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Communication Networks (revisited)
Some Remarks on the Hypercube

(a) 1D hypercube
(b) 2D hypercube

(c) 3D hypercube (d) 4D hypercube

Figure: The first four hypercubes
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Figure: The hypercube network in 4d
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Communication Networks (revisited)
Some Remarks on the Hypercube

We denote the nodes in the d-dimensional hypercube by d-tuples of bits,
i.e. we use n1, . . . , np ∈ {0, 1}d . Let a, b, c ∈ {0, 1}d and ai , bi , ci the
i-th bit positions. We denote by ⊕ the bitwise exclusive or operation, i.e.

a1 . . . ad ⊕ b1 . . . bd = c1 . . . cd

with

ci =

{
1 where ai 6= bi ,
0 otherwise

for 1 ≤ i ≤ d .

Note that ∀z ∈ {0, 1}d then

00 . . . 0⊕ z = z ,

and if v ,w ∈ {0, 1}d differ in only a single bit, so do v ⊕ z and w ⊕ z .

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 281/342



Communication Networks (revisited)
Some Remarks on the Hypercube

We denote the nodes in the d-dimensional hypercube by d-tuples of bits,
i.e. we use n1, . . . , np ∈ {0, 1}d . Let a, b, c ∈ {0, 1}d and ai , bi , ci the
i-th bit positions. We denote by ⊕ the bitwise exclusive or operation, i.e.

a1 . . . ad ⊕ b1 . . . bd = c1 . . . cd

with

ci =

{
1 where ai 6= bi ,
0 otherwise

for 1 ≤ i ≤ d .

Note that ∀z ∈ {0, 1}d then

00 . . . 0⊕ z = z ,

and if v ,w ∈ {0, 1}d differ in only a single bit, so do v ⊕ z and w ⊕ z .

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 281/342



Communication Networks (revisited)
Some Remarks on the Hypercube

Properties of the Hypercube graph

nodes are bit d-tuples,

each node has d links to other nodes

neighbors differ in a single bit position

the diameter of the graph (i.e., the length of longest path
between two nodes) is d = log(p).
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Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Definition (Spanning tree)

A spanning tree of a graph is a tree that

picks one node of the graph as its root,

contains all other nodes as nodes or leaves,

has only edges that represent valid links in the graph.
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Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0
1 all root connections coincide with the links in the graph.

2 children are generated by inverting a single bit right of the rightmost
1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path
to the deepest leave 11 . . . 1.
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Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Root nodes other than 00 . . . 0
Spanning trees for other root nodes v are derived by replacing all nodes
w by w ⊕ v in the entire tree for root 00 . . . 0.

Why is this the case? We noted above the properties of ⊕ that

00 . . . 0 is the neutral element, and

v , w differ in only a single bit ⇒ v ⊕ z , w ⊕ z do so as well.

Thus, if (v ,w) is a hypercube link, then (v ⊕ z ,w ⊕ z) is one as well.

Single Broadcast

The single broadcast can be implemented in Θ(log p) = Θ(d)
successively descending through the spanning tree. It can also not be
better than that since the diameter of the hypercube is d .
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Communication Networks (revisited)
Communication Routing on the Hypercube

Scatter
A scatter operation needs to send out p − 1 different messages along the
d links of the root node. It can thus not be faster than d p−1

d e time steps.

We will see in the following that this ist the time also needed for a multi
broadcast. Since a single scatter can not be slower than that we
immediately have that a scatter is Θ( p−1

log(p) ) = Θ( p−1
d ).
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Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Problem

The single broadcast spanning trees for the 2d nodes in the
d-dimensional hypercube are not disjoint in the sense that each link is
only used by a single operation in each time step if the multi-broadcast is
treated as 2d isolated single broadcasts.

Observation
It is thus mandatory to construct spanning trees such that all sets of
edges used in a single time step by the different single broadcasts are
disjoint.
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Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Definition

The spanning tree for root node t ∈ {0, 1}d is called Tt , and simply
T0 for t = 00 . . . 0.

The set of edges active in time step i for Tt is called Ai (t)

Construction

The sets of active edges for root node t ∈ {0, 1}d may be constructed
such that for any two edges (x , y) and (x ′, y ′) in Ai (0) x , y and x ′, y ′ do
not differ in the same bit position and the sets for the other root nodes
are derived as

Ai (t) = {(x ⊕ t, y ⊕ t) | (x , y) ∈ Ai} ∀1 ≤ i ≤ m,

where m is the total number of time steps required.
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Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Observation
The set Ai of active edges in the i-th step can have at most d entries,
since we only have d bit positions available in the node labels.

Main Idea:

Construct the sets Ai such that |Ai | = d for 1 ≤ i < m and |Am| ≤ d .

Since each of the p = 2d nodes in the tree has an incoming link, except
the root, we have 2d − 1 edges in total that are distributed among the
Ai , i.e., ∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ = 2d − 1.

This immediately provides a first estimate for m:

m =

⌈
2d − 1

d

⌉
Note that we can also not get better than that, since each node in the

hypercube has to receive 2d − 1 messages from the other nodes across its
d incoming links.
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Communication Networks (revisited)
Communication Routing on the Hypercube

Definition
We collect some further notation:

Nk := {t ∈ {0, 1}d | t has k unit bits ans d − k zero bits.}
These sets have

nk := |Nk | =

(
d
k

)
=

d!

k!(d − k)!

elements.

The Nk are further subdivided into mk equivalence classes
Rk1, . . . ,Rkmk

with respect to left rotation. They are ordered by
rightmost concentration of the unit bits, i.e., Rk1 is the class
containing (0d−k 1k ).
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Communication Networks (revisited)
Communication Routing on the Hypercube

Definition
We collect some further notation:

The elements in the equivalence classes can be ordered by rightmost
concentration of unit bits as well.

n(t) is the global number of node t in this order.

m(t) = 1 + [n(t)− 1 mod d ] is t’s local number of inside the
equivalence class.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 290/342



Communication Networks (revisited)
Communication Routing on the Hypercube

Definition
We collect some further notation:

The elements in the equivalence classes can be ordered by rightmost
concentration of unit bits as well.

n(t) is the global number of node t in this order.

m(t) = 1 + [n(t)− 1 mod d ] is t’s local number of inside the
equivalence class.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 290/342



Communication Networks (revisited)
Communication Routing on the Hypercube

Definition
We collect some further notation:

The elements in the equivalence classes can be ordered by rightmost
concentration of unit bits as well.

n(t) is the global number of node t in this order.

m(t) = 1 + [n(t)− 1 mod d ] is t’s local number of inside the
equivalence class.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 290/342



Communication Networks (revisited)
Communication Routing on the Hypercube

Let us denote the sets of destination nodes in Ai by Ei . Then we set:

E0 = {00 . . . 0}
Ei = {t ∈ {0, 1}d | (i − 1)d + 1 ≤ n(t) ≤ id} 1 ≤ i < m

Em = {t ∈ {0, 1}d | (m − 1)d + 1 ≤ n(t) ≤ 2d − 1}

The set of active edges are then constructed by the rules:

1 connect t ∈ Ei to start node t ′ with the m(t)th bit inverted,

2 if t = 11 . . . 1 and m(t) = d connect to t ′ = 101 . . . 1 instead.
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Communication Networks (revisited)
Communication Routing on the Hypercube

By construction in each step the tree uses d edges and all sets Ai (t) for
the different t are disjoint. Thus, all 2d single broadcasts can be
performed simultaneously and the multi-broadcast can be done in
Θ( p−1

d ).

Note that although the d-hypercube has only d
2 · 2

d edges we can use
d · 2d links in the graph due to the assumption of bidirectional
communication.
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