Chapter 5

Distributed Memory
Systems: Part V

Jens Saak, Scientific Computing Il 322/342

Data Dsitribution Schemes in Distributed LU

Data Dsitribution Schemes in Distributed LU

For a 2d data field (like a matrix) there are basically 3 types of data
distribution patterns:

o row/column blocks,

o row/column cyclic,

o checkerboard.

All of them have their advantages and disadvantages in different
algorithms. We will treat them all in the case of the LU decomposition in
the following.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 323/342

Data Dsitribution Schemes in Distributed LU

Data Dsitribution Schemes in Distributed LU

Multi-Collective Communication

Algorithm 7: Gaussian elimination — row-by-row-version

Input: A € R™" allowing LU decomposition
Output: A overwritten by L, U

1 fork=1:n—1do

2 ;

3 ;

4 Alk+1:n,k)=A(k+1:n,b)/A(k, k)
5 fori=k+1:ndo

6 forj=k+1:ndo

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 324/342

Data Dsitribution Schemes in Distributed LU

Data Dsitribution Schemes in Distributed LU

Before diving into the details of data distribution we recall that after 4
steps of the row-by-row LU decomposition we have the following:

[ul,1 U2 U3 Ula ULs uie U7 Ul U9 U110]
h1 w2 W23 W24 U2s U2g Up7 U2g U9 U210
1 k2 us3 w34 W35 W36 U37 U3g U39 U310
lsg lap la3 usa uss Use Us7 Usg Us9 U410
A@) — Is1 k2 53 54 ass ase asz7 asg asg as 10
lba 2 3 lba a5 a6 a7 a8 39 36,10
It ko ks ka4 ars are ar7 arg are ari0
lsi ls2 53 lga a5 age a7 a8 39 3310
loa loo lo3z o4 ags ae Aa9,7 ags A9 49,10
Lho,t ho2 hos hos4 aw5 a6 a7 308 2109 210,104

Furthermore the blue and green parts will no longer be touched and the
algorithm proceeds on the smaller lower right part A(5 : 10,5 : 10) only.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 325/342

Data Dsitribution Schemes in Distributed LU
[1o}

Row-/Column Block Distribution

Basic Idea:

Group the rows/columns in blocks of [2]. Each processor then works on
one of those blocks, performing all necessary operations that treat any
rows/columns in the scope.

[u1,1 ur2 U13 Ul4 U1s Py16 Uiy U1g Ul9 U110
bi Upp Up3 Wpa Ups Upp Up7 Upg Upg Wpo

[/34,1 o U3z U4 U35 PY36 U7 U3g U39 U310
lgg lao a3 us4 Usas Use Uaz Uag Uao Uil
A@) — [/5,1 o b3 s ass Pgse a7 asg a9 d510

lba lbo los la a5 a6 367 a8 369 3610
i ke ks ha ars Pgre a7 ars are ario
lsa lso g3 lsa ass ase 37 ass ag9 310
[/9,1 loo Iz la a5 P36 a7 A8 A9 910
hoa hoo hos hosa 205 a6 3107 3108 3109 310.10

- —JC_—JC__JC)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 326/342

Data Dsitribution Schemes in Distributed LU
000«

Row-/Column Block Distribution

Processors P; and P, have no more work do do after step 4. ~~ bad load
balancing among the processors. J

As a consequence we should not use the block distribution in cases when
not the entire matrix is involved in all computations to make sure that all
processors are equally well loaded. That means for parallel matrix-vector
or matrix-matrix products it may serve well, but for the LU we need to
find a data distribution that has a better distribution of the workload.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 327/342

Data Dsitribution Scheme:
00@00000(

Cyclic-row/-column Distribution

Basic Idea:

s in Distributed LU

Instead of distributing blocks of rows/columns assign a single
row/column to a process until all got one and then start over until all
rows/columns are distributed.

A4 —

U1 o U3 Uig Uis Yine uiy g U9 Ui
(bn wo w3 wa ws Pl wg g g U0
(i ho wuss uss uss "¥36 U7 Usg U3g U3io)
(lax lao I3 usa uss "#ae Us7 Lag Uso Usaio)
(i 5o b3 ks ass "B a7 asg asg as10)
(ly loo I3 loa a5 "Bes a7 a8 a9 a36,10)
(7i ko hs hha as "#re ary ars are ario)
(i o ks lsa ass "®se6 a7 adss a9 as10)
(lo. ho s s ags "6 a9z ass @99 ag10)

ho1 hoo hos hos a5 06 3107 308 3100 910,10

Max Planck Institute Magdeburg

Jens Saak, Scientific Computing Il

328/342

Data Dsitribution Schemes in Distributed LU
O®@0000

Cyclic-row/-column Distribution

Obviously now the processors only start to become idle after n — p steps
of the outermost loop, i.e. in A(=P) "which is reasonable for p < n. Still

basically every processor is responsible for [;—)’] rows.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 329/342

Data Dsitribution Schemes in Distributed LU
O®@0000

Cyclic-row/-column Distribution

Obviously now the processors only start to become idle after n — p steps

of the outermost loop, i.e. in A(=P) "which is reasonable for p < n. Still

basically every processor is responsible for [;—)’] rows.

Pivoting

Since pivoting adds a considerable amount of extra communication effort,
we do not neglect it here in contrast to earlier appearances. However, we
restrict ourselves to the case of column pivoting. That means as the first
step of the outer for loop we add the pivot selection and row swapping.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 329/342

Data Dsitribution Schemes in Distributed LU

D00@000!

Data Dsntrlbutlon Schemes in Distributed LU

Cyclic-row/-column Distribution

Algorithm 7: Gaussian elimination — row-by-row-version

Input: A € R™" allowing LU decomposition
Output: A overwritten by L, U
fork=1:n—1do
ko = argmax|A(i, k)|;
i=k:n
Swap rows k and ko;
Alk+1:nk)=A(k+1:n,b)/A(k, k)
fori=k+1:ndo
Lforj:k—kl:ndo

N -

N o O~ W

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 330/342

Data Dsitribution Schemes in Distributed LU
[e]e]e] le]e]
N

Cyclic-row/-column Distribution

Differences to the sequential case

© Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed

parallel case. That means each processor finds its local pivot element and

afterward they are compared among all processors.

.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 331/342

Data Dsitribution Schemes in Distributed LU
[e]e]e] le]e]

Cyclic-row/-column Distribution

Differences to the sequential case

© Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed

parallel case. That means each processor finds its local pivot element and

afterward they are compared among all processors.

© Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that
owns the row containing the critical diagonal element, we are fine. We can
perform a local row swap as in the sequential case. Otherwise the pivot row is

exchanged with the process owning the “diagonal row”.

v

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 331/342

Data Dsitribution Schemes in Distributed LU
[e]e]e] le]e]

Cyclic-row/-column Distribution

Differences to the sequential case

© Determination of the pivot element.

The column below the diagonal is owned by several processors in the distributed

parallel case. That means each processor finds its local pivot element and
afterward they are compared among all processors.

© Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that
owns the row containing the critical diagonal element, we are fine. We can
perform a local row swap as in the sequential case. Otherwise the pivot row is

exchanged with the process owning the “diagonal row”.
© Distribution of the pivot row.

The pivot row is the key ingredient to the computation in the step. It is needed
by all processors and thus needs to be broadcast to all active processors.

v

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 331/342

parallel case. That means each processor finds its local pivot element and
afterward they are compared among all processors.

Usage of the pivot element.

If we are lucky enough that the pivot row is owned by the same processor that
owns the row containing the critical diagonal element, we are fine. We can
perform a local row swap as in the sequential case. Otherwise the pivot row is
exchanged with the process owning the “diagonal row”.

Distribution of the pivot row.

The pivot row is the key ingredient to the computation in the step. It is needed
by all processors and thus needs to be broadcast to all active processors.
Computation of the matrix element updates.

The update step can now be performed as in the sequential case. Only, each
processor just works through the local rows it owns.

Differences to the sequential case

© Determination of the pivot element.

The column below the diagonal is owned by several processors in the distributed

v

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il

331/342

Data Dsitribution Schemes in Distributed LU
[e]e]e]e] lo]

Cyclic-row/-column Distribution

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 332/342

Data Dsitribution Schemes in Distributed LU
[e]e]e]e]e]]

Cyclic-row/-column Distribution

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 333/342

bution Schemes in Distributed LU

0000

Checkerboard Distribution

Basic Idea:

Distribution of the d-dimensional data array to a d-dimensional processor
grid. Note that we can follow the blocked or cyclic variants just as in the

case above.
a11 a2 | a3 ara|as aie | a7 as a1,1 a5 | a2 1,6 |a1,3 31,7 | 91,4 s
P11 P12 P13 P14 P11 P12 P13 P1a
a1 a2 | a3 azas | azs aze | a2,7 a2;8 a51 ass5 | as2 ase | as,3 a5,7]| 85,4 as8
43,1 43,2 | 43,3 a3,4 | @35 a3,6 | 93,7 43,8 az1 a5 | @22 a6 | 92,3 a2,7 | 42,4 2.8
P2 P2 P23 P2y P2 P2 P23 P2y
a4,1 @42 | 94,3 a4,4 | a4,5 as6 | 24,7 a4.8 36,1 9,5 | 9,2 46,6 | 96,3 36,7 | 96,4 36,8
a5,1 a2 |3a53 as4 | ass ase | a5,7 as,g a31 a35 | @32 a3e | @33 a7 | 334 ass
P3; P3 P33 Pz P3; P3 P33 P34
36,1 3,2 | 9,3 46,4 | 36,5 36,6 | 96,7 36,8 ar,1 arss | ar2 are | ar,3 ar,;7 | are ars
ar,1 ar2 | ar3 ara|ars are | dr,7 ars 4,1 A4,5 | A4,2 34,6 | 94,3 34,7 | 34,4 A48
Psn P4 Ps3 P Psu P> Pa3 Pa
ag,1 ag,2 | 98,3 as,4 | 98,5 ag,6 | 33,7 48,8 ag,1 ag,5 | 98,2 as,6 | 98,3 48,7 | 23,4 48,8

a) blocked distribution (b) cyclic distribution
Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 334/342

Data Dsitribution Schemes in Distributed LU
O@000

Checkerboard Distribution

Let n= H?Zl n; be the total problem size and n; the degrees of freedom
in the /-th direction. Also p, as before, the number of processors in total.
We call p=(ps, ..., pg) a processor distribution if it holds

On each processor we assume a local data distribution b = (by, ..., by)

with
d
n < H pib;.
i=1

Ideally we want to have equality in both cases to achieve optimal load
balancing.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 335/342

Data Dsitribution Schemes in Distributed LU
[e]e] lele}

Checkerboard Distribution

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 336/342

Data Dsitribution Schemes in Distributed LU
000@0

Checkerboard Distribution

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 337/342

Data Dsitribution Schemes in Distributed LU
[e]e]ele] }

Checkerboard Distribution

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 338/342

An Alternative for the LU Using Distributed BLAS

and LAPACK

The PBLAS project (details later) aims at providing a parallel distributed
version of the BLAS library. In the previous Chapters we have
investigated level 3 BLAS based block outer product versions of the LU
decomposition.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 339/342

Data Dsitribution Schemes in Distributed LU

Data Distribution for other Problems

domain decomposition

Similar to the splitting of the matrix into blocks on which smaller
subproblems are solved, in domain decomposition® methods for boundary
value problems the objective domain on which the problem is to be
solved is subdivided into smaller parts. Then on each part a smaller
independent boundary value problem is solved. The interaction between
subdomains is only necessary if their intersection is non empty, i.e. they
have a common “boundary”, the interface. In each iteration step both
processes rely on the result of the prior step and exchange the data on
the interface to make it fit in a post-processing procedure.

http://www.ddm.org

@ The interface is sometimes also called halo.

@ The interface may be a single layer of unknowns, but can also be
extended. One then speaks of overlapping domain decomposition
methods. y

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 340/342

http://www.ddm.org

Relevant Software and Libraries

Implementations of the MPI Standard

@ Open MPI, Current feature release 1.73 implements MPI 22
o MPICH is on the move to MPI 3.0°

o MVAPICH: The current MVAPICH2 1.9 is based on MPICH 3.0.3 ¢
o Intel® MPI Library: version 4.1 implements MPI 2.2 ¢

http://www.openmpi.org

bhttp://www.mpich.org/
‘http://mvapich.cse.ohio-state.edu/
dhttp://software.intel.com/en-us/intel-mpi-library

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 341/342

http://www.openmpi.org
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library

Data Dsitribution Schemes in Distributed LU Software

Relevant Software and Libraries

Scientific Software

o BLACS (Basic Linear Algebra Communication Subprograms) “is an
ongoing investigation whose purpose is to create a linear algebra
oriented message passing interface that may be implemented
efficiently and uniformly across a large range of distributed memory
platforms.”?

@ ScalLAPACK a BLACS-based scalable distributed implementation of
LAPACK (current version 2.0.2 of May 1, 2012) °

o PBLAS (Parallel Basic Linear Algebra Subprograms) subproject of
the above ¢

o Boost starting with version 1.35 has a boost.MPI| module providing
a C4+ friendly MPI framework. ¢

http://www.netlib.org/blacs/
bhttp://www.netlib.org/scalapack/
‘http://www.netlib.org/scalapack/pblas_gref.html
dhttp://www.boost .org/

y

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 342/342

http://www.netlib.org/blacs/
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/pblas_qref.html
http://www.boost.org/

Relevant Software and Libraries

Scientific Software

o PETSC "“is a suite of data structures and routines for the scalable
(parallel) solution of scientific applications modeled by partial
differential equations.”?

o SLEPC is the Scalable Library for Eigenvalue Problem
Computations.?

o PARPACK an extension to the ARPACK for eigenvalue
computations using MPI and BLACS for parallel execution.€

http://www.mcs.anl.gov/petsc/
bhttp://www.grycap.upv.es/slepc/
‘http://www.caam.rice.edu/software/ARPACK/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing Il 342/342

http://www.mcs.anl.gov/petsc/
http://www.grycap.upv.es/slepc/
http://www.caam.rice.edu/software/ARPACK/

