (A)
and CPI (A).  compiler optimization.
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Time Measurement and Operation Counts
MIPS versus FLOPS

A common performance measure of CPU manufacturers is the Million
instructions per second (MIPS) rate.

It can be expressed as

MIPS(A) =
ninstr (A)

TU CPU (A) · 106
=

rcycle

CPI (A) · 106
,

where rcycle is the cycle rate of the CPU.

This measure can be misleading in high performance computing, since
higher instruction throughput does not necessarily mean shorter
execution time.
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Time Measurement and Operation Counts
MIPS versus FLOPS

More common for the comparison in Scientific computing is the rate of
floating point operations (FLOPS) executed. The MFLOPS rate of a
program A can be expressed as

MFLOPS(A) =
nFLOPS (A)

TU CPU (A) · 106
[1/s],

with nFLOPS (A) the total number of FLOPS issued by the program A.

Note that not all FLOPS (see also Chapter 3 summer term) take the
same time to execute. Usually divisions and square roots are much
slower. The MFLOPS rate, however, does not take this into account.
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Time Measurement and Operation Counts
CPU Time versus Execution Time

Example
Input:

ct0=0;
A=randn(1500);

tic
ct0=cputime;
pause(2)
toc
cputime-ct0

tic
ct0=cputime;
[Q,R]=qr(A);
toc
cputime-ct0

Output:

Elapsed time is 2.000208 seconds.

ans =

0.0300

Elapsed time is 0.733860 seconds.

ans =

21.6800

Executed on a 4x8core Xeon® system.
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Time Measurement and Operation Counts
CPU Time versus Execution Time

Obviously in a parallel environment the CPU time can be much higher
than the actual execution time elapsed between start and end of the
process.

In any case it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time
into user/system CPU time and waiting time. The process is mainly
waiting for the sleep system call to return whilst basically accumulating
no active CPU time.

The second result is due to the fact that the activity is distributed to
several cores. Each activity accumulates its own CPU time and these are
summed up to the total CPU time of the process.
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Parallel Cost and Optimality

Definition (Parallel cost and cost-optimality)

The cost of a parallel program with data size n is defined as

Cp(n) = p ∗ Tp(n).

Here Tp(n) is the parallel runtime of the process its execution time on p
processors.

The parallel program is called cost-optimal if

Cp = T ∗(n).

T ∗(n) represents the execution time of the fastest sequential program
solving the same problem.

In practice T ∗(n) is often approximated by T1(n).
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Speedup

The speedup of parallel program

Sp(n) =
T ∗(n)

Tp(n)
,

is a measure for the acceleration in terms of execution time we can
expect from a parallel program.

The speedup is strictly limited from above by p Since otherwise the
parallel program would motivate a faster sequential algorithm. See
[Rauber/Rünger ’10] for details.

In practice often the speedup is computed with respect to the sequential
version of the code, i.e.,

Sp(n) ≈ T1(n)

Tp(n)
.
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Parallel Efficiency

Usually the parallel execution of the work a program has to perform
comes at the cost of certain management of subtasks. Their distribution,
organization and interdependence leads to a fraction of the total
execution, that has to be done extra.

Definition
The fraction of work that has to be performed by a sequential algorithm
as well is described by the parallel efficiency of a program. It is described
by

Ep(n) =
T ∗(n)

Cp(n)
=

Sp(n)

p
=

T ∗

p · Tp(n)
.

The parallel efficiency obviously is limited from above by Ep(n) = 1
representing the perfect speedup of p.
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Amdahl’s Law

In many situations it is impossible to parallelize the entire program.
Certain fractions remain that need to be performed sequentially. When a
(constant) fraction f of the program needs to be executed sequentially
Amdahl’s law describes the attainable speedup.

The total parallel runtime Tp(n) then consists of

f · T ∗(n) the time for the sequential fraction and

(1− f )/p · T ∗(n) the time for the fully parallel part.

The best attainable speedup can thus be expressed as

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.
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Scalability of Parallel Programs

Question
Is the parallel efficiency of a parallel program independent of the number
of processors p used?

The question is answered by the concept of parallel scalability. Scientific
computing and HPC distinguish two forms of scalability:

strong scalability
captures the dependence of the parallel runtime on the number of
processors for a fixed total problem size.

weak scalability
captures the dependence of the parallel runtime on the number of
processors for a fixed problem size per processor.
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