
Message Passing Interface API Message Passing using Open MPI

Chapter 5

Distributed Memory
Systems: Part IV

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 293/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API

The Message Passing Interface is a standard for creation of parallel
programs using the message passing programming model. It describes

functionality,

behavior,

API syntax

of the required routines. It does, however, not prescribe any
implementation details. It is, e.g., completely open by what means a
message is transferred.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 294/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API

The MPI uses a specialized execution environment that spawn and
administrates the instances of a process. Relevant functions for

setup and destruction of the working environments context

grouping processes

actual message transmission

. . .

are collected in the mpi.h header file. We will see later for the case of
the Open MPI implementation of the standard how we can compile and
run a program using the MPI features.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 295/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
MPI Context Initialization and Finalization

The most basic components of the MPI program are

#include <mpi.h>

to make the standard available. Then before we can use any message
passing routines we need to initialize the execution context via

int MPI_Init(int *argc, char ***argv)

passing on the usual arguments of the main() function of our C
program. After we have finished our MPI related work the execution
context is destroyed using

int MPI_Finalize()

Processes may continue performing local work after the finalization, but
with a very few exceptions none of the MPI function work anymore. It is
mandatory to make sure all MPI operations have finished before calling
MPI Finalize().

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 296/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Groups

Definition
Process group Processes in MPI may be clustered in so called process
groups. These are ordered sets of instances of the program numbered
from 0 to n − 1. The local numbers of the processes are called rank.

From the programmers view an MPI group is an object of type
MPI Group, which can be accessed via a handle. There exists one
predefined group constant MPI GROUP EMPTY, denoting the empty
group.
MPI process groups are useful to implement task parallel applications.
MPI supports communication inside a group and point to point type
communication between groups.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 297/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_union(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Generates the union of two existing groups by including all elements of
the first group, followed by all elements of second group that are not in
the first group.

group1, group2 groups to include

*newgroup handle of the group to create. This may be equal to
the empty group MPI GROUP EMPTY.

The operation is not commutative but associative.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 298/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_intersection(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Produces a group at the intersection of two existing groups by including
all elements of the first group that are also in the second group, ordered
as in first group.

group1, group2 groups to intersect,

*newgroup handle of the group to create. This may be equal to
the empty group MPI GROUP EMPTY.

The operation is not commutative but associative.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 299/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_difference(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Generates teh new group from the difference of the existing groups by
including all elements of the first group that are not in the second group,
ordered as in the first group.

group1, group2 groups to determine the difference from

*newgroup handle of the group to create. This may be equal to
the empty group MPI GROUP EMPTY.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 300/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_incl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by including a possibly
reordered subset of the processes.

group the existing group

n number of ranks used in the new group

ranks ordered list of members for the new group

*newgroup handle of the group to create.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 301/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_excl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by excluding a possibly
reordered subset of the processes.

group the existing group

n number of ranks used in the new group

ranks ordered list of members to exclude from the new group

*newgroup handle of the group to create.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 302/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_size(MPI_Group group, int *size)

Determines the number of members of a group, returned in size.

int MPI_Group_rank(MPI_Group group, int *rank)

Find the rank (local number) of the current process in group.

int MPI_Group_compare(MPI_Group group1,
MPI_Group group2,
int *result)

Find out how different group1 and group2 are. The result is
MPI IDENT if they are the same, MPI SIMILAR in case they only differ
in the order of the processes and MPI UNEQUAL otherwise.

Unused groups can be released by calling

int MPI_Group_free(MPI_Group *group)

On successful return group is set to MPI GROUP NULL

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 303/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Communicators

Definition
Communicators The participants in a communication operation in MPI
are usually determined via so called communicators. MPI distinguishes
two types of communicators

intra-communicators for the collective communication inside a
process group

inter-communicators for the point-to-point like communication
between two process groups.

If we are following the SPMD programming model and do not want to
have task-parallelism in our code, we are usually fine with the predefined
default communicator MPI COMM WORLD. When people simply speak of
a communicator they usually refer to an intra-communicator.
Communicators are objects of type MPI Comm

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 304/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Communicator Functions

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

Create a new communicator for a subset of the processes.

comm base communicator

group process group the new communicator will be associated
with. Must be a subgroup of the group associated to comm.

*newcomm handle to the newly created communicator.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 305/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Process Groups and Communicators: Communicator Functions

int MPI_Comm_size (MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

are the communicator equivalents of the equally called group functions.
For comm equal to MPI COMM WORLD the total number of processes and
the global ranks are returned. Otherwise those of the associated group
are given.

For the MPI Comm compare function the value MPI IDENT here means
that the underlying groups are in fact the same. MPI CONGRUENT is
returned if the groups are equal (including the order of the ranks) but
not the same one group. If only the order differs the result is
MPI SIMILAR again and MPI UNEQUAL otherwise.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 306/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Point-to-Point Communication

int MPI_Send(void *buf,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm)

Perform a blocking send operation.

buf address of the sendbuffer

count number of elements to send

datatype type of send buffer elements

dest the rank of the destination process inside comm

tag a message identifier

comm the communicator to use for the transmission

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 307/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Point-to-Point Communication

int MPI_Recv(void *buf,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI_Status *status)

Performs a standard-mode blocking receive.
buf address of the send buffer
count number of elements to send
datatype type of send buffer elements
source the rank of the sending process inside comm
tag a message identifier
comm the communicator to use for the transmission
status a status object containing information about the sender,
the message tag, and possible errors. Also the length of the message
received can be retrieved from it using the MPI Get count
function. This can be set to the constant MPI STATUS IGNORE to
save resources if not needed by the application.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 308/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Point-to-Point Communication

Variants of these functions performing the send and receive in a single
call or that are non-blocking, exist, for the details see the Standard and
the man pages of MPI Sendrcv(), MPI Isend(), MPI Irecv().

For the non-blocking communication operations the function
MPI Test() can be used to check whether a certain message has been
transferred.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 309/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Single-Collective Communication

int MPI_Barrier(MPI_Comm comm)

Actually not performing a real communication this function makes sure
that process flow stops until all processes in the group associated to
comm have reached this point.

comm the communicator to use the barrier for

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 310/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Single-Collective Communication

int MPI_Bcast(void *buffer,
int count,
MPI_Datatype datatype,
int root,
MPI_Comm comm)

Broadcasts a message from one process to all other processes of the
communicator.

*buffer address of the send/receive buffer

count number of elements to send

datatype type of send buffer elements

root the rank of the sending process

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 311/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Single-Collective Communication

int MPI_Reduce(void *sendbuf,
void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
int root,
MPI_Comm comm)

Reduces values on all processes within a group associated to a
communicator

*sendbuf address of the send buffer

*recvbuf address of the receive buffer (only relevant on root)

count number of elements to send

datatype type of buffer elements

op the arithmetic operation to use in the reduce

root the rank of the root/receiving process

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 312/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Single-Collective Communication

int MPI_Scatter(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Distributes data from one process among all processes in the
communicator

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

root the rank of the root/sending process

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 313/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Single-Collective Communication

int MPI_Gather(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Collects data from all processes on a single process.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

root the rank of the root/receiving process

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 314/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Multi-Collective Communication

int MPI_Allgather(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Collects and redistributes data from all processes to all processes.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 315/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Multi-Collective Communication

int MPI_Allreduce(void *sendbuf,
void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
MPI_Comm comm)

Similar to the MPI Reduce() function it combines values from all
processes, but in addition it distributes the result back to all processes.

*sendbuf address of the send buffer

*recvbuf address of the receive buffer

count number of elements to send

datatype type of buffer elements

op the arithmetic operation to use in the reduce

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 316/342

Message Passing Interface API Message Passing using Open MPI

Message Passing Interface API
Multi-Collective Communication

int MPI_Alltoall(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

The total exchange operation, i.e., every process sends to all other
processes.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

comm the communicator to be use

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 317/342

Message Passing Interface API Message Passing using Open MPI

Message Passing using Open MPI
Multi-Collective Communication: Hello World

The obligatory “hello world!” program does no more than initializing the
MPI context, printing the obligatory text from all instances and
destroying the context again:

#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv){

/* start MPI context*/
MPI_Init(&argc, &argv);

/*Do something*/
printf("Hello world\n");

/* Stop MPI context*/
MPI_Finalize();
return 0;

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 318/342

Message Passing Interface API Message Passing using Open MPI

Message Passing using Open MPI
Multi-Collective Communication

In Open MPI8 a C wrapper compiler called mpicc is provided. Its sole
purpose is to transparently

add relevant compiler and linker flags to the user’s compiler
command line

and then call the underlying compiler to perform the actual
compilation.

Especially we do not need to care where exactly the necessary MPI
libraries are located and which additional flags are required. If we have
specified additional parameters (e.g. for code optimization, or
debugging), mpicc passes them on to the underlying compiler.

Example

Thus, to compile the “hello world” code, we simply use:

mpicc hello_world.c -o hello_world -O2

8http://www.open-mpi.org/
Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 319/342

http://www.open-mpi.org/

Message Passing Interface API Message Passing using Open MPI

Message Passing using Open MPI
Multi-Collective Communication

The drawback of the MPI framework is that processes need to be started
within a special runtime environment. In the case of Open MPI this is
invoked using the mpirun tool:

mpirun [options] <program> [<args>]

The tool takes a couple of options that allow to steer the number of
processes spanned, including where they are spanned, control their
working environment (path, working directory, environment variables, . . .)
and the redirection of standard input and output and many details more.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 320/342

Message Passing Interface API Message Passing using Open MPI

Message Passing using Open MPI
Multi-Collective Communication

The most important options of mpirun for beginners are:

-n <#> run this many copies, if unset Open MPI spans one copy
per processor (aliases are -c, --n, -np).

-H List of hosts (comma separate) to spawn the processes on
(aliases -host, --host)

-hostfile Provide a hostfile to use instead of the list above. (aliases
and synonyms --hostfile, -machinefile,
--machinefile)

Example

To run 1 copy of hello world (from the local directory) each on the
two hosts alpha, beta we may use

mpirun -np 2 -H alpha,beta ./hello_world

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 321/342

