
MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

Lecture Notes

“Scientific Computing I”
winter term 2014/2015

Dr. Jens Saak

jens.saak
@mpi-magdeburg.mpg.de

Dipl.-Math. Martin Köhler

martin.koehler
@mpi-magdeburg.mpg.de

1 for j :“ i, . . . , n do
2 for k :“ 1, . . . , i´ 1 do
3 Ai,j´ “ Ai,kAk,j

version from March 26, 2015

2

Contents

1 Linux and the Commandline 1
1.1 A short History of an Accidental Revolution 2
1.2 The Linux Shell and Basic Commands for Handling Files 4
1.3 Getting Help . 15
1.4 Manipulation of Simple Commands 15
1.5 Script File Basics . 17
1.6 Simple Automatic File Manipulation 18
1.7 Remote Computing on Encrypted Connections 24
1.8 Screen an Online/Offline Terminal 25
1.9 The Toolchain . 27
References and Further Reading . 28

2 Revision Control 29
2.1 Types of Revision Control Systems 30

2.1.1 Local Revision Control 30
2.1.2 Central Revision Control 31
2.1.3 Distributed Revision Control 31

2.2 Collaborative Work on Projects 32
2.2.1 Conflicts . 32
2.2.2 Branches . 32
2.2.3 Tags . 32

3 Introduction to C and the GNU Toolchain 33
3.1 The Programming Environment 35
3.2 C Statements, Types and Operators 38
3.3 Control Structures . 43
3.4 Complex Data Types and Arrays 48

i

ii Contents

3.5 Functions . 54
3.6 An Introduction to the Standard Library 56

3.6.1 stdio.h and stdlib.h 56
3.6.2 math.h and complex.h 59
3.6.3 string.h . 61

3.7 File Input and Output . 62
3.8 The Preprocessor and Header Files 63
3.9 Makefiles . 66
3.10 Writing Own Libraries . 69
3.11 Interfacing Fortran . 71
3.12 Automatic Generation of Documentations Using DOXYGEN . . . 73
References and Further Reading . 75

4 Error Analysis and Machine Numbers 77
4.1 Machine Numbers . 77
4.2 Rounding Errors and Error Propagation 81

4.2.1 Rounding Rules . 81
4.2.2 Computer Arithmetic . 85
4.2.3 Error Propagation . 86
4.2.4 The IEEE Standard 754 90

4.3 Error Analysis . 92
References and Further Reading . 103

5 Memory Architecture and Memory Management 105
5.1 Virtual Memory Concept . 107

5.1.1 Paging . 108
5.1.2 Memory Related Error Signals 108

5.2 Volatile memory . 109
5.2.1 Registers . 109
5.2.2 Cache . 109
5.2.3 Main Memory . 110

5.3 Non-Volatile Storage . 111
5.3.1 Local Storage Media . 111
5.3.2 Local Network . 111
5.3.3 Cloud and Remote Network Services 112

5.4 Non Uniform Memory Access . 112
5.4.1 Cache Coherence . 112
5.4.2 Memory Consistency . 113

References and Further Reading . 113

6 Basic Operations, Formats and Matrix-Norms 115
6.1 Vector Norms and Inner Products 116
6.2 Linear Operators, Operator and Matrix Norms 118

6.2.1 Spectral Norm and Spectral Radius 124

Contents iii

6.2.2 Condition Number and Singular Values 126
6.2.3 Some Remarks on κ2pAq 128

6.3 Matrix Storage Formats . 129
6.3.1 Dense Matrices . 130
6.3.2 Sparse Matrices . 132
6.3.3 Complex Matrices . 137

6.4 Linear Algebra Software . 138
6.4.1 Basic Linear Algebra Subroutines (BLAS) 138
6.4.2 Linear Algebra PACKage (LAPACK) 142
6.4.3 SuiteSparse . 144
6.4.4 ITPACK . 145
6.4.5 Trilinos . 145
6.4.6 Native Packages for other Programming Environments

and Languages . 145
References and Further Reading . 146

7 The Solution of Moderate Size Dense Linear Systems 149
7.1 Important Preliminaries . 149
7.2 Cache/BLAS Exploitation . 152

7.2.1 Triangular System . 152
7.2.2 Triangular Systems with Multiple Right Hand Sides and

BLAS Level-3 formulation 153
7.2.3 BLAS Level-3 based Gaussian Elimination 154

7.3 Iterative Refinement . 155
References and Further Reading . 157

8 Solving Linear Systems With Sparse Matrices 159
8.1 Preconditioning . 162

8.1.1 Diagonal Preconditioning 162
8.1.2 Splitting Methods . 163
8.1.3 Multigrid approaches . 163
8.1.4 Incomplete Factorizations 163
8.1.5 Sparse Approximate Inverses (SPAI) 164

8.2 Krylov Subspaces and Projection Methods 164
8.3 Conjugate Gradients . 166
8.4 Direct Solvers for Sparse Symmetric Systems 168

8.4.1 The Elimination Graph Model for Symmetric Matrices . . . 169
8.4.2 The filled graph G`pAq 171
8.4.3 Characterization of Fill-in 171
8.4.4 Heuristic Fill Reduction 172
8.4.5 Related Software . 178

References and Further Reading . 179

iv Contents

Preface

German Die Vorlesung “Wissenschaftliches Rechnen 1” verfolgt das Ziel, Ver-
fahren und Algorithmen der Numerischen Mathematik praktisch umzusetzen.
Sie soll Wissen und Strategien vermitteln, welche notwendig sind, um Ideen
aus der Theorie in praktisch nutzbare Programme zu übersetzen und diese
effizient zu implementieren. Dies soll mehrheitlich mit Hilfe der Programmier-
sprache C geschehen, da sie eine der am meisten eingesetzten Sprachen ist1

und auch im Bereich von eingebetteten System unverzichtbar ist.

Die rein mathematische Betrachtung von Problemstellung reicht in vielen Fällen
dem Urheber des Problems nicht mehr aus. Viel mehr sind Industrie und Tech-
nik an praktisch nutzbaren Ergebnissen für die Anwendung in Informatik, Inge-
nieurwesen und Alltagsproblemen interessiert.

Neben der Umsetzungen von mathematischen Verfahren soll der Umgang mit
unixoiden Betriebssystemen (in diesem Fall Linux) erlernt werden. Diese bilden
die hauptsächlich eingesetzte Klasse von Betriebssystemen auf den großen
Compute-Clustern in modernen Rechenzentren. Neben den Betriebssystem-
Spezifika werden auch Hilfsmittel vorgestellt, die den Arbeitsablauf im Umfeld
des wissenschaftlichen Rechnens erleichtern.

English This lecture aims at the practical implementation of methods and
algortihms in numerical mathematics. Its main purpose is to convey the knowl-
edge and strategies necessary to transfer and efficiently implement theoretical
ideas into computer programs for practical application. We will focus on the C

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

v

 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

vi Contents

programming language since this is one of the most comonly used languages,
which is especially invaluable in the environment of embedded systems.

The purely mathematical consideration of problem settings often is no longer
sufficient. Today partners from industry and technology are interested in prac-
tically usable results for applications in computer and engineering sciences.

Along with the practical implementation of mathematical methods the usage of
unixoidal operating systems (in our case Linux) is to be learned. Those operat-
ing systems form the most important class of operating systems used on large
compute clusters in modern high performance computing centers. Besides op-
erating system specifics we also present a couple of tools that help simplifying
work in a scientific computing environment.

Layout and Style

We have put some effort into creating a unique reading experience that visually
supports the reader in identifying contributions to the content. Examples are
typeset inside light gray background boxes to find them easily in the document.
They follow a chapter-wise numbering scheme, that is also used for Theorem-
like environments (i.e. definitions, theorems, lemmas, corollaries and remarks).
These environments are all displayed as framed boxes where definitions are
marked by a -symbol. Theorems, corollaries and lemmas can be identified
by the -symbol and remarks show a . Equation numbers follow their own
chapter-wise scheme.

Commands, program variables and alike are displayed in typewriter style
throughout the document. When an appropriate portion of code is presented,
we use color coding (of the background color) to identify the type of code that
is displayed. We distinguish the following:

C sources

Fortran sources

Shell scripts (especially BASH)

Makefiles

Acknowledgments

We would like to thank a couple of people that helped us in preparing this
manuscript. Some of them had major contributions. First of all Peter Benner

Contents vii

provided the German basis for Chapter 4, which we slightly modified with mate-
rial from the seminal book on “Stability and Accuracy of Numerical Algorithms”
by Nicholas J. Higham. We are also deeply indebted to our student Ricardo
Leese for typesetting large parts of Chapters 6– 8 during the course given in
winter term 2012/2013. Furthermore many thanks go to Petar Milnarić for care-
fully reading through the manuscript in winter term 2014/2015. His suggestions
have improved the content, as well as the layout of the material. Also we thank
all other students of the course for participation in the discussions during the
lecture that helped increase the quality of the presentation a lot.

viii Contents

. . . the Linux philosophy is ’laugh in the face of danger’. Oops.
Wrong one. ’Do it yourself’. That’s it.

LINUS TORWALDS

CHAPTER 1

Linux and the Commandline

Contents
1.1 A short History of an Accidental Revolution 2

1.2 The Linux Shell and Basic Commands for Handling Files . . 4

1.3 Getting Help . 15

1.4 Manipulation of Simple Commands 15

1.5 Script File Basics . 17

1.6 Simple Automatic File Manipulation 18

1.7 Remote Computing on Encrypted Connections 24

1.8 Screen an Online/Offline Terminal 25

1.9 The Toolchain . 27

References and Further Reading 28

This first chapter is dedicated to an introduction to the Linux operating sys-
tem and the command line. We focus on the command line operation of the
system, since on many compute servers, especially in high performance com-
puting centers, this is the only way to access the system. Furthermore, once
we understand how to perform certain tasks on the command line, it is then
a lot easier to write job scripts for submission of so called batch jobs to job
scheduling systems used on distributed compute resources like clusters and
grids.

We focus on Linux here although most Unix-like operating systems should at
least behave very similar. Especially for the ones based on the GNU (“GNU’s

1

2 Chapter 1. Linux and the Commandline

not Unix”) project everything should be more or less exactly the same. The
GNU project was founded in 1983 long before the first Linux kernel came to
life. A major contribution of the inventor Richard Stallman was the first version
of the GNU Public License (GPL) that today is inseparably connected with the
Linux operating system.

1.1 A short History of an Accidental Revolution

As a matter of fact the much later the first Linux system was developed for ex-
actly the purpose we are pursuing here, namely a terminal emulator for access-
ing the universities Unix (in the special case Minix) based compute facilities. At
some point the author realised that he had “accidentally” written an operating
system kernel. The first version of Linux was announced by its inventor Linus
Torvalds in the following news posting in a usenet news group1 for the Minix OS
that he was trying to access on August 26, 1991:

“Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and professional
like gnu) for 386(486) AT clones. This has been brewing since april, and is
starting to get ready. I’d like any feedback on things people like/dislike in minix,
as my OS resembles it somewhat (same physical layout of the file-system (due
to practical reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that I’ll get something practical within a few months, and I’d like to know
what features most people would want. Any suggestions are welcome, but I
won’t promise I’ll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT
protable (uses 386 task switching etc), and it probably never will support any-
thing other than AT-harddisks, as that’s all I have :-(. ”

After this the (r)evolution has been fast as the following timeline (taken from
Wikipedia2) shows:

1983 Richard Stallman creates the GNU project with the goal of creating a free
operating system.

1989 Richard Stallman writes the first version of the GNU General Public Li-
cense.

1https://groups.google.com/forum/?fromgroups=#!msg/comp.os.
minix/dlNtH7RRrGA/SwRavCzVE7gJ

2http://en.wikipedia.org/wiki/History_of_Linux

https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
http://en.wikipedia.org/wiki/History_of_Linux

1.1. A short History of an Accidental Revolution 3

1991 The Linux kernel is publicly announced by the 21 year old Finnish student
Linus Benedict Torvalds.

1992 The Linux kernel is relicensed under the GNU GPL. The first so called
“Linux distributions” are created.

1993 Over 100 developers work on the Linux kernel. With their assistance the
kernel is adapted to the GNU environment, which creates a large spec-
trum of application types for Linux. The oldest currently existing Linux
distribution, Slackware, is released for the first time. Later in the same
year, the Debian project is established. Today it is the largest community
distribution.

1994 In March Torvalds judges all components of the kernel to be fully ma-
tured: he releases version 1.0 of Linux. The XFree86 project contributes
a graphic user interface (GUI). In this year the companies Red Hat and
SUSE publish version 1.0 of their Linux distributions.

1995 Linux is ported to the DEC Alpha and to the Sun SPARC. Over the fol-
lowing years it is ported to an ever greater number of platforms.

1996 Version 2.0 of the Linux kernel is released. The kernel can now serve
several processors at the same time, and thereby becomes a serious
alternative for many companies.

1998 Many major companies such as IBM, Compaq and Oracle announce their
support for Linux. In addition a group of programmers begins developing
the graphic user interface KDE.

1999 A group of developers begin work on the graphic environment GNOME,
which should become a free replacement for KDE, which depended on
the then proprietary Qt toolkit. During the year IBM announces an exten-
sive project for the support of Linux.

2004 The XFree86 team splits up and joins with the existing X Window stan-
dards body to form the X.Org Foundation, which results in a substantially
faster development of the X Window Server for Linux.

2005 The project openSUSE begins a free distribution from Novell’s commu-
nity. Also the project OpenOffice.org introduces version 2.0 that now sup-
ports OASIS OpenDocument standards in October.

2006 Oracle releases its own distribution of Red Hat. Novell and Microsoft
announce a cooperation for a better interoperability.

2007 Dell starts distributing laptops with Ubuntu pre-installed in them.

2011 Version 3.0 of the Linux kernel is released.

4 Chapter 1. Linux and the Commandline

2012 The aggregate Linux server market revenue exceeds that of the rest of
the Unix market.

2013 Google’s Linux-based Android claims 75% of the smartphone market
share, in terms of the number of phones shipped.

2014 Ubuntu claims 22,000,000 users.

At first Linus Torvalds intended to name his operating system Freax, a port-
manteau of the words "freak", "free", and "x" (for Unix). As of today the times
when Linux was an operating system only for freaks are over. Several modern
Linux distributions exist that are nowadays as easy to use and install as the
main consumer market competitors MS Windows and MacOS.

1.2 The Linux Shell and Basic Commands for Handling
Files

The shell is the Linux command interpreter. It serves as the basic interface
to the operating system. In fact there is not only one shell but a couple of
implementations like bash, csh, tcsh, ksh, zsh. We base our presentation
on the bash shell. Most of the ideas directly transfer to the other ones although
the commands and syntax can differ slightly. Before diving into the usage of the
bash and basic tools for managing files and data, we call the attention to the
list of special characters that play important roles and cannot easily be used in
command, file, or directory names, reported in the following table.

* serves as a placeholder for arbitrarily many characters

? a placeholder for a single character

/ directory separator

z escape character for quoting special characters and to mark line-
breaks

˜ abbreviation for your home directory

| the pipe operator: connects two simple commands to a new one by
redirecting the output of the one on the left to the other one on the
right. || represents a logic OR.

ă fetches the input for a command (on the left) from a file or device
(on the right)

ą redirects the output of a command (on the left) to a file or device (on
the right)

1.2. The Linux Shell and Basic Commands for Handling Files 5

2ą same as above for the error output only, can be used to redirect the
standard error messages to standard output so it is recognized by
the ą and | as well via 2>&1

1ą same as above for the standard output without the errors

ąą as ą but appends the output instead of overwriting the file

$ used in command substitution and for referring to shell and environ-
ment variables

& a single & after a command name sends the execution to the back-
ground. Double && stand for the logic AND.

‘ accent grave is used for command substitution

’ single quotes removes the special meaning of all special characters
enclosed by them.

" double quotes act the same as single quotes with the exception of
the $,‘,z (and sometimes !) characters keeping their special prop-
erties.

blank the simple blank is used to separate words and thus needs to be
escaped when , e.g., a file name contains it.

comment character; everything following this character on the same
line will be dropped

Basic Directory Commands The basic arrangement of filesystems differs
signifficantly from, e.g., a MS Windows machine. In contrast to MS Windows,
where all physical discs get their own drive letter and start a local directory at
the volumes root, in Unix-like environments the filesystem is arranged in one
global directory tree and all physical drives are placed in a certin structure under
a common root called /. The specific structure of this tree differs between the
types of Unixes and even among Linux distributions it has been varying a lot.
Over the recent years huge efforts have been undertaken to unify the structure.
The Linux Standard Base (LSB) is the largest and most important initiated by
the Linux Foundation. It is not only defining a common directory structure but
tries to unify large parts of the distribution to increase the cross distribution
compatibility.

There are many commands used to work with or manipulate files and directo-
ries. We will only report on a selection of commonly used ones here. Before
we get to the list of command however we introduce some special directories.
˜was mentioned in the table above already. It stands for your home directory,
i.e., the directory holding your personal files and the one directory in which you
usually end up directly after logging in to the system. Every directory contains
two special entries “.” representing the current directory and “..” abbreviating

6 Chapter 1. Linux and the Commandline

the directory one level above in the directory tree. The first one enables us to
refer to commands in the current directory in case it is not in our default search
path and the other enables the use of relative path constructs for referring to
files.

pwd short for print working directory, and printing the name of the directory you
are currently working in is exactly what it does.

cd change directory, switches the current working directory to the directory
given as the argument. If no argument is given cd takes you home, i.e.,
switches to your users home directory.

mkdir creates a new directory in the current working directory

rmdir removes the directories specified as arguments if they are empty.

touch creates an empty file or sets the access date of the file to the current
time and date if it exists

rm removes files. It can also be used to remove directories with the -r (recur-
sive) option. This is especially useful when rmdir does not work since
the directory is not empty. The -f (force) option can be used to remove
even protected files.

ls lists all files in the directory specified. If none is specified the current work-
ing directory is used. If the argument is a file or a list of files only those
files are listed. Usefull options are -l for a full listing including access
rights and ownership information, -a for a listing including also hidden
files. The -h option in combination with the two previous ones makes
file sizes human readable, i.e., displayed as multiples of kB, MB, GB, TB,
where all of these are representing powers of 1024. If a 1000 based
presentation is desired -si needs to be used instead.

cp takes two or more arguments and copies the n-1 first arguments to the
last. If more than 2 arguments are given the last one must be a directory.
Absolute and relative paths are allowed.

mv Same as above but moves the files, i.e., the originals are removed after the
copy is successful.

ln links files to new names. By default a hardlink is created. Then the new
name serves as a new entry in the file system associated to the same
data and the data is only removed if all hardlinks are removed. When
used with the -s option a softlink is created that only points to the original.
When the original data is removed the link becomes orphaned.

find find is a powerful search tool that can hardly be fully described in a
few words. We refer to the man and info pages for details.

1.2. The Linux Shell and Basic Commands for Handling Files 7

locate Another search tool that uses a pregenerated database for the searches.
The database may be restricted to parts of the filesystem only, or even
not exist. Also it is frequently updated but may be outdated when the
actual search is request. However for directories that do not change very
frequently this is a good alternative since it is a lot faster than find usually.

File Permissions and Storage Amounts We have seen before that the ls
-l command helps us learn about the permissions of files. Here we explain
these permissions in detail and show how they can be changed. The command
executed in the home directory storing the files of the standard user scuser
on the virtual machine found on the lectures homepage give the following result

Example 1.1:

total 32
drwxr-xr-x 2 scuser scuser 4096 Sep 27 12:20 Desktop
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Documents
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Downloads
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Music
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Pictures
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Public
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Templates
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Videos

The same command issued on the Desktop folder gives:

Example 1.2:

-rw------- 1 scuser scuser 12680 Aug 30 08:59 chromium-\
Õ browser.desktop

-rw------- 1 scuser scuser 4953 Sep 27 12:18 \
Õ lxterminalA6O6KW.desktop

-rw------- 1 scuser scuser 4953 Aug 27 16:32 lxterminal.\
Õ desktop

-rw------- 1 scuser scuser 5813 Sep 27 12:20 pcmanfm.\
Õ desktop

In both cases the output contains the same important groups information. The
drwxr-xr-x, -rw---- show the file type and permissions. Here the d in the
first set shows that the corresponding line relates to a directory. The - marks
a normal file. Another commonly found symbol is l for symbolic links. There
are many more that are described in the info pages (see also Section 1.3).
The following three groups of three characters describe the file permissions
of the owner (first three), the related group (second three) and everyone else
(remaining three). Here the r stands for the possibility to read a file, or directory

8 Chapter 1. Linux and the Commandline

and the w stands for write access. The x on a file makes that file executable,
i.e., interpreted as a program. For a directory the flag stands for the ability to
change into the directory. If a flag is unset, i.e., the access is not granted it
is replaced by a - in the corresponding position. The scuser scuser part
represents the owner (first) and the related user group (second) for the file. In
the examples above the user scuser has read and write access on all objects
and for the directories is also allowed to change into them. The group scuser,
however, is only allowed to read and change into the directories, but can not
read or manipulate the files in the Desktop directory.

To determine whether a certain user group permission set applies to your user
you may use one of the two commands id or groups. The second one simply
prints all group names the current user is in. The first one in addition prints the
numeric ids that are used by the system to represent the user, its primary and
all the other groups.

In case the group a file is related to needs to be changed, this can be done
using the chgrp command. The command takes two or more arguments. The
first argument needs to be the new group for which the association should
be performed. After this a list of elements (files, directories, links) follows
that should be associated to the new group. Several optional command line
switches exist that influence the way, for example links are treated. Alternatively
the chown (change ownership) command may be used. This can also be used
to change the owning user. For the latter task normally superuser privileges
are required. The calling sequence is mainly the same. The only difference is
that instead of a group owner and group are given in the form owner:group.
Here both owner and group are optional, but the syntax needs to be :group if
only the group is to be changed.

The standard Unix file permissions can be changed by the chmod command.
The standard format to perform simple changes is for example

chmod u+w file1
chmod g+rw file2
chmod o-wx file3

to grant the user write permission to file1, the group read and write permis-
sion on file file2 and remove the write and execute permission from file3
for the rest of the users (o for others). These changes are performed relative
to the existing file permissions. Sometimes it is however easier to perform ab-
solute changes. To this end read, write and execute flags have corresponding
numerical values. Read permission counts 4, write permission 2 and execute
permission 1. All combinations of read, write and execution permissions can
then be formed as sums of those values. That means 7 represents rwx, 6
stands for rw-, 5 for r-x and 3 is -wx. This way changing the file permissions to
rwxrw-rw- for file from an arbitrary prior setting can be done via

1.2. The Linux Shell and Basic Commands for Handling Files 9

chmod 755 file

On the Andrews filesystem (AFS) which is also used at the Magdeburg Uni-
versity file permissions are stored on a per directory basis. Also the above
command is useless there. The corresponding command for checking and set-
ting file permissions there is called fs and the command for group handling
is pts. Their in depth explanation would exceed the space limitations here
and we refer to the man pages or web based AFS quick reference3 for getting
started.

Often the disk space per user is limited by the operating system. To check
the amount of space on a Unix file system that a user is currently using and
is allowed to use at maximum can be found via the quota command. On the
lectures virtual machine the disk space is the only limit for the space. The
quota command is therefore not even installed.

The more important limit to the disk usage is obviously given by the capacity of
the physical drives available in the machine or the servers our network filesys-
tems are residing on. We can get an overview of those filesystems currently
used (mounted) on our machine by typing df, which on the virtual machine
gives

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 9804120 2256688 7049412 25% /
udev 246672 4 246668 1% /dev
tmpfs 101576 748 100828 1% /run
none 5120 0 5120 0% /run/lock
none 253936 0 253936 0% /run/shm

This tells us that we are currently using 25% of the maximum capacity of our
main disk mounted at the file system root /. The other entries are used by the
operating system and not related to physical drives.

Once we have determined we are consuming a certain percentage of our al-
lowed or possible space it may get important to find out where all the space
is going, i.e., which files are using it. The du command can be employed to
find this out. Started in a certain directory the command recursively descends
into all directories below that point in the filesystem tree and checks and re-
ports their disk usage in bytes. At the end it provides a grand total. As for the
ls command a -h flag exists to make the output a bit more user readable.
The -max-depth= command line parameter can be used to limit the descend
depth for which the disk usage is reported. Still the maximum depth is searched
but only the selected ones are reported in detail.

3http://www.cs.cmu.edu/~help/afs/afs_quickref.html

http://www.cs.cmu.edu/~help/afs/afs_quickref.html

10 Chapter 1. Linux and the Commandline

Influencing the Working Environment The shell uses variables to store in-
formation about your working environment. Variables are elements referenced
with a $ sign and usually written in all capital letters. One can find out which
variables are currently set using the command env. If one knows the name of
the variable beforehand the content can be printed out using the echo com-
mand. Some important environment variables are

$HOME containing the path to the users home directory,

$USER the user name of the user (also found in $LOGNAME, or $USERNAME),

$PATH a : separated list of directories that are used to search for executable
programs

$HOSTNAME the name of the computer the shell is running on.

echo $HOME

Other important variables used by the GNU compilers and linkers will be intro-
duced in Chapter 3. Environment variables can be set by simply assigning a
value to them at the command line. For example

PATH=$PATH:$HOME/bin

appends the bin directory in the users home directory to the current executable
search path. If one intends to have this setting inherited by processes started
from the shell the same has to be done as

export PATH=$PATH:$HOME/bin

Also if we set variables in a script file and we want them to persist after the
execution we have to use the export statement.

Two examples of such script files are the files .profile and .bashrc. Both
these files are executed upon login to a new bash shell. They can thus contain
settings that should always be active. For example if the above bin directory
should always be contained in the search path, we would simply add the export
line to one of the files. In this case this should preferably be .bashrc since
the .profile will also be read by other shells which in some cases do not
understand export but use a command called setenv instead.

The configuration files can also be used to define command abbreviations. For
example one would often call the command ls with the -l and -h parame-
ters and probably want to have it a little colorful to distinguish between files
and directories more easily, as well as see at the first glimpse what files are
executable. Adding the simple line

alias ll=’ls -lh --color=’auto’ --group-directories-first’

defines a shortcut ll that does all this automatically.

1.2. The Linux Shell and Basic Commands for Handling Files 11

Viewing Files The simplest file viewer is probably the cat command it takes
the contents of the argument files, concatenates them, and displays the result
at the standard output. It will not stop printing until the end of the last file is
reached. Since this is not very useful for reading the content of longer files,
cat is usually used in combination with other command or for redirecting the
result to a new file (see also Section 1.4).

Two slightly more usable viewers are head and tail which by default display
the ten first and last lines in the argument file. Both take the -n parameter that
is used to change the number of lines displayed. tail is often used in combi-
nation with the watch command that periodically executes a certain command
to watch the status of log files. For example

watch -n 60 tail -n 50 mylog.txt

displays the final 50 lines of the files mylog.txt every 60 seconds.

A fairly helpful file viewer is the less command. It uses the full height of the
terminal window to display the leading part of the file. It then lets you scroll
through the files content with the cursor keys, jump to the beginning or the end
using the ăpos1ą and ăendą keys, or search through the files content with {
followed by the search expression. One can then navigate through the matches
using the ăną (for next) and ăpą (for previous) keys. The view can be exited
by simply pressing the ăqą key.

When one has two versions of the same file, e.g., subsequent iterations of
the same source code, it is usually not easy to find the differences by simply
comparing the content in two neighboring less views. To help simplify this task
diff is the tool of choice. There are many command line switches that help
to configure how the comparison is performed and how the result is displayed.
By default the two files are compared and only differing lines with a little bit
of context around them are displayed. There also exist several graphical user
interfaces that help you compare and merge files even more easy. xxdiff
and kdiff3 are just two of those.

Compressing Files The common compression formats zip and rar most
people know in the MS Windows world are available on Unix-like platforms as
well. For example

zip -r folder.zip folder

takes the directory folder and its entire content and creates a compressed
archive folder.zip. After that

unzip folder.zip

can be used to unpack the directory somewhere else again.

12 Chapter 1. Linux and the Commandline

The same task can be performed with rar using

rar a -r folder.rar folder

for the archiving and

unrar x folder.rar

for the extraction. If the extraction should be done flat, i.e., all files should go to
the current directory ignoring the directory structure of the archive this can be
achieved by

unrar e folder.rar

Alternatives found on Unixes more classically are gzip, gunzip for compres-
sion and decompression of single files using the Lempel-Ziv coding. If gzip is
supplied with multiple files they will be compressed separately however. Every
compressed files gets an additional suffix .gz to show the compression. Sim-
ilarly bzip2 and bunzip2 are used to compress single files using Burrows-
Wheeler block sorting text compression algorithm, and Huffman coding, which
usually leads to better compression rates but takes more time to complete. The
compressor adds a .bz2 suffix. Both gunzip and bunzip2 remove the ad-
ditional suffixes again after decompression.

If many files are to be compressed in a single file, they can be bound together in
a tape archive using the tar command. Again returning to our example above
we would perform the task by

tar -cf folder.tar folder

where -c tells the command to create the archive and the -f is used to specify
the resulting file name. We can combine this directly with the two compression
formats above using

tar -czf folder.tar.gz folder

or

tar -czf folder.tgz folder

to create a gzip compressed tape archive, or

tar -cjf folder.tar.bz2 folder

to do the same using bzip2 compression. The corresponding decompression
is then done by

tar -cf folder.tar
tar -czf folder.tgz
tar -czf folder.tar.gz
tar -cjf folder.tar.bz2

1.2. The Linux Shell and Basic Commands for Handling Files 13

respectively.

Since the file extensions(suffixes) do not mean anything to the system in Unix
environments, they can be seen as a reminder for the user. To really see what
type a file has the file command can be used. Again we use an example for
clarification. Running file in the above .tgz file by

file folder.tgz

results in something like

folder.tgz: gzip compressed data, from Unix, last modified\
Õ : Tue Oct 9 21:38:02 2012

Downloading Files An easy way to download files via the command line is
given by the command wget. The virtual appliance for the lectures virtual
machine can be downloaded via

wget http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012\
Õ _WS_SC/data/lubuntu1204_x86.ova

for example. The tool is, however, much more powerful. It can also be used to
mirror entire websites. For the details we refer to the man page.

Processes and System Usage Once you logout of the system, all your pro-
cesses are usually terminated. Especially in the case of large computing tasks
we would, however, prefer if they would continue running. One tool that helps
avoiding this is the nohup command. It basically tells the operating system not
to terminate a certain job when the user logs out. However the output of the
command needs to be redirected and we cannot easily reattach to the running
process. The GNU screen utility is a better alternative. It will be decribed in
Section 1.8.

Especially for compute jobs that are running for a very long time it can be ad-
vantageous to not block the CPU of the machine they are runing on entirely.
For example when one uses the local machine to start the job and wants to
continue working on it, it is a good idea to manipulate the job such that it will
only use such CPU cycles that are not needed by any other task. This can
easily be done using the program nice.

nice -19 large-computation

starts the program large-computation with nice level 19, i.e., the lowest
possible priority. Any level between 0 (the default for a user process) and 19
can be used. If the program is already running and one decides to lower the
priority this can be done using renice as in

14 Chapter 1. Linux and the Commandline

renice -n 19 12345

where 12345 is the process identification number (PID) of the program to be
reniced.

An easy way to find out the PID for an already running task is the pgrep utility

pgrep large-computation

provided only one instance of the computation program is running.

A good overview of which processes are currently running is given by the top
tool. It produces a full screen view showing the current entries of the operating
systems process table. This is by default sorted by the percentage of CPU
usage. The view is periodically updated and the ordering can be manipulated
by the larger and smaller keys, which move the column of the display used for
sorting to the left or right. The top view can also be used to identify jobs and
find PIDs for renicing. Some tasks like renicing and terminating processes can
even be performed from inside top using certain shortcut keys (found in the
man page). As for less, or man the ăqą is used to exit top.

In script files top can obviously not be used. There the ps command is the tool
of choice. The tool has a huge number of switches selecting the processes to
display. For a general view of the users processes

ps ax

can be used. The list is then usually rather long on the other hand. Therefore
the output of ps is often processed further as can be seen in Section 1.4.

If we are not so much interested in the exact processes running on a machine
but only want to know who is currently working on it, we can find this information
via the command who. It simply prints a list of all active users.

Some tasks need superuser privileges to be able to execute. Systemwide in-
stallation of certain software would be one such example. A convenient way
of performing such tasks is the sudo tool. It starts a command with the same
privileges that the superuser root would have. To be able to do so one needs
to be registered in a list of users allowed to this however. On our lectures virtual
machine the scuser is allowed to perform mainly any tasks using sudo. In a
general environment the permission to do so will, on the other hand, be very
limited.

One thing a user is always allowed to do is the termination of tasks. If this is
not done from within the task, it can be forced from the outside by the kill
command. For the above task that we reniced already we can use

kill -QUIT 12345

1.3. Getting Help 15

to tell it to safely terminate. If for some reason it does not do so, kill knows a
couple of other signals it can send to the process. The KILL signal is the most
drastic of those and should be used only if all others fail.

1.3 Getting Help

The two most important local resources for documentation of linux commands
are the man and info systems. Both simply take the command name as
their argument and display documentation information in a small command line
browser view. The man documentation page can be navigated and searched
through just like the less view described above. In an info page additionally
there may be cross references in the form of hyperlinks to further details and
related commands.

If one does not remember the command name but knows the purpose, then
apropos can help finding the command. Called with a keyword as the argu-
ment apropos searches the short descriptions at the beginnings of all man
pages for the keyword and displays a list of all commands where it finds appro-
priate matches.

1.4 Manipulation of Simple Commands

In many situations especially in script files one is interested in passing the re-
sults of certain operations directly into the next operation. The pipe operator |
in the linux shell can be used to do this.

program1 | program2

can be used if program1writes its output to the standard output and program2
reads its input from the standard input. Unfortunately this is not always the
case. For example if we want to remove all PDF files from the current directory
and all its subdirectories, we can use find to generate a list of all those files.
Now we would like to use rm to remove them. rm, however, takes it arguments
directly from the commandline and only uses the standard input if we force it
to use the interactive mode asking for permission to delete every file. The task
can be completed anyway using the xargs utility, which takes a list from stan-
dard input and splits it into a list of arguments to another command. So all in
all we want to do

find . -name ’*.pdf’| xargs rm

or if the number of files is very large we can force xargs to pass the files to rm
one after the other

16 Chapter 1. Linux and the Commandline

find . -name ’*.pdf’| xargs -n 1 rm

The parameter -n here takes the number of simultaneously passed arguments.
There are two more important parameters. The maximum number of parallel
executions can be set with -P and -d is used to specify the delimiter used for
the spliting of the list if it should not be a single space.

We have seen another example of such a contruction before since pgrep can
be made up the same way

pgrep = ps ax | grep [x]xx | awk ’{ print $1; }’

The grep and awk utilities will be described in the following section.

In other situations it is necessary to store the output of a certain command as
a text file or read the input from it. The redirection operators ą and ă can be
used to do this. Again we use some examples to clarify this. To simply write the
output of a command that would appear on the screen to a file output.txt
we use

program > output.txt

To preserve the current content of the file we need to call

program >> output.txt

to tell the system to append the new information to the end of output.txt.
Otherwise the file is replaced. Non existing files are created prior to writing to
them.

If at a later point another program that usually reads inputs from user interaction
needs this output as its input we can read it by

other_program < output.txt

We can also do both, i.e., read from a file input and write to another file
output

program <input >output

There are two special variants of the output operator that allow to separate
between standard outputs and error messages.

program 1>output 2>errors

will create a file output containing the standard messages of the program and
another file errors where all the error messages are stored.

We can also directly reuse the output of a command to make up new strings or
commands by command substitution. This is performed if a simple command
is enclosed by one of the two types of command substitution characters. For

1.5. Script File Basics 17

example the date command can be used to return the current time and date.
If we want to directly use it in the output of a script we can use the echo
command to print a message containing the current time and date:

echo Yeah, today is ‘date‘, the term is almost over!
echo Yeah, today is $(date), the term is almost over!

both will give an output similar to

Yeah, today is Thu Oct 16 14:45:32 CEST 2014, the term is \
Õ almost over!

One big problem using the pipe and the redirect operators is that one can not
see the output that is redirected. This might, however, be useful in some cases.
The problem can be solved by the tee command, which reads data from the
standard input and writes to the standard output and a file simultaneously. Con-
sider the case where you want to list all files in the current directory and store
the result in a file:

ls > file

If we also want to have the output on the screen as well we can use:

ls | tee file

tee can be used to to create copies of the data processed by a sequence of
pipes:

ls | tee output_of_ls | grep "[Hh]ello.c"

Per default tee overwrites the given file. If it should append the output to a
given file use:

... | tee -a outputfile

1.5 Script File Basics

In large computing centers the devices are usually not directly accessible but
the computation tasks have to be submitted to a job scheduling system. There
one has to provide a job script along with the executables that is used to run
the computation with the desired parameters. Such job scripts are simple text
files of a certain structure that we are explaining in this section. Such script
files can also be helpful on the local desktop computer to automatize certain
actions that one has to perform on a regular basis. The following is a minimal
hello world bash script that already contains all the important ingredients.

#!/bin/bash
echo "Hello World! "

18 Chapter 1. Linux and the Commandline

Saving this as a file hellow.sh and making that file executable, we can simply
run

hellow.sh

to get the response

Hello World!

The file suffix .sh here is only used for our convenience. That means it is only
used to make it easier for the user to identify it as a shell script. The system
itself identifies which interpreter (in our case the bash shell) needs to be exe-
cuted to run the remainder of the file by the special statement #!/bin/bash
on the first line. The #! here tells the system that the following should be read
as the interpreter. It is necessary to use the full path from the filesystem root
to make sure the interpreter is found upon execution of the script. Similarly we
can specify that the interpreter should be awk (described in the next session)
by using #!/usr/bin/awk or the python language #!/usr/bin/python
on the first line and filling the remainder with something written in the corre-
sponding programming language.

Remark 1.3: Note the blank after the ! in the above example. This is
mandatory since otherwise bash may use the ! to initiate a history sub-
stitution unless it is followed by a blank, newline, carriage return or (. The
behavior is expained in the Event Designators section of the man page.

Inside the script files bash can use several control structures like loops and
conditional. Their explanation would however exceed the scope of our presen-
tation and we refer to the man page for details.

1.6 Simple Automatic File Manipulation

One of the key ingredients for automatic treatment of files are regular expres-
sions. They are for example used to extract certain useful information from log
files, or replace expressions in source code when name changes need to be
performed in large software projects. They are also the main tool for successful
usage of the grep and sed utilities described later in this section.

Regular Expressions Regular expressions are strings that can be used to
establish complex search and replace operations on other strings. A regular
expression consists of a combination of special and basic characters that are
used to match the sought after substring in the other string. There is a number

1.6. Simple Automatic File Manipulation 19

of special characters /, (,), *, ., |, +, ?, [,], ˆ, $, z,t,u. The following table
explains them in detail. Note that sed and grep process files line by line.
Thus line ans string are used synonymously in the following.

. matches any single charater except linebreaks
ˆ matches the beginning of the string/line
$ matches the end of the string/line

[list] any one character from list. Here list can be a single character,
a number of characters, or a character range given with -

[̂ list] any one character that is NOT in list.
() guarantees preceedence of the enclosed expression. (optional)

(re) matches the expression re
re1|re2 matches either the expression re1 or re2

re? matches at most one appearance of re. Note that in sed you
need to either write z? or use the -r commandline switch when
using this.

re+ matches one or more subsequent appearances of re
re* matches none or arbitrarily many subsequent appearances of re

retn,mu matches at least n and at most m subsequent appearances
of re. Both n and m can be omitted either with or without the
comma. Then n means exactly n matches. n, stands for at least
n matches and ,m for at most m matches.

(re1)(re2) matches re1 followed by re2–in search and replace operations
the corresponding matches can be referred to by \1 and \2

z escapes, i.e., removes the special meaning of the following spe-
cial character.

The next table contains some enlightening examples. More examples and an
insight to the magic that can be performed using those expressions can be
found on the sed homepage4

a?b matches a string of one or two characters eventually starting with a
but necessarily ending on b

F̂rom matches a line/string beginning with From
$̂ matches an empty line/string

X̂*YZ matches any line/string starting with arbitrarily many X characters
followed by YZ

linux matches the string linux
[a-z]+ matches any string consisting of at least one but also more lower

case letters
[̂̂ aA] any line/string that does not start with an a or A.

4http://sed.sourceforge.net/

http://sed.sourceforge.net/

20 Chapter 1. Linux and the Commandline

Some scripting languages have more powerful regular expressions than others.
It is always best to check the documentation about the details. The above men-
tioned should be the smallest intersection of all extended regular expression
sets. Note the following remark from the grep manual page:

“In basic regular expressions the meta-characters ?, +, t, |, (, and) lose their
special meaning; instead use the backslashed versions z?, z+, zt, z|, z(, and
z).”

The Swiss Army Knifes for Scripting Gurus Although we refer to scripting
gurus in the section title the following tools are powerful helpers in scientific
computing for everyone as well. They can be used to easily scan large log-files
for the important data. For example in a large computing task we may have cre-
ated a file containing all kinds of status information of our code/algorithm. For
the corresponding publication we might, on the other hand, only be interested
in the execution times of the single steps. The tools presented in this section
can then be employed to find and print those times in the proper form required
for further processing. All three of them are so extremely mighty that our pre-
sentation can only scratch the surface of their possible applications. There are
many online tutorials introducing them from different points of view.

grep is basically used for printing lines in a number of input files matching a
given pattern. That pattern can be a simple keyword but also an arbi-
trarily complicated regular expression. The easiest way to use it in the
introductory example would be

grep Time logfile

If you are not sure whether Time was written with capital T you can use

grep -i Time logfile

which switches of case sensitivity, or

grep [tT]ime logfile

as an example for a simple regular expression. In the case you do not
remember which file in your large software project contains the definition
of a certain function you can have grep search a complete directory
recursively

grep -r function-name *

returning all lines containing function-name preceded by the corre-
sponding file name. You can also negate the output of grep by the switch
-v to suppress all lines that match the pattern.

1.6. Simple Automatic File Manipulation 21

sed the Stream Editor is a basic text editor that in contrast to the usual text
editors (like vi, emacs, nano, . . .) is not interactive but uses certain
command strings to manipulate the text file streamed into it automatically
without user interaction. It is especially useful when, e.g., a variable or
function (or any other identifier) in a large software project is supposed to
be renamed. Consider the name of variable called complicatedname
is to be replaced by simplename for better readability of the code in a
large C project.

The search and replace string in sed takes the form s/foo/bar/. In
this form the incoming stream is searched line by line and every first
match of the regular expression foo is replaced by bar. If we expect
more than one possible matches we should however use s/foo/bar/g
to replace all of them. In case we only want every third appearance in a
row to be replaced the string becomes s/foo/bar/3. So getting back
to our example C project the call for the main file might be

sed -i ’s/complicatedname/simplename/g’ main.c

To complete the picture we can use find to search for all .c and .h
files (see also Chapter 3) and execute the above line for every single one
of them.

find . -name ’*.[ch]’ -exec sed -i ’s/complicatedname\
Õ /simplename/g’ {};

The -i switch in both versions is used to perform the manipulations in
place, i.e., replacing the original file by the modified result. We can ad-
vise sed to create backup copies with a user defined suffix by simply
specifying the suffix directly after the -i parameter as in

sed -i.orig ’s/foo/bar/4’ filename.txt

which copies filename.txt to filename.txt.orig prior to the
manipulation. Here the 4 advises sed to replace only the forth match
by bar.

sed can behave like a couple of tools we already learned about earlier.
For example to print the first 10 lines of file like

head file

we can use

sed 10q file

as well. Also we can make sed emulate grep by using a simple search
string instead of the replace string.

grep foo file

22 Chapter 1. Linux and the Commandline

can be written as

sed -n ’/foo/p’ file

in sed and grep -v is performed by replacing p with !p above.

We can also employ sed to imitate the behavior of the tool basename
that can be used to truncate filenames by cutting of the extension. Calling

basename /usr/include/stdio.h .h

produces the output

stdio

The same can be done by

ls /usr/include/stdio.h |
sed -r ’s/^(.*\/)*([^\/]*)\.h/\2/g’

which requires the -r flag for extended regular expressions in order to
grab the second match using \2.

Often sed is employed in conjunction with the other tools presented in
this section to perform pre or post processing for those. This is for ex-
ample nicely seen in the pgrep example in Section 1.4. There instead
of using the file name argument sed reads the input from a pipe. So the
last example above could as well be written as

cat file | sed -n ’/foo/p’

The sed-one-liners list5 gives a first impression of the real power this
small tool has. We refer to the various web tutorial for earning deeper
knowledge. For local information confer the info pages rather than the
manual pages, since they are by far more detailed and structured.

awk The AWK utility is an interpreted programming language typically used
as a data extraction and reporting tool. Its name is derived from the
family names of its inventors – Alfred Aho, Peter Weinberger, and Brian
Kernighan. The current specifications can be found in the IEEE 1003.1-
20086 standard. It is invoked using

awk ’awk-statements’ filename

to analyze a file. It can also read its input from a pipe:

... | awk ’statements’

5http://sed.sourceforge.net/sed1line.txt
6http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.

html

http://sed.sourceforge.net/sed1line.txt
 http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
 http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html

1.6. Simple Automatic File Manipulation 23

Instead of specifying the awk statements directly on the command line
an awk script can be used. To this end the -f scriptfile switch is
appended to the call.

awk reads the input, processes it row by row and splits it into columns.
The values of the columns are accessed using $columnnumber inside
an awk-statement. For example the first column is accessed by $1. The
pseudo column $0 represents the complete row. The separation into
columns is performed based on white spaces by default. We will se later
how this behavior can be changed.

An awk-statement has the following format:

Condition { Action }

Multiple statements are used writing them one after another. The condi-
tion selects a data set on which the action is applied to. A condition can
be Expression Operator Expression where Expression is a
column identifier, a numeric value or a string enclosed by double quotes.
The Operator is one of ==, !=, <, >,. . .

Another condition type is Expression Operator /RegEx/. This
selects a data sets with respect to a regular expression. The Operator
can be ~ if the regular expression should match or !~ if it should not
match. Two special conditions exists: BEGIN is executed before the first
row is processed and END is evaluated after the last row is processed.
The print command is the only action we need. For complex ones we
refer to the IEEE Standard or literature.

Consider the following file containing some measured data

1 0.02 0.43
2 0.03 1.03
3 0.55 0.30

If we want to extract only the second column we invoke awk as

cat file | awk ’{ print $2; }’

All rows where the third column is larger than one are returned by

cat file | awk ’$3>1.0 { print $0; }’

If the column separator is not a space or a tabulator it can be redefined
with FS="Separator" inside the begin action. If we consider the same
data file as above but with | characters to separate the values it changes
to

cat file | awk ’BEGIN{FS="|";} $3>1.0 { print $0;}’

24 Chapter 1. Linux and the Commandline

1.7 Remote Computing on Encrypted Connections

We have used the job execution on a possibly far away compute server in a
high performance computing center as a motivating example in the above, but
we have never explained how this is done. We are catching up on this here.
Classicaly two commands have been used to log into a remote machine. These
have been rlogin and rsh. Both names suggest what they were doing.
Their main purpose was to simply open a remote terminal and start a shell
on the remote machine. Both laked certain security features like encrypted
communication. Therefore they have been replaced by a modern version of
rsh called ssh (for secure shell). The new ssh tool features higher security
for user logins and encrypted data transfer between the local and remote host.
It is used as in

ssh username@remote.machine.somewhere

If your local machine supports it (e.g. done by our virtual machine) you can use

ssh -X username@remote.machine.somewhere

to even redirect graphical user interfaces to the local machine. Note that the
latter does only make sense if the two host are connected via a rather fast
network connection, because it usually generates high traffic on the connection.

There is also a command for copying files to or from the remote machine that
comes along with ssh. The secure copy (scp) features the same security
mechanisms as ssh itself and works very similar to the basic cp command.
Obviously you have to add user and host information to the calling sequence.
This is demonstrated in the next example

scp localfilename user@remote.host.somewhere:\
Õ remotefilename

scp user@remote.host.somewhere:remotefilename \
Õ localfilename

The local file name is specified relative to the current working directory or ab-
solute (i.e., relative to the file system root). The remote files by default end up
in the remote users home directory. Therefore all remote file names are spec-
ified relative to the home directory or absolute. The scp command can also
be used to copy entire directories. Then the source file name is replaced by
the directory name and scp -r is used instead of plain scp to indicate the
recursive operation.

1.8. Screen an Online/Offline Terminal 25

1.8 Screen an Online/Offline Terminal

We have dicussed the nohup utility in a previous section. There we pointed out
the disadvantages of the utility. Here we recommend an alternative approach
pursued by the GNU screen project that the projects web page7 describes as
follows:

“Screen is a full-screen window manager that multiplexes a physical terminal
between several processes, typically interactive shells. Each virtual terminal
provides the functions of the DEC VT100 terminal and, in addition, several con-
trol functions from the ANSI X3.64 (ISO 6429) and ISO 2022 standards (e.g.,
insert/delete line and support for multiple character sets). There is a scrollback
history buffer for each virtual terminal and a copy-and-paste mechanism that
allows the user to move text regions between windows. When screen is called,
it creates a single window with a shell in it (or the specified command) and
then gets out of your way so that you can use the program as you normally
would. Then, at any time, you can create new (full-screen) windows with other
programs in them (including more shells), kill the current window, view a list of
the active windows, turn output logging on and off, copy text between windows,
view the scrollback history, switch between windows, etc. All windows run their
programs completely independent of each other. Programs continue to run
when their window is currently not visible and even when the whole screen
session is detached from the users terminal.”

The main strength of screen for our purposes is summarized in the final sen-
tence. It gives the ability to detach the users terminal from the screen session,
i.e., the shell in which the computation is running. At any later time and even
from a completely different terminal and location the user can then reattach to
the screen session and continue working as if he/she had never left the screen.

Basic Usage Open a terminal and just type

screen

A welcome message appears. Now press the space-key and you are in a
standard terminal. You can now start your favourite process, e.g.,

top

and detach the screen session by typing

<ctrl>+a d

You should get a

7http://www.gnu.org/software/screen/screen.html

http://www.gnu.org/software/screen/screen.html

26 Chapter 1. Linux and the Commandline

[detached]

message. You can now close the terminal and come back to your session
anytime later by saying

screen -r

in a terminal.

Multiple Windows Screen allows you to use several windows in which you
can run seperate processes. To open a new window, just type

<ctrl>+a c

To switch between several windows, you can either use

<ctrl>+a n

to go to the next or

<ctrl>+a p

to go to the previous window. Alternatively, you can also say

<ctrl>+a 2

to go to the second window.

Which Screen Processes Are Currently Running? To get an overview about
screen sessions we have running on a certain machine we just type

screen -list

and we will get a list of the form

There are screens on:
30714.pts-5.<host> (Detached)
30769.pts-5.<host> (Attached)

2 Sockets in /var/run/uscreens/S-<user>.

where ăhostą is the name of your computer and ăuserą is our user name.

Terminating Screen Type

exit

and you will get back to the terminal from which you started.

1.9. The Toolchain 27

Screen and SSH Probably the most useful feature of screen is that you can
use it to start processes remotely, then log out of the remote computer and
log back in (even using a different computer) and continue the session. This
is useful for long MATLAB computations that do not need to be monitored.
Consider the following example.

We log in to a remote server via SSH.

ssh user@remote.pc.somewhere

We then start, e.g., MATLAB®without the JVM and without display:

matlab -nodisplay

This has to be done because you can not log out of the remote machine without
killing your processes if they use graphical display. We then start our MATLAB
computation

start_long_matlab_computation

and detach the screen session:

<ctrl>+a d

We can now close the SSH-connection and after logging back in to the remote
machine, we can pick up the MATLABsession by saying

screen -r

Other Features Screen can also be used in a multiuser-mode which, e.g.,
allows one user to act as a teacher for some other user who can sit at a different
computer. Screen also offers Copy&Paste and Regions. We however refer to
the screen documentation for details here.

1.9 The Toolchain

The toolchain is as wrapper expression for a set of tool that is used in program-
ming tasks. It usually consists of

• a tool for automation of the build process,

• a compiler suite containing compiler for a set of programming languages,

• tools for generation and manipulation of binaries, libraries and assembler
codes,

• a debugger helping the user in evaluating wrong code and fixing it,

28 Chapter 1. Linux and the Commandline

• a build system that simplifies the usage of external dependencies, e.g.,
by automatic search for libraries and header files.

In the special case of the GNU toolchain developed by the GNU project the list
reads like this:

• GNU make,

• GCC (GNU Compiler Collection),

• GNU binutils and GNU assembler,

• GDB (GNU Debugger),

• GNU autotools.

We present more detailed descriptions of the single tools or proper alternatives
in Chapter 3, wherever they are needed in the process of working with a C
program.

References and Further Reading

[1] JOHN BAMBENEK AND AGNIESZKA KLUS, grep Pocket Reference, O’Reilly
Media, 1st ed., 2009.

[2] DANIEL J. BARRETT, Linux Pocket Guide, O’Reilly Media, 2nd ed., March
2012.

[3] ARNOLD ROBBINS, sed and awk Pocket Reference, O’Reilly Media, 2nd ed.,
June 2002.

[4] , bash Pocket Reference, O’Reilly Media, 1st ed., April 2010.

[5] TONY STUBBLEBINE, Regular Expression Pocket Reference, O’Reilly Me-
dia, 2nd ed., July 2007.

Walking on water and developing software from a specification are
easy if both are frozen.

EDWARD V BERARD

CHAPTER 2

Revision Control

Contents
2.1 Types of Revision Control Systems 30

2.1.1 Local Revision Control 30

2.1.2 Central Revision Control 31

2.1.3 Distributed Revision Control 31

2.2 Collaborative Work on Projects 32

2.2.1 Conflicts . 32

2.2.2 Branches . 32

2.2.3 Tags . 32

Revision Control, also known as Version Control or Source Control is a task that
is becoming more and more important also in Scientific Computing. It describes
the process of monitoring changes in sets of information. The sets of informa-
tion are usually documents, source codes, large web repositories or alike. All
changes monitored lead to new revisions or versions of the information. Those
revisions then get assigned a unique name that may be an identification num-
ber or a human readable text. The main purposes of revision control can be
summarized as the following items:

1. Logging of changes: at any later stage of development of the information
it is clear when which change has been added by whom.

2. Recovery of earlier states of the single pieces of information: Accidental
or erroneous changes can be identified and rolled back.

29

30 Chapter 2. Revision Control

3. Archiving: It is possible to get back to each state of the set of information,
e.g. to make computational results reproducible.

4. Coordination of joint work on the information by several developers.

5. Parallel development of multiple branches of the information with the pos-
sibility to merge single branches back to a main development stream.

In order to achieve this functionality the systems follow either of the two strate-
gies

Lock Modify Write The pessimistic revision control strategy is also called Lock
Modify Unlock. It grants single authors exclusive access to the item and
thus avoids conflicts.

Copy Modify Merge This is the optimistic revision control strategy. It allows
joint access to the items for several authors. Thus it can not avoid con-
flicts but will provide facilities to automatically merge easy conflicts and
support the authors in resolving more complicated ones. Binary data is
often difficult for this kind of approach since there the merge step is usu-
ally not possible without additional tools.

2.1 Types of Revision Control Systems

The existing tools for revision control can be categorized in three large groups.
These groups will be introduced in the following subsections

2.1.1 Local Revision Control

As the name suggests this version is completely local. Usually only single files
are under revision control and the version information is stored locally. Often
one can find the version information directly inside the file in the form of com-
ments at the beginning or end of the file. Prominent implementations of local
revision control are the classic Source Code Control System (SCCS) or the
more well known Revision Control System (RCS)1. Both systems have classi-
cally been employed on Unix-like systems for revision control of single source
code files. Local revision control is also implemented in modern office applica-
tions like Microsoft Word or OpenOffice/LibreOffice Writer to track changes of
ones collaborators.

1http://www.gnu.org/software/rcs/

http://www.gnu.org/software/rcs/

2.1. Types of Revision Control Systems 31

2.1.2 Central Revision Control

This type of revision control is different from the previous in that it stores the
version information in a central (possibly remote/online repository). Users con-
nect in a client server way to this central resource. The actual local copy of
the files the user is then manipulating is usually called working copy. The ba-
sic concept of central revision control goes back to the open source project
Concurrent Versions System (CVS)2 and has been made even more popular
by the Subversion (SVN)3 system. The working copy usually contains informa-
tion about a single version. This version is either the one the central repository
was in while the local copy was created, or the one it had when the local version
was last synchronized to it. This version is usually called HEAD revision. Local
changes can usually only be determined with respect to this HEAD revision.
These are the changes that are merged into the central repository when the
local changes are submitted. This procedure is generally called commit.

2.1.3 Distributed Revision Control

The major disadvantage of central revision control systems that use an online
server for storing the central repository is the requirement for an active network
connection for determining version information and changes during revisions
other than the HEAD revision. Distributed revision control is a way to overcome
this drawback. They feature local repositories in which the entire version history
is stored. Local working copies are synchronized against these local reposito-
ries. The local repositories are then synchronized to either the repositories of
collaborators or central repositories in online resources.

The local repositories feature a very quick access and allow for fine grained
version management and logging of changes. Therefore, usually the distributed
often have much more powerful merge facilities.

Important distributed revision control systems in the open source world are Git4

which has among other authors been developed by Linus Torvalds, Bazaar5

that is mainly developed by Canonical Ltd. (who are the driving force behind
Ubuntu and distributions derived from it.), and Mercurial6.

2http://www.nongnu.org/cvs/
3http://subversion.apache.org/
4http://git-scm.com/
5http://bazaar-vcs.org/
6http://mercurial.selenic.com/

http://www.nongnu.org/cvs/
http://subversion.apache.org/
http://git-scm.com/
http://bazaar-vcs.org/
http://mercurial.selenic.com/

32 Chapter 2. Revision Control

2.2 Collaborative Work on Projects

Especially the central and distributed revision control systems are very attrac-
tive for collaborative work on entire projects. While for local revision control all
collaborators require access to the same file or need to exchange it, the latest
version of an entire project is always accessible for all coworkers in a central
repository or independent local repositories. This allows for a highly increased
flexibility in editing the files.

2.2.1 Conflicts

When editing different files of the same project, or a common file in disjoint po-
sitions, usually these systems can automatically merge the changes of several
authors into a single repository. In case of changes in common locations of sin-
gle files, these systems offer conflict management facilities that support users
in resolving the conflicts possibly generated by editing the same locations in
the file.

2.2.2 Branches

A common way to avoid conflicts is the technique of branching. The main de-
velopment line of a project is often called trunk. Just like the trunk of a natural
tree this version is the fundamental part of the project. A branch is then split-
ting off of this main version as an exact copy of the trunk. Then, it can be used
to develop, e.g., a certain feature without harming the main development. In
contrast to the biological tree, the branches do in general return to the trunk
after a while, e.g., when the feature is ready to enter the main development
stream. In the case of central revision control, these branches are usually lin-
ear sequences of revisions. For distributed systems with enhanced merging
capabilities, the branches are often even branched further, such that the entire
object becomes a directed acyclic graph of revisions.

2.2.3 Tags

Especially when developing software, certain revisions are more important than
others, e.g. because they are used as release versions. It is then important to
create so called tags, i.e., named revisions to have an easy means to reproduce
this exact state of the repository. The way tagging is implemented, or being
used is differing among the systems, but it is always possible in one way or
another.

It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential programmers
they are mentally mutilated beyond hope of regeneration.

How do we tell truths that might hurt?
EDSGER WYBE DIJKSTRA

CHAPTER 3

Concise Introduction to the C Programming Language and
the GNU Toolchain

Contents
3.1 The Programming Environment 35
3.2 C Statements, Types and Operators 38
3.3 Control Structures . 43
3.4 Complex Data Types and Arrays 48
3.5 Functions . 54
3.6 An Introduction to the Standard Library 56

3.6.1 stdio.h and stdlib.h 56
3.6.2 math.h and complex.h 59
3.6.3 string.h . 61

3.7 File Input and Output . 62
3.8 The Preprocessor and Header Files 63
3.9 Makefiles . 66
3.10 Writing Own Libraries . 69
3.11 Interfacing Fortran . 71
3.12 Automatic Generation of Documentations Using DOXYGEN 73
References and Further Reading 75

One of the main goals of the lecture is to understand how mathematical algo-
rithms are translated into a high-level programming language. This includes an
overview how efficient implementations basically work. We chose C for many
reasons instead of other high-level languages like C++, Java, or Fortran:

33

34 Chapter 3. Introduction to C and the GNU Toolchain

• C is easy to learn. It has only about 30 keywords.

• C has been one of the most often used programming language for a long
period of time1. Even thirty years old programs work today.

• C is standardized by ISO in ISO/IEC 9899 (see [5, 7, 9]).

• C works on embedded systems, as well as, on the largest super comput-
ers.

• C can be combined with nearly all other popular programming languages.
Even scripting languages or assembler code can be embedded.

• A large variety of libraries exists: GUI-programming, networking, mathe-
matical algorithms.

The first version of C was developed by Ken Thompson, Dennis Ritchie and
Brian W. Kernighan in the early 1970s for developing their UNIX operating sys-
tem. Since then the concepts and the syntax of C have influenced many pro-
gramming languages. In 1978 the K&R book [10] appeared. This book defines
the first quasi standard of the C syntax. Caused by the popularity and its strong
connection to UNIX many vendors have created their own subsets of C with
different extensions. This became a major problem for exchanging code and
lead to the standardization of C by an ANSI committee, founded in 1983. The
committee released the first standard in 1989. This standard directly became
an ISO standard in 1990 [5]. The standard was revised and extended in 1995,
1999 [7] and 2011 [9]. Currently only the C99 standard is well supported in a
broad range of compilers. The C11 standard has however been announced to
be implemented in the majority of upcoming compilers.

C does not restrict the programmer to a fixed programming style. This allows
nearly unreadable code which works correctly. Although with IOCCC 2 there is
a contest focusing on the exploitation of this freedom, one of the aims of the
present text is to also arouse the awareness of the curse that hides within this
freedom.

In the remainder of our presentation we assume that a Unix-like operating sys-
tem (such as Linux, *BSD or MacOS X) with the GNU Compiler Collection
(Version 4.2 or later) is used.

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

2http://www.ioccc.org/

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.ioccc.org/

3.1. The Programming Environment 35

3.1 The Programming Environment

Before we can run our first self-written program we have to understand how to
process a human readable source code to an executable program. A C pro-
gram consists of at least one text file with extension .c. This is created with a
normal text editor like vim, emacs, kate, gedit, . . . or an integrated development
environment(IDE) like kdevelop, eclipse,. . . . Word processors like MS Word,
LibreOffice, OpenOffice are not suitable for this job.

Four steps are necessary to transform the human readable source code to an
executable program:

1. The Preprocessor searches the source code for special directives be-
ginning with #. These directives can include other libraries, dynamically
include and exclude code, or modify the program using a complex pattern
matching search and replace mechanism. The output of this phase stays
human readable but the code is filled with additional statements and data
from other files.

2. The Compiler is the main tool. It checks whether the source code is
syntactically correct. Afterwards the preprocessed source is translated
into assembler code. An optimization phase may speed up the code and
adapt it to the features of the CPU. The assembler output is still human
readable and it expresses the same instruction as the C source on a
much lower abstraction level.

3. The Assembler turns the assembler output into machine code. This
can theoretically be executed by the CPU, but missing external libraries
prevent this. The output of the step are object files. An archived collection
of object files is used as static library. See Section 3.10.

4. The Linker finally combines the object files and the libraries to an ex-
ecutable program. It checks if all necessary functions and symbols are
found in the object files and the specified libraries.

These four steps are usually performed by single compiler call. The compiler
performs all steps and creates the executable directly from the source code.

The GNU Compiler collection provides one command for all steps. The gcc
command invokes preprocessor, compiler, assembler and linker. Sometimes it
is necessary to invoke the linker separately with ld or gcc.

The C compiler is invoked in the shell:

gcc <options> -o outputfilename input1.c ... <libraries>

This compiles all given input files to one executable. If the output filename is
omitted the compiler uses a.out. The behavior of the compiler is influenced

36 Chapter 3. Introduction to C and the GNU Toolchain

by a variety of compiler options. Some important ones are:

Binary code optimization:
-Os Optimize the code to reduce the size of the binary.
-O1 Turn on basic optimizations. The compiler tries to re-

duce code size and execution time, without performing
any optimizations that take a great deal of compilation
time.

-O2 Optimize even more. GCC performs nearly all optimiza-
tions that do not involve a space-speed trade-off. As
compared to -O1, this option increases both compila-
tion time and the performance.

-O3 Aggressive optimization. It tries to unroll loops con-
structs and inlines small functions. It can cause un-
expected effects in the program. The output is usually
larger then using -O2.

-march=native Automatically determines the code generation options
to optimally exploit your local CPU features. Code may
not be executable on other machines.

Debugging:
-g Include the debug symbols in the output. This is neces-

sary for tools like gdb, ddd or valgrind.
-pg Include the profiling information for the GNU profiler.

Floating Point Arithmetics related:
-ffast-math Turns off the IEEE754 floating point arithmetics. This

option is dangerous.
-ffloat-store Floating point operations store the results to the mem-

ory instead of keeping them in high accuracy CPU reg-
isters.

-mfpmath=sse
-msse2

Use the SSE2 registers for floating point operations in-
stead of the classical x86/x87 floating point unit. Only
available on x86 and x86_64 plaforms.

Warnings and C Standards:
-Wall The compiler displays all warning about malformed

code.
-std=XXX Defines the C standard to use. Normally this is not nec-

essary, e.g.: c89, c99 or c11.

Finding libraries and header files:

3.1. The Programming Environment 37

-Ipath Set an addtional search path for the include direc-
tive.This can be used multiple times.

-Lpath Set an additional search path for the linker.
-lNAME Link a specified library to the program. The lib prefix

is automatically added to the library.

Compilation of own libraries:
-c Compile the source code to object files without linking

it. The default output name is inputname.o.
-fPIC Generate position independent code. This flag influ-

ence the assembler code production to use relative ad-
dresses. It is necessary for libraries.

Code Preprocessing and basic shared memory parallelism:
-DNAME=VALUE Defines a preprocessor variable NAME and sets it to

VALUE
-fopenmp The OpenMP support is enabled.
-pthread The PThread support is enabled.

If a program consists of many source files or they need different compiler op-
tions it is more convenient to create the single object files first:

gcc -c input1.c
gcc -c input2.c
...

Afterwards the object files are linked with libraries to the final executable:

gcc -o output input1.o input2.o ... <options>

External libraries are added using the -l option. The standard C library and
system dependent ones are added automatically. A library named libNAME
is linked using-lNAME. The linker adds the lib prefix automatically. The li-
braries must be specified in the order they depend on each other (rightmost
libraries are the most independent). Cyclic dependencies are solved by adding
the libraries more then once to the linker invocation.

Example 3.1: A program depends on libone, libtwo and libthree,
where libtwo depends on libone. The resulting compiler call is:

gcc -o output input.c -ltwo -lone -lthree.

Libraries are existing in two types. The classic approach of combining single
object files in a reusable library is to glue them together in a static library (usu-
ally ending on .a). Upon linking, all of the object contained in the library are

38 Chapter 3. Introduction to C and the GNU Toolchain

added to the program executable. This usually results in fairly large binary com-
mands. The more modern approach is to use so called shared object libraries
(usually ending on .so) or also dynamic link libraries. These are kept external
and library symbols and commands are included only upon execution of the
program. The dynamic loader loads all external libraries when a program is
executed. It searches for them in the standard paths of the operating system. If
a library does not reside in these directories the search path can be extended
by setting the LD_LIBRARY_PATH environment variable.

Example 3.2: A program uses a library in a non standard location. It is com-
piled and linked using

gcc -o output input.c -L/path/to/the/library -lthelib

and executed with adding the path to LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/path/to/the/library:$\
Õ LD_LIBRARY_PATH

./output

Many tools exists to support the programmer during development and debug-
ging. The basic ones are:

gdb The GNU Debugger is a command line tool that helps executing a program
step by step, and enables to look into variable values at runtime, or view
the machine code. It allows a deep analysis of what is going on in the
program. Available at http://www.gnu.org/software/gdb/

ddd The Data Display Debugger is a graphical user interface for gdb. Avail-
able at http://www.gnu.org/software/ddd/

valgrind Is a suite of debugging tools which analyze the memory access,
check for memory leaks, create call graphs,... Its graphical front end is
call valkyrie. Available at http://www.valgrind.org

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are
found in the current search paths and shows which ones will be used
upon execution of the program.

make An automatic build utility. Details can be found in Section 3.9.

3.2 C Statements, Types and Operators

The basic structure of a C program looks like

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/ddd/
http://www.valgrind.org

3.2. C Statements, Types and Operators 39

#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 3.4)
...
// function definitions (see Section 3.5)
...
int main (int argc, char **argv) {

// Here comes the code.
return 0;

}

The include statements are called preprocessor statements (see Section 3.8).
They include so-called header files containing information about external li-
braries or functions and variables in the current source files. stdio.h and
stdlib.h are two header files from the standard C library. They provide basic
input and output, access to files and other basic actions. They are necessary
for essentially every program.

main() is the function that is called when a program starts. All statements
are executed in the order in which they appear. The return 0; statements
exits the main() function and returns a status code to the operating system.
The 0 as a general convention means that a program terminated successfully.
All other values are treated as errors.

Comments. Lines beginning with “//” are comments. The compiler ignores
them but they should be used to help human readers to understand the code.
Comments can also be used to prevent the compiler from including certain
parts of the code. Possible comment structures are:

// A single line comment

/* Another single line comment */

/* This
is
a multi-line comment */

#ifdef GRAPHICS
Some code fragment

#endif /*GRAPHICS*/

Here the last one is a pre-processor based comment. So it is not a comment in
the original sense. On the other hand, they allow to exclude large portions of
code based on Macro definitions. Here GRAPHICS is a pre-processor macro

40 Chapter 3. Introduction to C and the GNU Toolchain

that could, e.g., be used to enable certain graphical output only when the macro
is defined. This is a common way to exclude graphical interfaces from compi-
lation for compute servers that do not supply the corresponding libraries. More
details regarding this can be found in Section 3.8

Statements and Blocks. A statement in C can be one of the four kinds:

• variable declaration

data-type varname;

• function call

dosomething();

• assignment

x = 3;

• control structure (see also Section 3.3).

All statements are case sensitive and must end with a semicolon. Line breaks
are ignored by the C compiler. This allows more than one statement per line.
Statements are grouped to code blocks using { and }:

{ // begin of the code block
Statement1;
Statement2;
...

} // End of the code block

Basic Data Types and Variable Declaration. A variable needs to be de-
clared prior to its first usage. The declaration consist of a data-type followed by
a comma separated list of variable names. A valid variable name begins with
a alphabetic character, only contains “_” as special character and is not used
for another variable or function in the context. Variables need to be declared
at the beginning of a block or a function following the C89 standard. The C99
standard allows this everywhere. Nevertheless for better readability it is recom-
mended to follow C89. A variable only exists inside the {}-parentheses where it
is declared. Variables are not initialized with a default value. Common built-in
data-types are:

int Stores one signed integer value. Normally, this is 4
byte large, that means it can store one 32-bit number.

long Stores one large signed integer value. This must have
at least the size of an int variable but it can be larger.
On a 64-bit architecture this is normally 8 byte.

3.2. C Statements, Types and Operators 41

unsigned int Stores an integer without a sign, that means only posi-
tive but larger numbers.

unsigned long Stores a long without a sign, that means only positive
but larger numbers.

char Stores one character from the ASCII table. Internally, it
is a one-byte integer value and holds values from -127
to 128.

size_t An unsigned integer value which is large enough to
store the size of the largest theoretically possible mem-
ory object. Its size depends on the hardware of the
platform used.

float A single precision floating point number, 4 Bytes.
double A double precision floating point number, 8 Bytes.
void Non specified type for function with no return value or

generic pointers.

There was no boolean data-type in C until the C99 standard. Boolean values
are therefore expressed as integers where zero means false and all other val-
ues are evaluated as true. The definitions of variables of basic data types can
also contain initial assignments.

Example 3.3:

int x = 1, y;

The above definition declares two integers x and y and initializes x with the
value 1. The character type char is assigned using single quotes:

char c = ’A’;

The single quotes implicitly convert the given character in to the corresponding
ASCII value. We introduce strings in Section 3.4.

Operators. The basic arithmetic operations `, ´, ˚, and { are known to C.
The modulo operator % exists only for integers. If both operands are integers
then the operations expression is evaluated in integer arithmetic. The division
discards the fractional part in this case. The compiler pays attention to the
arithmetic priority rules. Parentheses influence the evaluation order.

Example 3.4:

int x,y,z,r; // Declares x,y,z, and r to be integers
x = 4; // Sets x to 4

42 Chapter 3. Introduction to C and the GNU Toolchain

y = 3; // Sets y to 3
z = x / y; // Integer Division of x and y
r = x % r; // Modulo, the remainder of the division

If the left side of an assignment is the same as the first operand of a binary
operation this can be abbreviated as in:

x += y; // same as x = x + y;

This is possible with all binary operators. The ++ and - operators increment
or decrement a variable by one. They are used as pre- or postfix to a variable.
The prefix increments the variable before its value is used. The postfix does it
the other way around.

Example 3.5:

int x = 1, y;
x++; // x = 2;
y = ++x; // y = 3; x = 3;
y = x++; // y = 3; x = 4;

Bitwise operators are available in C too:

x & y Perform a bit-wise and operation.
x | y Perform a bit-wise or operation.
x ˆ y Perform a bit-wise xor operation.
˜x Perform a bit-wise not operation.
x << y Bit-Shift on x. Move y bits to the left.
x >> y Bit-Shift on x. Move y bits to the right.

A typecast is used to convert one data-type into another one. It is performed
by putting the new data-type in parentheses in front of a variable.

int y; double x;
x = (double) y; // converts y from int to double

Besides dealing with variables one usually needs input and output operations,
e.g. for printing computation results to the screen, or reading user inputs from
the keyboard. The standard C library provides printf and scanf for this
purpose. The syntax of printf is

int printf("Format String", list of variables,...);

The first argument is the string printed to the screen. Variables are embedded
to this string using placeholders. The placeholders are replaced in the order
of the occurrence with the variable from the list of variables. The placeholders

3.3. Control Structures 43

need to be chosen in correspondence to the data-types of the variables. Place-
holder start with % followed by a type specifier (see Table 3.3). A new line is
created with the “\n” escape sequence. The “\t” (tabular) is used for alignment
of the output.

Example 3.6:

int x = 1;
double y = 1.8;
printf("x = %d and y = %g\n", x, y);

prints:

x=1 and y=1.8

The scanf function reads variable values from the standard input (usually the
keyboard, or redirected outputs from other programs). It works analogous to
printf. The syntax is

int scanf("format string", variables for the placeholders);

where the format string is similar to printf. scanf tries to match the inputs
with the placeholders and stores them to the variables in the order of their
appearance. Because the variables are modified by scanf, they need to be
prefixed with the address-of operator &. Details about & are given in Section 3.4
and 3.5. The return value is the number of variables read during the function
call.

Example 3.7: To read one integer and one floating point number from the
standard input and print them on standard output one needs to do the following:

int x;
double y
scanf("%d %lg", &x, &y);
printf("You typed %d and %g\n", x, y);

3.3 Control Structures

The program flow is controlled with statements of two categories. The first ones
are conditionals, the second ones are loops.

Conditionals. C has two conditional statements: if and switch. The if-
statement realizes an alternative. The simplest one is:

if (condition) {

44 Chapter 3. Introduction to C and the GNU Toolchain

Statements evaluated if the condition is true;
}

The condition is an expression which is evaluated to be false, i.e., equal to 0 as
integer, or true, i.e., not equal to 0 as integer. Comparison operators exist for
all numerical data-types, such as int or double:

< smaller than
<= smaller than or equal to
== equal to
!= not equal to, same as ~= in MATLAB
>= greater than or equal to
> greater than

Boolean operators combine different conditions:

&& boolean and
|| boolean or
! boolean negation, prefix operator

Remark 3.8: Conditions are evaluated from left to right. The evaluation is
stopped if the results is obvious. The &&-operator cancels the evaluation
as soon as the first expression evaluates false. The ||-operator cancels
the evaluation when the first expression evaluates true.

Remark 3.9: The assignment operator = is true for every non zero right
side.

if (x = 5) {
// executed independently of x

}

Some compilers are able to detect such errors (the authors intention in
the example would most likely have been to check whether x equals 5 via
x==5) and print a corresponding warning.

The if statement can be extended to an if-else construct. This full alterna-
tive is:

if (condition) {
Statements evaluated if the condition is true;

} else {
Statements evaluated if the condition is false;

}

If more than two cases are necessary this extends to:

3.3. Control Structures 45

if (condition1) {
Statements evaluated if the condition1 is true;

} else if (condition2) {
Statements evaluated if the condition2 is true;

} else {
Statements evaluated if the condition1 and 2 are false;

}

This concept works for more than two conditions analogously.

A conditional assignment

if (condition) {
a = value1;

} else {
a = value2;

}

can be reduced with the help of the ?-operator to:

a = (condition)? value1:value2;

This is the only ternary operator in C.

The discrete decision statement in C is switch. The syntax is

switch(variable){
case const_1:

Statements if variable==const_1;
break;

case const_2:
Statements if variable==const_2;
break;

default:
Statements if none of the other cases matched.

}

The appropriate block is executed according to the variable compared to the
constant expressions in the case-statement. The break-statement ensures
that the statements in the following cases will be ignored. If there is no break-
statement the program runs trough all other following cases until a break
statement is detected. This is used to merge different cases easily:

switch(variable){
case const_1:
case const_2:

Statements if variable==const_1 or variable==const_2;
break;

default:
....

}

46 Chapter 3. Introduction to C and the GNU Toolchain

The default-statement defines a special case. It is executed if none of the
other case-statements matched the value of the variable. switch only works
on discrete data. Interval conditions like x>4 && x<4.5 require an if-else
construction.

Loops. C provides three different loop constructions: The for, the while,
and the do-while-loop. A loop repeats a group of statements until certain
conditions are met. The easiest one is the while-loop. It repeats a block as
long a condition is true. The syntax is

while (condition) {
Statements executed as long the condition is true;

}

The condition is tested every time the loop is entered. If it is false at the be-
ginning the while-loop is not executed. The condition works exactly as in the
if-statements.

A slight modification of the while-loop is the do-while-loop. It repeats a
block as long a condition holds true but the block is guaranteed to be executed
at least one time and the condition is tested upon exiting the code block. The
syntax is:

do {
Statements executed as long as the condition is true.
} while (condition);

The semicolon at the end of the statement is untypical but mandatory.

The most general loop statement in C is the for-loop. It is mostly used for
enumerations but it can emulate every other loop construction. The syntax is:

for (initialization; condition; action) {
Statements inside the loop;

}

The initialization is executed once before the body of the loop is entered for the
first time. It is used to initialize variables (most commonly the loop counter). The
loop is continued as long as the conditions stays true. The action-statement is
executed at the end of every loop. This is mostly an increment or decrement
statement. A for-loop is equivalent to a while-loop of the form:

initialization;
while (condition) {

Statements inside the loop;
action;

}

3.3. Control Structures 47

Each of the three parts inside the for-definition can be made up of multiple
expressions separated by commas. They are evaluated from left to right and
represent the value of the last expression.

Example 3.10: Output all square numbers from 1 to 10:

int i;
for (i = 1 ; i <= 10; i++) {

printf(" %d * %d = %d\n", i, i, i*i);
}

Loops can be influenced via the break- and the continue-statement. The
break-statement is an emergency exit inside a loop. It exits the loop immedi-
ately and stops its repetition neglecting the condition. The program continues
in the first statement after the loop.

while (condition) {
Statements;
if (special condition) {

break; //Exits the loop regardless of the while-
condition

}
}
// Control jumps here on the break

The continue-statement causes the control to jump to the end of the code
block defining the loop immediately skipping the remaining statements. If the
condition allows it the next iteration is then started. If a continue-statement
is called inside a for-loop it still evaluates the action statements.

while (condition) {
Statements;
if (special condition) {

continue;
}
Statements;
// Control jumps here on the continue;

}

Remark 3.11: Control structures can be nested inside each other as often
as desired.

Remark 3.12: If a control structure only executes one statement, the sur-
rounding brackets {} defining the code block can be omitted.

48 Chapter 3. Introduction to C and the GNU Toolchain

3.4 Complex Data Types and Arrays

Simple scalar values or characters are not sufficient for the applications. This
section extends the basic data types by structures, arrays, strings and pointers.
For enumeration, type definition and unions we refer to the literature [12, 13, 7].

Structures. Data-structures are collections of different variables within a com-
mon context. They are defined using the struct-statement:

struct NameOfTheStructure {
data-type1 variable1;
data-type2 variable2;
...
};

We replace the data-type of a variable by struct NameOfTheStructure
to declare a variable to be a data-structure.

struct NameOfTheStructure variable;

The .-operator provides access to the components of a structure:

variable.member = ...;
x = variable.member;

Example 3.13: We define a structure representing a point in R3 and let P “

p0, 1,´1q P R3 of this type:

struct point3d {
double x, y, z;
};
struct point3d P;
P.x = 0;
P.y = 1;
P.z = -1;

The normal assignment operator copies a structure to another one. However
the comparison operator == does not work this way. If we want to compare two
structures we need to compare all components separately.

Arrays. Arrays provide a multi-dimensional storage for data of the same data-
type. The data is accessed using a zero-based indexing scheme in each dimen-
sion. A one-dimensional array is declared using:

data-type name[NumberOfElements];

3.4. Complex Data Types and Arrays 49

. The bracket []-operator provides the access to the elements:

x[0] = y; // Assignment of the first element
h = x[i-1]; // Access to the i-th element

The array-elements are indexed from 0 up to NumberOfElements´ 1.

Remark 3.14: The access to an array is not checked for violation of the ar-
ray bounds. Neither the compiler, nor the runtime environment can detect
violations. Accessing elements that lie outside the declared region can
crash your program, or manipulate other data of your program uninten-
tionally. The typical error message in the first case is a Segmentation
Fault resulting from the attempt to access a memory segment that is
not belonging to your program, which is detected by the memory man-
agement facilities of the operating system.

Example 3.15: We declare a vector a P R4:

double a[4];

It consists of four values a[0], a[1], a[2] and a[3].

The same scheme allows to declare n-dimensional arrays. A two-dimensional
array can be declared using 2 brackets, a three-dimensional with three brackets
and so on. The array data is arranged with the elements of the right most index
next to each other in the memory. E.g. the element x[i][j] comes right
before x[i][j+1].

Remark 3.16: This is a difference to Fortran where the data is arranged
the with regard to left-most index.

Every data-type can be made up to an array. Arrays of structures are possible
and arrays can be used as members of structures.

Example 3.17: We declare an array of 10 Points in R3:

struct point3d {
double x,y,z;
};
struct point3d points[10];
points[0].x = 10; // Set the x value of the first

point.
points[9].z = -1; // Set the z value of the last

point.

50 Chapter 3. Introduction to C and the GNU Toolchain

Strings. Strings are a special case of arrays. Per definition a string is only an
array of characters. Since a string does not necessarily have to be as long as
the surrounding array storing it, C uses a special technique to determine the
end of the string. The end of a string is marked adding a 0-byte (ASCII: NIL).
Every string operation stops reading when it reaches the 0-byte. Caused by
this a string of n characters requires a character array of n ` 1 elements. In
contrast to single char constants a string is assigned using double quotes. The
double quote operators automatically terminate the string by the trailing 0-byte.

Example 3.18: The string “Hello!” is stored in an array of 10 characters:

char string[10] = "Hello!";

This will be stored as

Index: 0 1 2 3 4 5 6 7 8 9
Value: ’H’ ’e’ ’l’ ’l’ ’o’ ’!’ 0 * * *

in memory. * are undetermined values that are left over from earlier usage of
the memory segment.

String manipulation functions are presented in Section 3.6.3.

Pointers. Pointers are the most powerful concept of C and at the same time
the most difficult for beginners using the language. A pointer is a variable which
contains a memory address instead of a normal value. It is a reference to a
memory segment where the actual data is located. The following metaphor
explains this in a more natural way:

Imagine the memory as a big long street with houses on it. Each
variable in a program is a house on this street. Each household
can hold a number of people (which is the value of the variable).
The address of the house is the memory location of the data. Now
a pointer is a variable which contains such an address.

A pointer is declared like a normal variable with an additional * in front of the
variable name:

data_type *a_pointer_to_data_type;

A pointer needs to be assigned to a valid memory location. The operating
system takes care of this. An illegal access will kill the program just like in
Remark 3.14. The address-of operator &, which was already mentioned in

3.4. Complex Data Types and Arrays 51

Section 3.2 for the scanf-statement, returns the address of a variable. In the
case of an integer this looks like:

int var_x; //declares an int variable
int *ptr_x; //declares a pointer to a int variables
var_x = 2; //Sets the value of var_x
ptr_x = &var_x; //Assigns the pointer to the location of

var_x

ptr_x contains the memory address of var_x. The dereferencing operator
* is the counterpart to the &-operator. It allows to access the data inside the
given address. Continuing the previous example

*ptr_x = 12;

will overwrite the value in the memory location stored in ptr_x with 12. That
means var_x is now 12. Unused pointers should be set to NULL which rep-
resents 0 in the pointer context. This allows checks if a pointer is used, or not.
The void * pointer is the generic pointer which can be type cast to any other
pointer.

From the basic data type point of view pointers are not very useful. However,
there is a close relation between pointers and arrays in the C language. This is
best explained by following code:

int field[10];
int *ptr;
ptr = &field[0];

Then the pointer refers the first element of the array. Now we can access
field by ptr:

int x = ptr[3];
ptr[4] = 4711;

In this way a pointer is simply an alternative representation of an array without
a previously known size. A pointer to a single value can be considered as a
pointer to an array of one element. The array-style access is, however, not
valid for void * pointers.

Remark 3.19: Note that in expressions as ptr[3] above the brackets
represent a dereferencing operation for the element chosen by the en-
closed index and thus no additional * is needed

A pointer to a structure is used similarly. Dereferencing the pointer is done
using the *-operator and the access to the components is done using the .-
operator:

52 Chapter 3. Introduction to C and the GNU Toolchain

struct point3d p;
struct point3d *sptr;
sptr = &p;
(*sptr).x = 0;

This type of notation (*sptr).x looks a bit confusing and complicated. The
C syntax therefore has an equivalent representation as in:

sptr->x = 0;

Pointers can also be cascaded. That means, constructs like int **ptr;
are valid. Following the above example this contains a pointer to a pointer
to an int. Dereferencing one time give the pointer to an int and double
dereferencing gives the integer. This corresponds to a two-dimensional array.
Analogously three or more * can be used to implement higher dimensonal
dynamic arrays. Note that to really exploit the dynamic features of pointers
one needs to employ the malloc() and free() functions (introduced below)
from the standard library (both in stdlib.h) described in Section 3.6.1.

Pointers are also necessary if a function should be able to modify an argument
passed to it. The scanf-example in Section 3.2 showed this already. The
Section 3.5 describes this technique in more detail.

Some arithmetic operations can be applied to pointers too. We however con-
sider this a dangerous technique for accessing elements in the memory that
should only be used by experts where it is unavoidable. For details see one of
the numerous tutorials on the Internet.

Memory Management. Until now every pointer needed to have a predeclared
variable to refer to. In many practical examples it is, however, not possible to
know a priori how much space will be consumed by the data. The standard C
library provides a set of functions to allocate memory dynamically.

Since the size of data-types may vary on different hardware platforms the mem-
ory allocation needs to be done relative to their sizes. The sizeof(type)-
operator returns the size of a data-type in bytes. It can be applied to basic data
types as well as structures.

Example 3.20: Print the size of the double and the struct point3d type:

printf("sizeof (double) = %lu\n",sizeof(double));
printf("sizeof (struct point3d) = %lu\n",

sizeof(struct point3d));

3.4. Complex Data Types and Arrays 53

The malloc function allocates contiguous memory blocks of arbitrary size3:

void *malloc(size_t size);

This requests a memory location of size bytes and returns the start address. If
the allocation fails it returns NULL. malloc does not care about the data-type.
The returned void* pointer needs to be transformed to the desired data-type
using a type cast.

double *x;
x = (double *) malloc(sizeof(double));

If a memory location is no longer used it should be made available again. The
free-function deallocates the memory referred to by a pointer:

void free (void *ptr);

Example 3.21: Allocate an array with 100 double entries, sum them up, and
free the array:

double *array; // declare the pointers
// Allocate 100*sizeof(double) bytes memory
array = (double *) malloc(sizeof(double)*100);
// sum them up
double sum = 0;
for (i = 0; i < 100; i++) {

sum += array[i]; }
free(array); // free the memory

If an allocated memory location is too small or too large it can be resized using
the realloc-function:

void *realloc(void *oldptr, size_t newsize);

It takes the old pointer and the new size of the array and returns the pointer to
the resized array. The data in the part that is kept remains untouched. If the
old pointer is the special NULL value, realloc behaves exactly like malloc.
Statically allocated arrays, such where the size is known before the program is
compiled, can not be resized.

A few other memory allocation operations exists. For example calloc and
mmap are two of these.

Remark 3.22: valgrind is an excellent tool to detect errors with wrong
access to pointers or wrong usage of the memory management function.

3Only restricted by the availability of memory.

54 Chapter 3. Introduction to C and the GNU Toolchain

3.5 Functions

Nearly all programming languages have a construct to separate a package of
code blocks. This is necessary to get a well-arranged reusable code avoiding
copy and paste orgies. The main-function is the starting function of every
program. It is called automatically when a program is executed. Statements
like printf and scanf are functions, too. Some important standard functions
are introduced in Section 3.6.

Functions are called using their name followed by a list of arguments in paren-
theses. If the return-value is needed it is used like a variable in an expression
or a function in a mathematical context.

Example 3.23: Check if scanf has read two integers correctly:

int i1, i2, r;
r = scanf("%d %d", &i1, &i2);
if (r != 2) {
printf("scanf did not read 2 integers successfully.\n");
}

A function consists of two parts. The header defines the input/output argu-
ments and the return type. The second part is the body where the function is
implemented. This gives the following layout:

return-type function-name(argument-list) {
// Local declarations
Statements;
Statements;
return return-value;

}

The return-type can be any simple data-type, including structures and
pointers. If the function does not have a return value void is used as return-type.
The return-value must be compatible with the return-type. The nam-
ing conventions for variables also apply to functions. The argument list is a
comma-separated list of the format data-type variable which defines the
arguments for the function. The function header without the body is called sig-
nature of a function. The compiler checks if the calling sequence is compatible
with its signature, i.e., the number of arguments is correct and the data-types
can be type cast correctly.

Example 3.24: Define a function named “sqr” operating on a double precision
number and returning the square of the argument:

double sqr(double x) {

3.5. Functions 55

double a;
a = x * x;
return a;

}

The signature of this function is double sqr(double x);

Normally the arguments are copied to the function when it is called. The func-
tion works on a copy of the data not modifying the original. This behavior is
called Call by Value. If a function has to change a given argument at its original
location the arguments needs to be a pointer to the variable. We call this be-
haviour Call by Reference because only a reference to a variable is passed. A
function can return more than one value or complex data types using this tech-
nique. The scanf-function again serves an example for this. Another popular
example is the swap-function:

Example 3.25: We define a function which takes two integer values as argu-
ments and swaps their values. The straight forward solution would be:

void swap (int a, int b) {
int tmp;
tmp = a;
a = b;
b = tmp;
}
// in main()
int x = 4;
int y = 5;
swap(x, y);

This looks correct but the swap-function only exchanges a copy of x and y.
The correct solution would be:

void (int *a, int *b) {
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
// in main()
int x = 4;
int y = 5;
swap(&x, &y);

In this case a and b are used as a reference to x and y. Exchanging the
values in the memory locations where a and b point to will change the values
of x and y immediately.

56 Chapter 3. Introduction to C and the GNU Toolchain

Example 3.26: The main-function of a C program is a special case of a func-
tion that takes two arguments, the first int argc argument contains the num-
ber of command line arguments passed to the program including the program
name itself. The second argument char **argv is an array of strings. Each
string contains one command line argument. The element argv[0] contains
the name of the program.

Remark 3.27: Arrays are always passed to a function Call by Reference
because they are equivalent to pointers. There is no way to pass an
array using Call by Value except of creating a copy of the array before
manipulating it inside the function. By default modification are directly
performed in the original array.

3.6 An Introduction to the Standard Library

The ISO C Standard [5, 7, 9] defines a standard library to provide basic func-
tions on every platform and allow portable programming. It consists of about
20 different header files and around 200 function for input/output, basic math,
string manipulation and memory management. This sections gives an overview
about some important predefined functions. The functions are presented using
their signature and a short description.

The POSIX C Library [6] is an important extension to the standard C library
which provides more operating system dependent operations on Unix-like op-
erating system. It contains functions for networking, inter process communi-
cation, threading and many more. Due to space limitations it can however not
be included in this presentation. Starting with the C11 standard, threading has
also become part of the standard C library.

3.6.1 stdio.h and stdlib.h

These two headers files provide the basic functionality of the C library. They
provide input/output operations, control statements and memory management.
The file-io operations are demonstrated in Section 3.7 again.

The input/output functions introduced later in this section contain format strings
determining what is to be read or printed. These format strings contain for-

3.6. An Introduction to the Standard Library 57

d integers of the type int
ld integers of the type long
u integers of the type unsigned int
g float pointing numbers of the type float or double
e float pointing number in [-]d.ddde+dd notation
c a single character of type char
s strings (see Section 3.4)
% the % sign.

Table 3.3: Format specifiers

mat specifiers for the representation of the variables contents. Some important
specifiers are given in Table 3.3.

The full format specification has the form

\%[flags][width][.precision][l]type

The [l]type part is what is shown in Table 3.3. The bracketed specifiers
are optional. They can be used to further influence the output representation.
The width parameter for example determines the length in the corresponding
output string. For floating point numbers precision determines the number
of digits in width that is used for the decimals.

Example 3.28:

double pi=3.14159265;
printf("pi=%8.6g\n",pi);

prints:
pi=3.141593

Note that the decimal dot is consuming one of the 8 digits.

The other placeholders and modifiers are described in the man page of the
printf function, see:

man 3 printf

or [13, 12] in detail.

The following is a list of the most important functions contained in stdio.h
and stdlib.h.

int printf(const char *formatstring, arguments...);
int fprintf(FILE *f, const char *formatstring, arguments

...);
int sprintf(char *buf, const char *formatstring, arguments

...);

58 Chapter 3. Introduction to C and the GNU Toolchain

The printf-function writes a text to the standard output. The fprintf-
function is the equivalent for files, whereas sprintf stores the result in the
output string buf. The format string is explained above and mentioned in Sec-
tion 3.2. The return-value is the number of characters written.

int scanf(const char *formatstring, argument...);
int fscanf(FILE *f, const char *formatstring, argument...);
int sscanf(const char *string, const char *formatstring,

argument...);

The scanf-function reads a formatted input from the standard input. This is the
keyboard in most cases. The arguments are pointers to the variables where the
values read from the input are stored. The fscanf-function is the equivalent
to read data from a file and sscanf reads from another string. The functions
return the number of values read. fscanf stops reading when either the end
of a line, or the end of the file is reached. sscanf terminates upon reaching
the 0-byte.

FILE *fopen(char *filename, char *mode);

The fopen-function opens the file specified by the filename and returns
a pointer to the file stream. The mode argument is a string determining the
access to the file: fopen returns NULL in case of an error.

Mode Meaning Remarks
"r" open for reading Only possible if the file exists

otherwise NULL is returned.
"w" create a file for writing If the file already exists the con-

tent is destroyed.
"a" append data to a file If the file already exists, the new

data is appended to the end. If
it does not exist the behavior is
like "w".

r+ / w+ / a+ open/create file for read
and write access.

basic behavior is as above

t text mode Only valid in combination with
the above. Produces human
readable output files. This is
the default if neither t nor b is
given.

b binary mode Only valid in combination with
the above. Produces machine
readable output. Usually gives
smaller output files.

3.6. An Introduction to the Standard Library 59

int fclose(FILE *stream);

The fclose-function closes a given file stream. Any buffered data is written
to the file. The stream is no longer associated with the file.

int feof(FILE *stream);

The feof-function returns true if the given file stream reached the end of the
file otherwise false is returned.

void perror(const char *s);

The perror-function displays the most recent error from the C library. The
string s may contain an explanatory message that is printed before the actual
error message.

void *malloc(size_t size);
void *realloc(void *ptr, size_t new_size);
void free(void *ptr);

The memory management functions explained in Section 3.4.

void abort();
void exit(int exit_code);

The abort-function terminates a program immediately without any clean up.
The exit-function terminates a program immediately with clean up. It is the
same as return in the main function but can be called anywhere in the code.

int atoi(char *s):
double atof(char *s);

The atoi-function converts a string to an integer if possible. The atof-
function does the same with a floating point number.

3.6.2 math.h and complex.h

These two header files provide common mathematical functions and constants.
If a program uses at least one of them it needs to be linked against the math
part of the standard C library. This is done using the "-lm" linker flag when the
compiler/linker is invoked (see also Section 3.1). All of the following functions
take double arguments and produce double return values.

fabs(x) absolute value of x
exp(x) returns ex

exp2(x) returns 2x

log(x) returns lnx

60 Chapter 3. Introduction to C and the GNU Toolchain

log10(x) returns log10 x

log2(x) returns log2 x

sqrt(x) returns
?
x

hypot(x,y) returns
a

x2 ` y2

pow(x,y) returns xy

sin(x) returns sinx

cos(x) returns cosx

tan(x) returns tanx

asin(x) returns sin´1 x

acos(x) returns cos´1 x

atan(x) returns tan´1 x

The C99 [7]standard introduces the data types float complex and double
complex for handling complex numbers. The header file complex.h defines
these data types, along with the imaginary unit as I and the following functions
for double precision complex arguments and return values:

creal(x) real part of x
cimag(x) imaginary part of x
carg(x) computes the phase angle of a complex number
cabs(x) computes the magnitude of a complex number
conj(x) returns x̄
cexp(x) returns ex

clog(x) returns lnx

csqrt(x) returns
?
x

cpow(x,y) returns xy

csin(x) returns sinx

ccos(x) returns cosx

ctan(x) returns tanx

casin(x) returns sin´1 x

cacos(x) returns cos´1 x

catan(x) returns tan´1 x

The list of mathematical functions presented here is not complete. More can be
found in the man pages or the C standard [7]. For nearly all double precision
functions there exists a corresponding single precision function with an f as
suffix. For example the single precision square root is computed by sqrtf(x).

Some predefined constants are:

3.6. An Introduction to the Standard Library 61

M_PI π “ 3.14159265358979323846

M_PI_2 π
2 “ 1.57079632679489661923

M_E e “ 2.7182818284590452354

M_SQRT2
?

2 “ 1.41421356237309504880

3.6.3 string.h

The string.h-header file contains various functions to manipulate and work
with strings. The important ones are:

size_t strlen(char *s);

The strlen-function returns the length of the string not including the termi-
nating 0 character.

char *strcpy(char *dest, char *src);

The strcpy-function copies a string from src to dest and returns the dest
pointer again. dest needs to be a preallocated string with at least strlen(src)+1
elements. The destination string is not 0-terminated if the source string does
not contain the 0-byte within the length of the destination string. The behavior
in case the destination is to short is unspecified and may depend on the actual
implementation of the compiler.

char *strcat(char *dest, char *src);

The strcat-function appends the string from src to dest and returns the
dest pointer again. dest needs to be a preallocated string with at least
strlen(src)+strlen(dest)+1 elements.

int *strcmp(char *lhs, char *rhs);

The strcmp-function compares two strings lexicographically. It returns a neg-
ative value if lhsărhs, a positive value if lhsąrhs and 0 if they are equal.

Additional Memory Manipulation Functions in string.h Beside the string
operations string.h defines a variety of memory actions like:

void *memcpy(void *dest, void *src, size_t n);

The memcpy-function copies n bytes from src to dest and returns the dest
pointer again. dest needs to be a preallocated with n bytes. src and dest
must not overlap each other. memmove does the same but allows overlapping.
It is slower than memcpy.

62 Chapter 3. Introduction to C and the GNU Toolchain

void *memset(void *dest, int ch, size_t count);

The memset-function converts the value ch to an unsigned char and
copies it into each of the first count characters of the location referred by
dest.

3.7 File Input and Output

The basic functions for file-io have already been mentioned in Section 3.6. In
this section we present some examples for their usage. They mostly behave
like their corresponding standard-io ones.

fopen opens a specified file in the desired mode. To avoid undefined behavior
we have to check if NULL was returned.

Example 3.29: We create file “test.txt” for writing:

FILE *fp;
fp = fopen("test.txt","w");
if (fp == NULL) {

perror("can not open test.txt for writing.");
return -1;

}

If we want to read data from a file we have to use "r" instead.

The access modes "w" and "a" open files for writing. fprintf is used like
printf on this file:

int x = 10;
double y = 145.1;
fprintf(fp, "x = %d , y = %lg\n", x, y);

The access mode "r" allows fscanf to read data from it. It works like scanf
but reads a line from a file and tries to assign the values like specified in the
format string. If the feof()-function evaluates to true, no more data can read
from the file.

Example 3.30: We consider a human-readable file with the following layout:

x1 y1
x2 y2
...

The code-snippet to read all values and print them to the screen will be:

3.8. The Preprocessor and Header Files 63

FILE *fp;
double x, y;
fp = fopen("test.txt","r");
if (fp == NULL) {

perror("can not open test.txt for reading.");
return -1;

}
while (!feof(fp)){

fscanf("%lg %lg", &x, &y);
printf("x= %g \t y=%g\n",x,y);

}

After reading or writing to a file it needs to be closed by fclose(fp).

The fprintf and fscanf functions are only useful for human readable files.
For individual access to binaries we refer to fread, fwrite and other func-
tions from stdio.h.

3.8 The Preprocessor and Header Files

Before a C compiler translates the source code into the machine code the in-
put is processed by the preprocessor. It performs search-replace operations
and includes other files into the current source code. All preprocessor state-
ments begin with a # and end with a newline. The most frequently used one is
#include. It includes other files into the current source code. Other common
statements are #define and #ifdef.

#include is used to include other files into the current source code. These
are mostly header files of libraries which contain function-headers, data-structures
or constants. A C-header file has the extension .h. The entire content of the
included file is temporarily copied to the position of the include-statement
in the source file. Two different variants of #include are possible:

#include <header.h>

searches the system include path4 first and then it uses the additional ones
given by the -I option on the command line. This is used to include standard
headers and other external libraries. The second one is

#include "header.h"

4usually /usr/include and /usr/local/include

64 Chapter 3. Introduction to C and the GNU Toolchain

which searches in the current directory first. This one is used for local, in-
project, include files. It is also possible to include other .c-files. This can,
however, cause conflicts.

#define is used in three ways. The first one is to set up symbolic replace-
ments in the source. This is used to define constants for example.

Example 3.31: The preprocessor statements:

#define PI 3.14519
#define SQRT2 sqrt(2)

will replace any occurrence of PI with 3.14159 and of SQRT2 with sqrt(2)
in the current source file.

The second way is to define parameter-depended replacements, so called pre-
processor macros. They depend on at least one parameter and perform all
replacements with respect to the given parameters. The parameters in the
macro are filled up with the expressions from where the macro is used. The pa-
rameter list is appended directly to the macro-name without any white-space.
The parameters should be enclosed in parentheses when they are used. The
whole macro should be enclosed with parentheses again to avoid errors after
the replacement.

Example 3.32: The following macro will give the absolute value of the parame-
ter:

#define ABS(X) (((X)>0)?(X):(-(X)))

This replaces y=ABS(z+1); with:

y = (((z+1)>0)?(z+1):(-(z+1)));

If X is not enclosed with parentheses this is evaluated to:

y = ((z+1>0)?z+1:-z+1));

This is not the desired behavior because the minus in the second part is only
applied to z and not to the whole expression as it was intended.

The third way to use the define-directive is as boolean variables for the
#ifdef-statement. It evaluates to true when the define exists. The prepro-
cessor variables can be set using the -D command line option of the compiler.

3.8. The Preprocessor and Header Files 65

Remark 3.33: The preprocessor acts stupid on all replacements of
define. It does not check whether or not the resulting code is valid
C code. The programmer has to make sure that the define statements
are extended to correct C code.

#ifdef The ifdef-directive short of #if defined, allows conditional com-
piling of the source code. It works like the if-else construct in a normal
program but is evaluated by the preprocessor at compile time:

#ifdef PREPROCESSOR_DEFINE
// Code compilied if PREPROCESSOR_DEFINE exitsts
#else
// Code compiled otherwise
#endif

The #else-part can be left out. The code in the unused case is temporarily
removed from the source code during the preprocessing. This technique is use
to handle different environment situations in one source file.

Example 3.34: In order to debug a program easily somebody defined a INFO-
macro which prints the given parameter to the screen. In the final version of the
program this is not necessary. However removing all outputs in the code may
be unwanted to be able to insert them again for debugging purpose:

#ifdef DEBUG
#define INFO(X) printf(X)
#else
#define INFO(X)
#endif

If DEBUG is defined the INFO-macro is expanded to a printf-statement
otherwise it is replaced with nothing.

The #ifndef statements is the opposite of #ifdef. It simply negates the
condition of the #ifdef statement.

Header-Files. If a C program is split into several source files, the header file
tells the compiler which functions, data-structures and constants exist in other
source files. This is necessary because the compiler can only check the func-
tion headers and the calling sequence in the current file. Header files can
also be used to share data structures and variables. It is similar to a normal
source file but consists only of definitions without any implementation. A cyclic
inclusion should be avoided using the preprocessor commands #define and

66 Chapter 3. Introduction to C and the GNU Toolchain

#ifndef. The following example shows how a function can be moved to an
external file and how the header looks like:

Example 3.35: exfct.c implements the function something:

#include <math.h> // for sqrt
#include "exfct.h" // Ensure that the function header

// fits to the one from exfct.h
double something(double x, double y, double z){
return sqrt(x*x+y*y+z+z*z);

}

The header file exfct.h only contains the function header (its signature) and
a preprocessor trick ensuring that it can not be included twice in one file:

#ifndef EXFCT_H
#define EXFCT_H
double something(double x, double y, double z);
#endif

The main program can now include the header and knows how the function
something is called correctly.

Splitting a large program into different source files makes the whole project well
arranged and easily maintainable. The different files should have a meaningful
name.

A software project consisting of many source files can be compiled adding all
.c-file to the compiler call. This works but is not the best way when searching
for compilation errors. A better and faster way is to define an makefile which
automates the build. The next Section 3.9 shows how this basically works.

3.9 Makefiles

Make is a utility that automates the build process for executable programs and
libraries from source code. It is controlled by a text file called Makefile which
contains the build instructions. It can deal with dependencies between different
source code files and compiles only files that have been modified since the last
build. There exists different versions of make such as GNU Make, BSD Make
and Microsoft’s nmake.

A makefile works as a simple dependency tree. It compiles the files that are
outdated in the order they depend on each other. The makefile consists of so
called targets, which may depend on each other. A target is defined by a rule:

targetname: dependencies

3.9. Makefiles 67

command1
command2
...

The indentation before the commands must be <tab> characters; not spaces!
The targetname should be equal to or closely related to the output file gen-
erated by the commands. dependencies is a space separated list of other
targets that need to be compiled prior to the target or names of files which need
to exist. A target is only built if it is older than at least one of its dependencies.
There can be more than one target in a single makefile.

Example 3.36: Consider a small software project consisting of main.c,
file1.c and file1.h. A makefile to create the final program prog looks
like:

prog: main.c file1.c file1.h
gcc -c main.c
gcc -c file1.c
gcc -o prog main.o file1.o

In the case that the makefile is named Makefile or makefile the make
process may be invoked executing

make targetname

If the makefile has another name use:

make -f makefilename targetname

If no targetname is specified, the first one found in the makefile is used.

In order to be more flexible we can introduce variables. Mostly they contain the
list of source files, object files or compiler and linker options. A variable is set
by

VARNAME=VALUE

A variable is accessed with $(VARNAME). To change the extension of all files
listed in a variable the substitute command is used. The syntax is

NEWVAR = ${OLDVAR:.old=.new}

This replaces the extension of every file ending with .old in OLDVAR to .new
and stores the list to NEWVAR. This is normally used to create a list of object files
form the list of source files. Additionally, one can define conditional variables.
In this case the value is only set if the variable does not already exist. This
is helpful if the user should be able to set options when he invokes make. A
conditional variable is set by

68 Chapter 3. Introduction to C and the GNU Toolchain

VAR?=FOO

If make is called without any argument then VAR will contain “FOO”, if make is
called like

make VAR=BAR

the variable VAR contains “BAR”.

Because it takes too long to define a rule for every input file, suffix rules are
used. They create a target for every file matching the rule. They apply to files
that match the suffix and have not been processed by a separate target before.

.SUFFIXES: .in .out

.in.out:
command1
command2
...

These rules create a target for every file ending on .in to transform it into the
same filename with the extension .out. This is used to compile source code
from file.c to an object file file.o. Two placeholders exist referring to the
input and the output filenames. The input file is referred to using $< and the
output file using $@.

Finally we define a clean up target. The target clean removes all object files
or intermediate outputs. Because this target does not produce an output file
or does not depend on a file called clean it needs to be declared as .PHONY
target.

Example 3.37: We consider again Example 3.36. Inserting variables, suffix
rules and the extension replacement we can turn it into a more generic one:

SRC=main.c file1.c
OUTPUT=prog
CC=gcc
CFLAGS= -O2
OBJECTS=${SRC:.c=.o}

$(OUTPUT): $(OBJECTS)
$(CC) -o $(OUTPUT) $(CFLAGS) $(OBJECTS)

.SUFFIXES: .c .o

.c.o:
$(CC) -c -o $@ $(CFLAGS) $<

clean:
rm -f $(OBJECTS)

.PHONY: clean

3.10. Writing Own Libraries 69

There exist many other techniques to extend the make file such as automatic
dependency creation using the GCC compiler, pattern rules as a generalization
of the suffix rules, include statements, if directives and many more. See [11]
for details. Other tools like CMake5 or the GNU Autotools 6 provide high level
scripting languages to create complex makefiles automatically.

3.10 Writing Own Libraries

Libraries are collections of precompiled functions together with the header files,
containing the function headers and the data structures. In contrast to a normal
C program a library does not provide a main function. The standard C library
is an example for a library which was already used in the previous sections.

Two different types of libraries exists. The first ones are the static libraries and
the other ones are the dynamic or shared ones. Both of them have advantages
and disadvantages. The static ones are easy to create but need more space
on the mass storage and cause problems with cyclic dependencies between
libraries. On the other hand, the dynamic libraries are a bit more complicated to
create but take less space on the mass storage and can be exchanged without
recompiling the program. Many programs can refer to a single shared library
and use it independent of the specific version or implementation.

Static Libraries Static libraries are collections of object files combined in a
specially structured archive. This archive is a classical UNIX ar-file containing
all .o-files of the library and a search index. The source code only needs to
be compiled to object code using the -c compiler option. Afterwards, all object
files are combined to a .a-file:

ar crs libNAME.a *.o

The c options creates an archive, the r option replaces existing files inside the
archive, if it already exists and the s options adds an object index. This index
speeds up the linking procedure. For completeness we mention that running
ar with the s option is completely equivalent to using the command ranlib
for the index generation.

A static library is linked to a program by adding the .a-file to the compiler call:

gcc -o program main.c libname.a

5http://www.cmake.org
6http://en.wikipedia.org/wiki/GNU_build_system

http://www.cmake.org
http://en.wikipedia.org/wiki/GNU_build_system

70 Chapter 3. Introduction to C and the GNU Toolchain

All functions referenced in main.c are copied from libname.a to the final
program. If more than one static library is used the compiler resolves the sym-
bols from left to right. That means if two or more libraries depend on each
other they have to be added in their order of dependence. If there is a cyclic
dependency the files need to be added multiple times.

Remark 3.38: If a static library is used in conjunction with a dynamic one
or on a 64-bit architecture like x86_64 all source files must be compiled
with the -fPIC flag.

Example 3.39: We consider the minimal external function from Example 3.35.
The following steps create a static library and link it against a program.

gcc -c -fPIC exfct.c
ar crs libexfct.a *.o
gcc -o prgm main.c libexfct.a

Dynamic/Shared Libraries Dynamic or shared libraries are nearly the same
as normal programs. The only difference is the missing main function. When
they are linked to a program a cross reference is placed in the program indicat-
ing in which dynamic library the functions actually resides. The dynamic loader
reads this cross references on execution and loads the necessary libraries into
the same address space as the program. If the program now calls an external
function it executes the code loaded from the libraries.

The dynamic linker searches for the dynamic libraries only in standard system
paths. Typically, these are /lib, /usr/lib/ and /usr/local/lib/. If a
library does not exist in these standard paths, the LD_LIBRARY_PATH environ-
ment variable can be used to set additional search paths. An alternative way
is to add additional search paths to the program during the linking phase. The
addition of -Wl,-rpath=PATH to the compiler call allows this.

Dynamic libraries can be replaced without relinking program as long as they
use a compatible binary interface. If at least one function changes its header or
a data structure in a header file changes, the program needs to be recompiled
and relinked.

Dynamic libraries are created using the compiler and the linker. The source
code needs to be compiled with the -fPIC compiler flag. Additionally the
-shared option advises the compiler and the linker to create a shared library
instead of a normal executable. The output file name for a shared library must
follow the libNAME.so naming convention.

3.11. Interfacing Fortran 71

Example 3.40: We consider the minimal external function from Example 3.35
again. The following steps create a dynamical library and link it against a pro-
gram.

gcc -shared -fPIC -o libexfct.so exfct.c
gcc -o prgm -L. -lexfct main.c

If the additional search path should be integrated in the binary add
-Wl,-rpath=. to the second compiler call. The libexfct.so can be
modified without relinking it to the output program as long as the function sig-
nature does not change.

3.11 Interfacing Fortran

Many mathematical libraries, especially numerical linear algebra ones, have
been written in Fortran. Fortran is the oldest high-level programming language
which is still in use. It is currently specified in ISO/IEC 1539-1:2010 [8]. The
newer versions of Fortran provide an interface to C7, but this is not supported
by all compilers and many Fortran codes rely on old standards. Due to this,
the old fashioned way of interfacing Fortran is presented by an example in this
section.

Fortran code can be compiled using the gfortran command. This invokes
the Fortran compiler of the GNU Compiler Collection. It takes nearly the same
command line arguments as the C compiler. Fortran files typically use .f,
.f90 or .f95 as extensions.

The DAXPY8 operation from the Basic Linear Algebra Subroutine library (BLAS)9

is used as an example to explain how a Fortran subroutine is called from C. The
DAXPY operation computes

y “ y ` αx

for two vectors x, y P Rn and a scalar α P R. The Fortran function header is

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
DOUBLE PRECISION DA
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(*),DY(*)

First of all, we have to translate the Fortran data-types to the corresponding C
types. Because Fortran passes values to a function using Call by Reference,

7http://de.wikibooks.org/wiki/Fortran:_Fortran_und_C
8http://www.netlib.org/blas/daxpy.f
9http://www.netlib.org/blas (see also Section 6.4.1)

http://de.wikibooks.org/wiki/Fortran:_Fortran_und_C
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas

72 Chapter 3. Introduction to C and the GNU Toolchain

all arguments will be pointers no matter if they are scalar values or vectors. The
data-types of the arguments translate to:

Fortran type C type
INTEGER int
REAL float
REAL*8 double
DOUBLE PRECISION double
COMPLEX float complex
COMPLEX*16 double complex
DOUBLE COMPLEX double complex

The second step is to translate the function name. Different compilers use
different conventions for this. As long as only the GNU Compiler Collection is
used the rules are:

• The function name is translated to lower case.

• A trailing underscore “_” is added to the function name.

• If the function name contains an underscore, a second underscore is
added.

A Fortran subroutine is like a C function with a void return-type. If it is a func-
tion instead of a subroutine the return-type needs to be translated according to
the list above, as well. The return-type is then not a pointer.

Applying these rules to the DAXPY subroutine gives:

void daxpy_(int *N, double *DA, double *DX,
int *INCX, double *DY, int *INCY);

This function header is necessary in every C source code which uses the For-
tran routine. It can also be moved to a header file.

The following code computes

y “

ˆ

1
2

˙

, y “ y ` 2 ¨

ˆ

4
3

˙

using the DAXPY subroutine:

#include <stdio.h>
#include <stdlib.h>
void daxpy_(int *N, double *DA, double *DX,

int *INCX, double *DY, int *INCX);
int main(int argc, char *argv) {

double x[2] = {4 ,3};
double y[2] = {1 ,2};
double alpha = 2
int n = 2, incx = 1, incy = 1;

3.12. Automatic Generation of Documentations Using DOXYGEN 73

daxpy_(&n, &alpha, x, &incx, y, &incy);
printf("y = [%g, %g]\n", y[0], y[1]);
return 0;

}

The program is compiled calling:

gfortran -c daxpy.f
gcc -c main.c
gcc -o prgm main.o daxpy.o -lm -lgfortran

The math (-lm) and the Fortran runtime library (-lgfortran) need to be
added to the program.

Interfacing other Fortran subroutines works analogously.

3.12 Automatic Generation of Documentations Using
DOXYGEN

Documenting code and writing a manual for a software project can be even
more time consuming than the real programming job. doxygen is a documen-
tation generator tool which allows the programmer to write the documentation
directly inside the source code. It extracts the documentation from specially
structured comments and outputs it to HTML files, a LATEX document, an RTF
document or man pages. A large variety of programming languages such as C,
C++, Java, Fortran or Python are supported.

Modified multi line comments are mostly used for doxygen in a C source.
Instead of /* they have to start with /**. Depending on the programming
language other comments must be used. These comments are interpreted by
doxygen. When a doxygen-comment stands directly in front of a function, a
structure definition or a similar construct, it refers to this object. The documen-
tation is improved with special statements inside the comment. The basic ones
are:

@brief Set the brief documentation of the object.
@param Document a parameter of a function.
@return Document the return value of a function.
@author Set the author of a function.
@version Set the version of an object.
@see Create a cross reference to an other function, struct,. . .

Alternatively, the commands can start with a \ instead of the @ character. All
lines not beginning with a doxygen-command are extracted as normal docu-

74 Chapter 3. Introduction to C and the GNU Toolchain

mentation text. Normal C comments are not recognized by doxygen.

Additionally, HTML tags or LATEX-style formulas can be used in the documen-
tation. A LATEX formula is enclosed by \f$ or \f[and \f] in order to
create an in-line or a separated formula. If the outputs are HTML files the LATEX-
formulas are rendered and included as images. On the other hand, if the output
is a LATEX document the basic HTML tags are converted to the corresponding
LATEX-commands.

Example 3.41: We want to document the sqr function from Example 3.24.
This is done adding a doxygen comment block right before the function header
begins:

/**
\brief Squares a given double value.
\param x Input value.
\return the square of the input value x.

The sqr function returns the square \f$ x^2 \f$ of a
given number x. <i>The intermediate result is stored
in an internal variable.</i>

*/
double sqr(double x) {

/* This is not for doxygen. */
double a;
a = x * x;
return a;

}

Beside the special comments inside the source code doxygen is controlled by
a so called Doxyfile. This specifies the source directory, the output format
and other in- and output related options. A template of this file is generated
using:

doxygen -g config_filename

The newly generated file is well documented and easily customizable using a
text editor. The documentation of a software project is created by simply calling

doxygen config_filename

If doxygen is invoked without any configuration file it searches for a file name
Doxyfile in the current directory.

More information about doxygen and how to use it inside a software project
are available in [2]. A good starting point for beginning readers is [1].

References and Further Reading 75

References and Further Reading

[1] Doxygen: Getting started. http://www.doxygen.org/manual/starting.html.

[2] Doxygen: Website. http://www.doxygen.org/.

[3] Wikibook: C. http://de.wikibooks.org/wiki/
C-Programmierung.

[4] Wikibook: Fortran. http://de.wikibooks.org/wiki/Fortran.

[5] ISO, ISO/IEC 9899:1990: Programming languages — C, International Or-
ganization for Standardization, Geneva, Switzerland, 1990.

[6] , ISO/IEC 9945-1:1996: Information technology — Portable Oper-
ating System Interface (POSIX) — Part 1: System Application Program
Interface (API) [C Language], International Organization for Standardiza-
tion, Geneva, Switzerland, 1996.

[7] , ISO/IEC 9899:1999: Programming Languages — C, International
Organization for Standardization, Geneva, Switzerland, Dec. 1999.

[8] , ISO/IEC 1539-1:2010 Information technology — Programming lan-
guages — Fortran — Part 1: Base language, International Organization
for Standardization, Geneva, Switzerland, June 2010.

[9] , ISO/IEC 9899:2011: Programming Languages — C, International
Organization for Standardization, Geneva, Switzerland, Dec. 2011.

[10] B.W. KERNIGHAN AND D.M. RITCHIE, The C Programming Language,
Prentice-Hall Software Series, Prentice Hall, 1988.

[11] ROBERT MECKLENBURG, Managing Projects with GNU Make, 3rd ed.,
2004.

[12] CHRISTOPH KECHER ULRICH KAISER, C/C++ Das umfassende Lehrbuch,
Gallileo Computing, 2005.

[13] JÜRGEN WOLF, C von A bis Z, Gallileo Computing, 2009. Available
as OpenBook at http://openbook.galileocomputing.de/c_
von_a_bis_z/.

[14] , Linux-UNIX-Programmierung, Gallileo Computing, 3rd ed.,
2009. 2nd Edition available as OpenBook at http://openbook.
galileocomputing.de/linux_unix_programmierung/.

http://de.wikibooks.org/wiki/C-Programmierung
http://de.wikibooks.org/wiki/C-Programmierung
http://de.wikibooks.org/wiki/Fortran
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/linux_unix_programmierung/
http://openbook.galileocomputing.de/linux_unix_programmierung/

76 Chapter 3. Introduction to C and the GNU Toolchain

Computations of a numerical nature, esp. those that make extensive use of floating
point numbers. The only thing Fortrash is good for. This term is in widespread
informal use outside hackerdom and even in mainstream slang, but has additional
hackish connotations: namely, that the computations are mindless and involve
massive use of brute force. This is not always evil, esp. if it involves ray tracing or
fractals or some other use that makes pretty pictures, esp. if such pictures can be
used as screen backgrounds.

definition of number crunching
THE NEW HACKER’S DICTIONARY

CHAPTER 4

Error Analysis and Machine Numbers

Contents
4.1 Machine Numbers . 77

4.2 Rounding Errors and Error Propagation 81

4.2.1 Rounding Rules . 81

4.2.2 Computer Arithmetic 85

4.2.3 Error Propagation 86

4.2.4 The IEEE Standard 754 90

4.3 Error Analysis . 92

References and Further Reading 103

We have seen in the preface, that the numerical solution of mathematical tasks
produces different kinds of errors. In order to be able to judge the correct-
ness of our results and avoid or bound the errors resulting from finite precision
representations, we investigate and analyze the machine numbers used for cal-
culation on modern computers.

4.1 Machine Numbers

For calculations on, e.g., a computer, a cell phone, or a pocket calculator, real
or complex numbers need to be stored in the finite memory of the device, i.e.,
with only finitely many digits of accuracy. For simple numbers like 1.0 or 0.5 it

77

78 Chapter 4. Error Analysis and Machine Numbers

is easy to imagine that this is somehow possible, however, for e.g., π which is
known to have infinitely many digits we need to truncate somewhere and thus
introduce a certain representation error.

There exist a number of known representations for storing real numbers. All of
them are based on the following theorem.

Theorem 4.1 (p–adic expansion): For x P R, p P Nzt1u there exist
uniquely determined j P t0, 1u, ` P Z and @k P Z with k ď ` unique
γk P t0, . . . , p´ 1u, such that

x “ p´1qj
ÿ̀

k“´8

γkp
k, (4.1)

where γ` ‰ 0 for x ‰ 0, j “ ` “ 0 for x “ 0, and γk ă p´ 1 for infinitely
many k ď `.

Proof. See, e.g., [2].needs proper English
reference

In Theorem 4.1 especially the expression “γk ă p ´ 1 for infinitely many k”
means that, e.g., for p “ 10 the number 3.9 is represented as 4.0. Moreover,
note that all summands in (4.1) are positive, so for x “ 0 all γk need to be zero
and the condition j “ ` “ 0 only makes the representation unique.

The p–adic representation of a number given in a different number system can
be expressed using the following representation:

pxqp :“ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . ,

where the digits following the “.” are called the mantissa.

In our all day life we are usually using the decimal system, i.e., the representa-
tion for p “ 10.

x “ ˘
ÿ̀

k“´8

γk ¨ 10k “ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . “ pxq10

with digits γk P t0, . . . , 9u and base p “ 10.

The important number systems for computer arithmetic systems are:

binary system p “ 2, γk P t0, 1u.
As an example the decimal number x “ 1123 is translated into the binary
system as follows:

1123 “ 1024` 99 “ 210 ` 64` 35

“ 210 ` 26 ` 32` 3 “ 210 ` 26 ` 25 ` 21 ` 20,

4.1. Machine Numbers 79

i.e., p1123q2 “ 10001100011.

For the decimal number 1
10 , on the other hand, we have
ˆ

1

10

˙

2

“ 0.00011.

To see this we exploit p10q2 “ 1010 and perform the division manually in
the binary system:

1:1010 = 0.000110011...
10000
-1010

1100
-1010

10000
.
.
.

So 1
10 can not be written in a finite number of digits in the mantissa. Note

that this does not contradict the conditions of Theorem 4.1, since we still
have γk “ 0 for infinitely many k.

hexadecimal system p “ 16, γk P t0, 1, . . . , 15u.
The usual representation uses A “ 10, B “ 11, . . . , F “ 15, and
therefore the standard digits are t0, 1, . . . , 9, A,B, . . . , F u.

For example for the hexadecimal number x “ A1E it holds

pA1Eq10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation of a decimal number into the hexadecimal system is espe-
cially easy if we already know its binary representation. There the binary
digits can be clustered into groups of four digits for which the hexadecimal
representation is computed, as in

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Representation (4.1) is equivalent to

x “

#

p´1qj
ÿ̀

k“´8

γkp
k´`´1

+

looooooooooooooomooooooooooooooon

“:s

¨p``1 “:

#

p´1qj
8
ÿ

i“1

αi
pi

+

loooooooomoooooooon

“:a

pb, (4.2)

80 Chapter 4. Error Analysis and Machine Numbers

where αi :“ γ`´i`1, i “ 1, . . . and b :“ l ` 1. In (4.1) we have γ` “ 0 and thus
we immediately get 1

p ď |s| ă 1.

Definition 4.2: The representation of any x P R as in (4.2) is called nor-
malized floating point representation of x with respect to p. Here

a :“ p´1qj
8
ÿ

i“1

αi
pi

where αi P t0, 1, . . . , p´ 1u (4.3)

is called the significand and

b :“ p´1qs
m
ÿ

i“1

βip
m´i, for s P t0, 1u, βi P t0, 1, . . . , p´ 1u(4.4)

the exponent .
This floating point representation is called normalized since α1 ‰ 0.

In contrast to the representation above, on a computer we can only store finitely
many digits in the significand. In case αi “ 0 for all i ą t P N, x can be encoded
by saving j, s (for determining the signs of significand and exponent) and the
digits in the p-adic representation of significand and exponent. This motivates
the schematic representation

j α1 . . . αt s β1 . . . βm

Thus we require 1` t` 1`m memory positions.

Example 4.3: For p “ 10 the normalized floating point representation of the
real number 35 657.23 is given as

0.3565723 ¨ 105 “

ˆ

3

101
`

5

102
`

6

103
`

5

104
`

7

105
`

2

106
`

3

107

˙

¨ 105,

encoded as

0 3 5 6 5 7 2 3 0 5

j α1 α2 α3 α4 α5 α6 α7 s β1
.

In this example t “ 7 and m “ 1.

This now allows to define the representation of real numbers in sets of computer
representable numbers.

4.2. Rounding Errors and Error Propagation 81

Definition 4.4: For p P Nzt1u, emin, emax P Z, t P N we denote the set of
normalized floating point numbers of length t with respect to the base p
and range of exponents temin, emin ` 1, . . . , emaxu Ă Z by

Mpp, t, emin, emaxq :“ t ˘0.α1α2 . . . αt ¨ p
b |αi P t0, . . . , p´ 1u, α1 ‰ 0,

emin ď b ď emaxu Y t0u .

x PMpp, t, emin, emaxq is called computer number or machine number.

Example 4.5: The elements in Mp2, 3,´1, 3q are shown in the following num-
ber ray

´15 ´10 ´5 5 10 15

Note that machine numbers are not equally distributed.

4.2 Rounding Errors and Error Propagation

Real numbers need to be represented as machine numbers on a computer.
They can not always be represented exactly due to the fact that the significand
of a machine number has only t digits of accuracy, as we have for example
seen in the translation of 0.1 to binary representation. In cases where these t
digits are not sufficient, we need to either truncate the representation or round
to the closest machine number. Doing this we introduce rounding errors.

4.2.1 Rounding Rules

The rounding function

γ : RÑMpp, t, emin, emaxq

for x P Z :“ r´xmax,´xmins Y t0u Y rxmin, xmaxs is determined by

γpxq “ arg min
x̃PMpp,t,emin,emaxq

|x´ x̃|, (4.5)

where

xmin :“ min t|x| | x PMpp, t, emin, emaxqzt0uu ,

xmax :“ max t|x| | x PMpp, t, emin, emaxqu .

82 Chapter 4. Error Analysis and Machine Numbers

Let x “ ˘
8
ř

i“1

αi

pi
¨ pb P Z with α1 ‰ 0. Then we have

γpxq “

$

’

’

&

’

’

%

˘
t
ř

i“1

αi

pi
¨ pb, αt`1 ă

p
2 ,

˘

ˆ

t
ř

i“1

αi

pi
` 1

pt

˙

¨ pb, αt`1 ą
p
2 .

The special case of αt`1 “
p
2 is not uniquely determined via (4.5). There, we

have the, e.g., following options:

Round up: Handle γpxq as if αt`1 ą
p
2 .

“Round–to–even”: Rounds towards the closest machine number with an even
αt.

For example for p “ 2, t “ 3 :

γp0.1001q “ 0.100 (round down)

γp0.1011q “ 0.110 (round up)

The advantage as compared to rounding up is a (statistically) more equal
distribution of rounding errors (they are partially negating each other).
Positive effects have among others been observed in astro-physical long
term computations as, e.g., in the investigation of the “Big Bang” theory.need reference

Overflows and Underflows It still remains to specify γpxq for x R Z. Here
we have to distinguish two cases:

|x| ă xmin: This case is called underflow. There are two ways to deal with
this exception. On the one hand, we can round towards the closest valid
machine number:

γpxq “

"

0 or rather
sign pxqxmin

On the other hand, we can use the so called gradual underflow. There we
use representable but non-normalized floating point numbers, i.e., float-
ing point numbers allowing α1 “ 0 to circumvent the underflow. The
smallest number representable in this way is 0. 0 . . . 01

loomoon

t

¨pemin . In this case

the same rounding rules as for x P Z are used.

|x| ą xmax: This case is called overflow . Here we have the two variants

γpxq “

"

sign pxqxmax

sign pxq ¨ 8.

The latter of which is used in the IEEE 754 standard for floating point
arithmetic (see also p. 90ff.).

4.2. Rounding Errors and Error Propagation 83

After having defined a proper rounding function we have to ask ourselves how
large the rounding errors can actually get. Here and in the following, for an
exact quantity x and its machine number approximation x̃, we distinguish the
absolute error

}x´ x̃}

and the relative error
}x´ x̃}

}x}
.

Therein } . } for a scalar entity in general means the absolute value, whereas
otherwise it stands for a suitable norm.

For the rounding errors in Mpp, t, emin, emaxq we have the following important
results:

Lemma 4.6: The absolute rounding error fulfills

|γpxq ´ x| ď
p´t

2
¨ pb @x P Z.

Proof. Let x :“ ˘
8
ř

i“1

αi

pi
pb and define

y1 :“ sign pxq
t
ÿ

i“1

αi
pi

pb (round down)

y2 :“ sign pxq

˜

t
ÿ

i“1

αi
pi
`

1

pt

¸

pb (round up)

Then apparently we have γpxq P ty1, y2u and

x P

#

ry1, y2s, x ą 0,

ry2, y1s, x ă 0.

Thus, since |x´ aj | ď 1
2 |a2 ´ a1| either for j “ 1 or for j “ 2 if x P ra1, a2s, we

find

|γpxq ´ x| ď
1

2
|y2 ´ y1| “

1

2

pb

pt
.

Lemma 4.7: The relative rounding error fulfills

|γpxq ´ x|

|x|
ă

1

2
p1´t @x P Zzt0u.

84 Chapter 4. Error Analysis and Machine Numbers

Proof. The significand of x fulfills |a| ě 1
p . Thus we have |x| ě 1

p ¨ p
b. From

Lemma 4.6 we, therefore, find

|γpxq ´ x|

|x|
ď

1

pb´1

1

2
pb´t “

1

2
p1´t.

From |x| ą 1
pp
b we have strict inequality unless x “ ˘1

p ¨ p
b. In the latter case,

however, x PMpp, t, emin, emaxq and so γpxq “ x, i.e., |γpxq´x|
|x| “ 0.

Definition 4.8: The quantity u :“ 1
2p

1´t is called “unit round off”.

The unit round off describes the relative error that can result from rounding
operations. It should not be mistaken for the machine epsilon eps.

eps :“ mint|x̃´ 1| | x̃ PMpp, t, emin, emaxq, x̃ ą 1u “ p1´t “ 2u,

determines the distance of 1 to the next larger machine number.

Remark 4.9: To be able to talk about the accuracy of an approximate
quantity we have to estimate the relative error.
For example

x “ 25.317, x̃ “ 25.313 (i.e., x̃ has 4 correct digits)

ùñ
|x´ x̃|

|x|
“

0.004

25.317
« 0.16 ¨ 10´3.

It is an easy argumentation to find that the number of correct digits coin-
cides with the negative exponent of the relative error p˘1q.
The absolute error does not carry any information about the accuracy!
For example for y “ 0.001, ỹ “ 0.002: |y ´ ỹ| “ 10´3 is rather small, but
ỹ has no correct digit as we can see from the relative error

|y ´ ỹ|

|y|
“ 1.

4.2. Rounding Errors and Error Propagation 85

Remark 4.10: In C99 a set of commands and settings for influencing the
computation with floating point numbers have been added to the C stan-
darda. Especially the behavior of the rounding function γp.q can be influ-
enced using the functions

int fegetround(void);
int fesetround(int round);

Available rounding models, i.e., values for the FE_DOWNWARD,
FE_UPWARD, FE_TONEAREST (default), FE_TOWARDZERO

a see, e.g., http://openbook.galileocomputing.de/c_von_a_bis_z/
030_c_anhang_b_005.htm for a list

4.2.2 Computer Arithmetic

We have introduced the relative and absolute rounding errors in the previ-
ous section and proved basic results regarding their sizes in Lemma 4.6 and
Lemma 4.7. How do these rounding errors evolve under elementary arithmetic
operations`, ´, ¨, {? This question is investigated in the following.

As a direct consequence of Lemma 4.7 it follows

γpxq “ xp1` εq, |ε| ď u @x P Z.

This is the error resulting from simply storing the number in the computers
memory. For example for p “ 2 we have seen before that p0.1q2 “ 0.00011. In
normalized representation this is 0.110011 ¨ 2´3. Now rounding to six digitspt “
6q we get

pγp0.1qq2 “ 0.110011 ¨ 2´3,

which means that in decimal representation we have γp0.1q “ 51
512 which equals

the decimal fraction 0.099609375.

Computers are only equipped with a so called pseudo arithmetic, since we can
not expect in general that x4y for 4 P t`,´, ¨, {uand machine numbers x, y P
Mpp, t, emin, emaxq will also be in Mpp, t, emin, emaxq. This becomes obvious in
the following example.

Example 4.11: Both x “ 0.12 and y “ 0.34 are from the set of machine num-
bers Mp10, 2, emin, emaxq, but for their product we easily see

x ¨ y “ 0.0408 “ 0.408 ¨ 10´1 RMp10, 2, emin, emaxq.

http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm
http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm

86 Chapter 4. Error Analysis and Machine Numbers

To put the result into Mp10, 2, emin, emaxq we thus need to round. Denoting
the result of a floating point operation, i.e., the result of a calculation x4y in a
system of machine numbers by xo y one usually determines the result as in

xo y “ γpx4yq, 4 P t`,´, ¨, {u. (4.6)

That means the operation is performed exact first and rounded to a valid ma-
chine number afterwards. Doing this we achieve the

Standard Model of the Floating Point Arithmetic: For all floating point num-
bers x, y P Mpp, t, emin, emaxq and any arithmetic operation 4 P t`,´, ¨, {u it
holds:

xo y “ px4yqp1` δq, for a |δ| ď u. (4.7)

In the following we will always assume the validity of (4.7) and that the same
also holds for

?
x, i.e., γp

?
xq “

?
xp1` δq for a δ P R with |δ| ď u.

Remark 4.12: Note that the standard model is not valid on all comput-
ers or electronic devices. However, on devices fulfilling the IEEE 754
standard, which are for example most modern CPUs, it is true.

For the realization of the standard model the storage of the intermediate results
(before rounding) requires three extra digits in the significand. This can be
implemented in various manners in the computational units of the CPU. More
details regarding this issue can be found in [3].

4.2.3 Error Propagation

The main question we are treating next is how the errors we found in the above
are propagating through a more complex computation. Since the standard
model for the floating point arithmetic (4.7) only holds for machine numbers,
for an arbitrary calculation for an elementary operation x4y already up to three
types of errors play a role. Often in a computation a single elementary opera-
tion is not enough to get the result. Thus the rounding errors accumulate in the
course of the computation.

Let us first treat addition and subtraction.

Addition: Let x, y P R, sign pxq “ sign pyq and

x̃ :“ γpxq “ xp1` δxq, |δx| ď u,

ỹ :“ γpyq “ yp1` δyq, |δy| ď u.

4.2. Rounding Errors and Error Propagation 87

Then we have

x̃‘ ỹ “ px̃` ỹqp1` δx`yq pwhere |δx`y| ď uq

“ pxp1` δxq ` yp1` δyqqp1` δx`yq

“ ppx` yq ` pxδx ` yδyqqp1` δx`yq

and

|x̃‘ ỹ ´ px` yq| “|px` yqδx`y ` pxδx ` yδyqp1` δx`yq|

ď|x` y|u` p|x| ¨ u` |y| ¨ uqp1` uq

signpxq“signpyq
“ |x` y|u` |x` y|up1` uq

“|x` y|p2u` u2q.

Thus we find
|px̃‘ ỹq ´ px` yq|

|x` y|
ď 2u` u2.

The relative error is (up to a negligible higher order term u2) at most twice as
large as the relative representation errors of the summands x and y. Accord-
ingly many additions may lead to a large accumulated error.

Subtraction: Corresponds to the addition of x, y as above, but with sign pxq “
sign pyq. Instead of adding two numbers with different signs here we treat the
subtraction of two numbers with a common sign.

Let x, y, or x̃, ỹ as above respectively. Without loss of generality we assume
x ‰ y. Since we assume validity of (4.7) we have

x̃a ỹ “px̃´ ỹqp1` δx´yq pwhere |δx´y| ď uq

“ppx´ yq ` pxδx ´ yδyqqp1` δx´yq

It follows

|px̃a ỹq ´ px´ yq| “ |px´ yqδx´y ` pxδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` pxδx ´ yδx ` yδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` px´ yqδx ` ypδx ´ δyq

` px´ yqδxδx´y ` ypδx ´ δyqδx´y|

ď 2|x´ y| ¨ u` 2|y|u` |x´ y| ¨ u2 ` 2|y|u2

and
|px̃a ỹq ´ px´ yq|

|x´ y|
ď

ˆ

2|y|

|x´ y|
` 2

˙

u`

ˆ

2|y|

|x´ y|
` 1

˙

u2.

88 Chapter 4. Error Analysis and Machine Numbers

Thus for x « y we have to expect an especially large relative error. This effect
is called cancellation.

To avoid cancellation it is necessary to try and rewrite the expression in a way
that avoids the subtraction of two almost equal numbers.

Example 4.13: Let

p “ 10, t “ 10, x “ 1.2 ¨ 10´5 “ 0.12 ¨ 10´4

and

y “ fpxq “
1´ cospxq

x2
.

The evaluation of f in x gives

cospxq “ 0.9999999999|2800 ¨ 100 “: c « 1
ùñ c̃ :“ γpcq “ 0.9999999999
ùñ ỹ “ p1a c̃q m pxd xq “ 10´10 m p0.144 ¨ 10´9q “ 0.6944444444.

The correct result rounded to ten digits of accuracy, however, is

γpfpxqq “ 0.4999997300.

The reason for the wrong result is the cancellation in the evaluation of 1ac̃. The
result here has only one correct digit. The information about all the other digits
got lost (was canceled) while rounding c. Then the subtraction is performed
exact, but the error 1a c̃ is amplified by a factor of 1010. The second to tenth
digits in the intermediate result are not carrying any information about correct
values.

1a c̃ “ 0.1000000000 ¨ 10´9

Ò information about these values is lost

Using the alternative formulation

fpxq “ 1
2

´

sinpx
2
q

x
2

¯2
,

which uses the identity cosx “ 1 ´ 2 sin2
`

x
2

˘

, one gets the much better result
ỹ “ 0.5.

Multiplication: We are now investigating the multiplication of x, y, x̃, ỹ as
above in a similar manner. Note that here the sign does not play a role. With a

4.2. Rounding Errors and Error Propagation 89

|δx¨y| ď u we have

x̃d ỹ “ x̃ỹp1` δx¨yq “ xp1` δxqyp1` δyqp1` δx¨yq

“ xyp1` δxqp1` δyqp1` δx¨yq “ xy ` xypδx ` δy ` δx¨yq `Opu2q.

So it immediately follows

|x̃d ỹ ´ x ¨ y|

|x ¨ y|
ď 3u`Opu2q.

We thus find that the multiplication behaves similar to the addition. The case of
an actual division is again following analogously. Note that it should be avoided
to divide by a very small value, since this might amplify rounding errors accu-
mulated and present in the enumerator analogous to the cancellation in Exam-
ple 4.13. However, in contrast to the case of cancellation in the subtraction,
here only the absolute error is affected, but not the relative.

The most important difference of computer arithmetic as compared to exact
arithmetic is the following:

Computer arithmetic is neither associative nor distributive.

That means in general we have

pxo yq o z ‰ xo py o zq

xd py ‘ zq ‰ pxd yq ‘ pxd zq, etc.

Example 4.14: Given Mp10, 5, emin, emaxq and a “ 4.2832, b “ 4.2821, c “
5.7632, we want to evaluate the expression d :“ pa´ bq ¨ c. In exact calculation
we find:

d “ p0.0011q ¨ 5.7632 “ 0.00633952 ùñ γpdq “ 0.63395 ¨ 10´2.

The relative error is
|d´ γpdq|

|d|
« 0.3 ¨ 10´6.

In pseudo arithmetic using Mp10, 5, emin, emaxq we have two options:

(i) paa bq d c “ p0.11 ¨ 10´2q d p0.57632 ¨ 101q “ 0.63395 ¨ 10´2 “ γpdq,
which gives the correct rounded result.

90 Chapter 4. Error Analysis and Machine Numbers

single: (32 bit)
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
0 1 8 9 31

double: (64 bit)
S EEEEEEEEEEE MM
0 1 11 12 63

Figure 4.1: Storage patterns for single and double variables.

(ii) pad cq a pbd cq “: ea f “: g

e “ ad c “ γp0.24684932824 ¨ 102q “ 0.24685 ¨ 102

f “ bd c “ γp0.2467859872 ¨ 102q “ 0.24679 ¨ 102

ùñ g “ ea f “ γp0.00006 ¨ 102q “ 0.6 ¨ 10´2

ùñ
|d´ g|

|d|
« 0.54,

So we do not even get a single correct digit.

The problem in the second approach is the cancellation in the subtraction of
the two almost equal numbers e and f . During their computation we already
performed rounding, which erased the information about the truncated digits.
This information would have had to take the digits 2–5 in g to get to the correct
result.

In conclusion we recognize that to avoid cancellation one needs to carefully
work with the associativity and distributivity.

4.2.4 The IEEE Standard 754

Manufacturers usually standardize the usage of computer arithmetic to make
computation results comparable. To this end in 1985 the IEEE1 fixed the stan-
dard 754 that is today used by almost all computer manufacturers.

data type p t emin emax u xmin xmax

single 2 23` 1 ´125 128 « 5.96 ¨ 10´8 « 10´38 « 1038

double 2 52` 1 ´1021 1024 « 1.11 ¨ 10´16 « 10´308 « 10308

Table 4.1: IEEE standard 754, data types.

1The Institute of Electrical and Electronics Engineers.

4.2. Rounding Errors and Error Propagation 91

The standard prescribes that M should be closed under the operations `, ´, ¨,
{, ? . That means any of these operations has to lead to a result in M. Further
contributions of the standard are:

• rounding is performed as “round-to-even”.

• the standard model for floating point arithmetic holds, i.e., the result of an
elementary operation is behaving as if the exact result had been rounded.

• overflows result in γpxq “ ˘8.

• underflows are treated using subnormal numbers as described with the
gradual underflow above.

• two data types have been fixed: double (8 byte) and single (4 byte),
both using p “ 2.

• Since α1 “ 1 has to hold due to normalization, it is not stored, which
gives an extra bit for the significand.

• The single data type has the following properties; for double the cor-
responding values in Table 4.1 have to be inserted.

– An exponent E “ 255 is used to encode the elements ˘8 or NaN
(not-a-number) that are necessary to ensure closedness of M.

– The exponent b of the machine number is derived from E via b “
E ´ 127, which saves another bit for the sign of the exponent.

– E “ 0 is used to encode subnormal numbers.

Summarizing we get the representation

x “ p´1qS ¨ p1.γ2 . . . γ24q ¨ p
E´127.

that slightly differs from Definition 4.4. For the minimal value E “ 1 it
follows

xmin “ 1. 0 . . . 0
loomoon

23

¨21´127 “ 0.1 ¨ 2´125 ùñ emin “ ´125.

Further we get

emax “ 1` p254´ 127q “ 128.

Some examples for numbers in the system of single numbers are:

92 Chapter 4. Error Analysis and Machine Numbers

Flag Example Result

invalid 0{0, 0 ¨ 8,
?
´1,

8{8, `8` p´8q
NaN (“not a number”)

overflow xmax ˚ xmax
˘8

in MATLAB: Inf
division by zero x{0 for x “ 0 ˘8

underflow xmin{p
s, 1 ă s ă t subnormal number

inexact rdpx ˝ yq “ x ˝ y correctly rounded result

Table 4.2: IEEE Standard 754, Exception Handling.

0 11111111 00000000000000000000000 = `8

1 11111111 00000000000000000000000 = ´8

0 11111111 00000100000000000000000 = NaN

1 11111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = `1.0 ˚ 2128´127 “ 2

0 10000001 10100000000000000000000 = `1.101 ˚ 2129´127 “ 6.5

1 10000001 10100000000000000000000 = ´1.101 ˚ 2129´127 “ ´6.5

0 00000001 00000000000000000000000 = `1.0 ˚ 21´127 “ 2´126 “ xmin

0 00000000 10000000000000000000000 = `0.1 ˚ 2´126 “ 2´127

0 00000000 00000000000000000000001 = `0.0 . . . 01 ˚ 2´126 “ 2´149

= smallest representable number

• The value of a variable can be tested for NaN since this is the only “num-
ber” for which x ‰ x is true.

• Whenever an incorrect result or a number that is not covered by Defini-
tion 4.4 is encountered this is causing an exception. Then a flag is raised,
which can be checked by the toolchain to create the appropriate warnings
according to Table 4.2.

4.3 Error Analysis

This section is dedicated to the derivation of a general framework for the ap-
praisal of the quality of numerically generated results of computations. The
computed result can differ from the real result due to a number of errors from
different categories:

data errors The data used in the computations are not known exactly, e.g.,
due to measurement inaccuracies.

rounding errors Errors resulting from the necessity to work with numbers from
Mpp, t, emin, emaxq instead of R and the evaluation of expressions with a

4.3. Error Analysis 93

finite significand. The propagation and accumulation of these kinds of
errors was already discussed in the above.

methodological errors Methodological errors depend on different factors. On
the one hand, the accuracy of the model underlying the computation
plays a role. On the other hand, also the solution method applied to
solve or evaluate the model has a crucial contribution to this type of error.

The methodological error in any case strictly depends on the task at hand and
the way it is solved. In the following we will therefore restrict to the impact of
data and rounding errors on the computed result.

To this end we will mainly employ the two concepts of conditioning (or condition
numbers) and stability.

Conditioning/Condition Number The concept of conditioning or condition
numbers is a property of the mathematical problem only. It is independent of
the actual algorithm or method used for solving the problem. Thus it provides
the ability to derive statements about the maximum possible quality of the nu-
merical results. Consider the following example. We want to compute the root
of a linear affine function, i.e., the intersection with the x-axis. The steeper the
function is the better, i.e., the more accurate, we can derive the x value of the
root. This is due to the fact that small disturbances in the function value for a
steep function lead to even smaller disturbances of the corresponding x value.
The problem is said to be well conditioned in this case. On the other hand, if
the function is very flat already small disturbances in the y values lead to large
disturbances in the position of the computed root. This corresponds to a very
bad conditioning of the problem. We thus see that the conditioning may depend
on both the problem and the data.

To put this in more mathematical terms we consider the problem of evaluating
y “ fpxq, where the function f : D Ñ V maps the data x P D to the result
y P V and y ` ∆y “ fpx ` ∆xq is the result for the disturbed data x ` ∆x.
Then the relative error for optimal result to be expected is bounded as in:

}∆y}

}y}
ď cpf, xq ¨

}∆x}

}x}
,

where cpf, xq is called the condition number for the problem of evaluation fpxq.

Stability The corresponding property for the algorithm is called stability. It
main purpose is to guarantee that the algorithm at least gives

}∆y}

}y}
Æ cpf, xq ¨

}∆x}

}x}
.

94 Chapter 4. Error Analysis and Machine Numbers

That means we get as close to the optimal result as possible. Such an algorithm
is then called numerically stable (We will give a precise definition at a later
point). A bad algorithm would give a larger error. It is then called numerically
unstable.

In the following we will use the notation from above:

• x P D are the data for the problem,

• f : D Ñ V is the mathematical problem mapping data to values,

• and y “ fpxq P V is the exact result, whereas

• ŷ is the numerically computed result.

Forward Error Analysis The first and obvious question that arises is how far
apart y and ŷ are, i.e.,

}y ´ ŷ} “?,
}y ´ ŷ}

}y}
“?

This question is answered by a forward error analysis. Here one proceeds
through the computation step by step analyzing the propagation and accumu-
lation of rounding errors by means of the methods discussed in Section 4.2.
The basic procedure is best explained using a small example.

Example 4.15: Let the mathematical problem be that of solving the simple
quadratic equation y2 ´ 2ay ` b “ 0, for given a, b P Mpp, t, emin, emaxq. The
two solutions are known to be

y1 “ a´
a

a2 ´ b, and y2 “ a`
a

a2 ´ b.

We concentrate on the computation of y1. Exactly following the solution formula
above is giving the below algorithm in exact and finite arithmetic (following the
standard model for floating point arithmetic):

exact computation numerical realization
1. c :“ a ¨ a ùñ ĉ “ a2p1` δ1q

2. d :“ c´ b ùñ d̂ “ pĉ´ bqp1` δ2q

3. e :“
?
d ùñ ê “

a

d̂p1` δ3q

4. y1 :“ a´ e ùñ ŷ1 “ pa´ êqp1` δ4q

Here we have |δi| ď u, i “ 1, . . . , 4 due to the standard model assumption.

4.3. Error Analysis 95

Now inserting all computed quantities we find

ŷ1 “

!

a´
a

pa2p1` δ1q ´ bqp1` δ2qp1` δ3q

)

p1` δ4q

“ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2p1` δ4q

2
looooooooooooooooooooomooooooooooooooooooooon

“ 1` δ1 ` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε1, |ε1| ď 6u`Opu2q

´b p1` δ2qp1` δ3q
2p1` δ4q

2
looooooooooooooomooooooooooooooon

1` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε2, |ε2| ď 5u`Opu2q

)
1
2

“ a` aδ4 ´
a

pa2 ´ bq ` pa2ε1 ´ bε2q

“ a` aδ4 ´
a

a2 ´ b´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q `Opu2q

The last step exploits that using a Taylor expansion of gpxq :“
?
x at

x`∆x “ a2 ´ b
loomoon

“:x

` a2ε1 ´ bε2
loooomoooon

“:∆x

,

we get

gpx`∆xq “
?
x`∆x “

?
x`

1

2
?
x

∆x`Opp∆xq2q,

where |∆x| ď 6p|a2| ` |b|qu “ Opuq.

Using this knowledge for the numerical result it follows

ŷ1 “ y1 ´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q ` aδ4 `Opu2q

and thus for the relative error we get

|ŷ1 ´ y1|

|y1|
“

1

|a´
?
a2 ´ b|

¨
1

2
?
a2 ´ b

ˇ

ˇ

ˇ
a2ε1 ´ bε2 ` 2aδ4

a

a2 ´ b
ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

ďa2¨6u` |b|¨5u
loomoon

ă|b|¨6u

`|a|
?
a2´b¨2u

`Opu2q

ď 3
a2 ` |b| ` |a|

?
a2 ´ b

?
a2 ´ b ¨ |a´

?
a2 ´ b|

u`Opu2q

The forward error may be large if the denominator is small. This can happen
in two cases that can both be traced back to cancellation happening in the
computation of y1.

piq a2 « b ùñ cancellation in 2. d :“ a2 ´ b,
piiq |b| ! a2 ^ a ą 0 ùñ cancellation in 4. y1 “ a´ e.

96 Chapter 4. Error Analysis and Machine Numbers

This example shows again why cancellation can lead to large errors in the over-
all computation. To avoid this effect we have to use adapted formulas. (See
exercises)

Backward Error Analysis The second and less obvious question that we
want to investigate is the following. Given the result of the computation ŷ –
can we express ŷ as the exact solution of a mathematical problem for slightly
disturbed data? That means:

Does there exist a ∆x, such that ŷ “ fpx`∆xq?

Asking this question makes sense, since for inaccurate data x we only know the
correct value up to, e.g., measurement errors. If the analysis for ŷ “ fpx`∆xq
now provides a ∆x that is of the magnitude of the data errors (i.e., measure-
ment inaccuracies), then the computation result is as good as we can expect.
An answer to the above question is derived by a so called backward error anal-
ysis.

Definition 4.16: η :“ inft}∆x}; ŷ “ fpx `∆xqu is the (absolute) back-
ward error of ŷ, ηrel :“ η{}x} is called the relative backward error, where
} . } is a suitable norm in the set of data D.

The relation of forward and backward errors is best described by the diagram
in Figure 4.2.

D V

x ‚

x`∆x ‚

‚ y

‚ y `∆y

f

f

backward
error forward

error

numerical
computation

Figure 4.2: Forward/Backward Error Relations in Numerical Computations

4.3. Error Analysis 97

The concepts of forward and backward error now enable us to give a precise
definition of the corresponding notions of numerical stability as introduced in
the beginning of this section.

Definition 4.17: If for any x P D a method for computing y “ fpxq pro-
duces a ŷ “ fpx `∆xq for a small relative backward error ∆x

x , then the
method is said to be (numerically) backward stable. The concrete defini-
tion of small depends on the problem, but might, e.g., mean ∆x is of the
size of the unavoidable data errors.
On the other hand, a method is called (numerically) forward stable if it pro-
duces a relative forward error ∆y

y of the same magnitude that a backward
stable method would.

Remark 4.18: Note that a forward stable method does not necessarily
have to be backward stable to fulfill the definition. Also the definition
is mainly expressing the rule of thumbs that a forward stable algorithm
produces an error that is approximately proportional to the data error via
the condition number. Even if the backward error of the computed solution
is small, this error can be amplified by a factor as large as the condition
number when passing to the forward error.
We always have:

backward stable ñ forward stable
The opposite implication does, however, in general not hold.

The verification of backward stability is performed by a backward error analysis.
The backward error analysis treats the computed result ŷ as that of the exact
computation for disturbed data. Afterward the disturbed data and the original
data are compared. The approach is introduced by revisiting the Example 4.15
and performing the analog procedure for the backward analysis.

Example 4.19 (Example 4.15 continued): Consider y1 “ a ´
?
a2 ´ b and ŷ1

the corresponding solution of the quadratic equation for disturbed data a and b

y2 ´ 2pa`∆aqy ` pb`∆bq “ 0

To this end we require an expression of the form

ŷ1 “ pa`∆aq ´
a

pa`∆aq2 ´ pb`∆bq.

98 Chapter 4. Error Analysis and Machine Numbers

As for the forward error analysis in Example 4.15 we get

ŷ1 “ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2

looooooooooooooomooooooooooooooon

“1`δ1`δ2`2δ3`Opu2q

“:1`ε1, |ε1|ď4u`Opu2q

p1` δ4q
2 ´ b p1` δ1qp1` δ3q

2p1` δ4q
2

looooooooooooooomooooooooooooooon

“:1`ε2, |ε2|ď5u`Opu2q

)
1
2

“ a` aδ4 ´

!

pa` aδ4q
2 ´ b p 1` ε2 ´

a2

b
ε1p1` δ4q

2

looooooooooooomooooooooooooon

“1`ε2´
a2

b
ε1`Opu2q

“:1`δb, |δb|ď5u` 4a2

|b|
u`Opu2q

q

)
1
2

“ pa` aδ4q ´
a

pa` aδ4q
2 ´ pb` bδbq

Now defining ∆a :“ aδ4, ∆b :“ bδb we can estimate the relative backward
error as

|ηa|

|a|
ď

|∆a|

|a|
ď |δ4| ď u,

|ηb|

|b|
ď |δb| ď

ˆ

5`
4a2

|b|

˙

looooomooooon

amplification factor

u`Opu2q.

Note that the relative error is the infimum over all possible errors ∆x “ ∆ ra, bs.
A small backward error, as we would expect it from a numerically backward
stable algorithm, is derived if a2 « |b|. The error may get large in case a2 " b.

Remark 4.20: The separate consideration of the backward errors in a and
b is called component-wise error analysis. For a norm-wise consideration
one tries to estimate 1

}rab s}2
η.

Disturbance Analysis Knowing the limitations on the range of small expected
errors, we need to find out next, whether the problematic error amplification is
problem immanent or caused by the specific algorithmic approach we chose for
solving the problem. The question thus is, if we can reformulate the algorithm
to avoid the problem.

This question is answered employing a disturbance analysis that is used to find
the condition number of the problem. We will introduce the procedure following
the steps for a model example again.

4.3. Error Analysis 99

To this end let

f : D ÑW, f P C2pDq, y “ fpxq, ŷ “ fpx`∆xq.

The question that we are going to answer now is in what sense the disturbance
of the data is transported to the result. Geometrically it is easy to see that the
value of ŷ is deviating from y the more, the larger the slope of the tangent of
f in x, i.e., |f 1pxq| is. In the general case we use the Taylor expansion of f
around x to estimate the deviation.

ŷ ´ y “ fpx`∆xq ´ fpxq

“ fpxq ` f 1pxq∆x`Opp∆xq2q ´ fpxq
“ f 1pxq ¨∆x`Opp∆xq2q « f 1pxq ¨∆x.

This approximation means that (neglecting higher order terms) the factor |f 1pxq|
amplifies the data errors in the result ŷ.

This treatment is called asymptotic or local disturbance analysis since it asymp-
totically gets better when successively adding higher order terms in the Taylor
series and the Taylor approximation is only valid in a local neighborhood of x.
The non local version is much more elaborate in the general case and we will
therefore mainly restrict to local treatment here to keep the complexity limited.

Let y “ 0 then we have

ŷ ´ y

y
“
f 1pxq∆x

y
`Opp∆xq2q

“
f 1pxq ¨ x

fpxq
¨

∆x

x
`Opp∆xq2q

and thus

|ŷ ´ y|

|y|
“

ˇ

ˇ

ˇ
f 1pxq ¨ x

ˇ

ˇ

ˇ

|fpxq|
loooomoooon

“:cpf,xq

¨
|∆x|

|x|
`Op|∆x|2q. (4.8)

Note that in (4.8) we are not applying the triangular inequality, but equality may
hold since Op|∆x|2q is allowed to be negative.

100 Chapter 4. Error Analysis and Machine Numbers

Definition 4.21: Let f P CpDq, x, x`∆x P D and fpx`∆xq “ ŷ. The
infimum of all numbers cabspf, xq for which

‖y ´ ŷ‖ ď cabspf, xq‖∆x‖` op‖∆x‖q

holds, is called (absolute) condition number of f in x.
Analogously the infimum of all numbers cpf, xq “ crelpf, xq, such that

‖y ´ ŷ‖
‖y‖

ď crelpf, xq
‖∆x‖
‖x‖

` o

ˆ

‖∆x‖
‖x‖

˙

is true , is denoted as (relative) condition number of f in x.

If f is differentiable then in analogy to (4.8)

cabspf, xq “ ‖f 1pxq‖, cpf, xq “ crelpf, xq “
‖x‖

‖fpxq‖
‖f 1pxq‖,

where f 1 is the Jacobi matrix of f in x and the norms have to be compatible.
That means for the Jacobian the operator norm induced by the vector norm
should be used.

Note that in (4.8) equality holds. For an inequality we would only have an upper
bound to the condition number. This would only then become the condition
number when it can be shown to be a sharp bound, i.e., when we can find at
least one x P D such that equality holds (minimum case), or for every δ ą 0
there exists an x P D such that for cpf, xq ¨ x ´ δ violates the bound (infimum
case).

Example 4.22 (Examples 4.15 4.19 continued): Let us now get back to the
example quadratic equation. Here we have x “

“

a
b

‰

P R2 and

fpa, bq “ a´
a

a2 ´ b, y “ fpa, bq, ŷ “ fpa`∆a, b`∆bq.

Further let us assume

max

"

|∆a|

|a|
,
|∆b|

|b|

*

ď ε ! 1.

For the evaluation of the Taylor expansion we require the partial derivatives of

4.3. Error Analysis 101

f with respect to the data a, b:

Bf

Ba
pa, bq “ 1´

1

2
pa2 ´ bq´

1
2 ¨ 2a “ 1´

a
?
a2 ´ b

“

?
a2 ´ b´ a
?
a2 ´ b

“ ´
fpa, bq
?
a2 ´ b

,

Bf

Bb
pa, bq “

1

2
¨

1
?
a2 ´ b

.

Further assuming that b ą 0 and a2 ą
?
b, we find

ŷ ´ y “ fpa, bq `
Bf

Ba
pa, bq ¨∆a`

Bf

Bb
pa, bq ¨∆b`Opε2q ´ fpa, bq

“ ´
fpa, bqa
?
a2 ´ b

¨
∆a

a
`

1

2
¨

b
?
a2 ´ b

∆b

b
`Opε2q

and thus

|ŷ ´ y|

|y|
ď

|a|
?
a2 ´ b

looomooon

“:capf,a,bq

¨
|∆a|

|a|
`

|b|

2
?
a2 ´ b|a´

?
a2 ´ b|

loooooooooooooomoooooooooooooon

“:cbpf,a,bq

¨
|∆b|

|b|
`Opε2q(4.9)

ď
1

?
a2 ´ b

ˆ

|a| `
|b|

2|a´
?
a2 ´ b|

˙

¨ ε`Opε2q. (4.10)

The inequality (4.9) here gives the component-wise disturbance analysis and
(4.10) the norm-wise one. A norm-wise consideration also follows from the
Cauchy-Schwarz-Inequality applied to

ŷ ´ y “ p∇fpa, bqqT
„

∆a
∆b

`Opε2q,

such that

|ŷ ´ y| ď ‖∇fpa, bq‖ ¨ ‖
„

∆a
∆b

‖`Opε2q.

Here we are only interested in the (usually more precise) component wise con-
sideration. The two cases of major interest are the ones that we have investi-
gated to lead to large errors in the forward analysis (Example 4.15) and back-
ward analysis (Example 4.19).

case 1: a2 « b For a2 Ñ b it follows capf, a, bq Ñ 8 and also cbpf, a, bq Ñ 8.

The problem thus is ill-conditioned, i.e., we can not expect “good” results.
A large forward error is “unavoidable”. The large forward errors in this
case are therefore caused by the bad conditioning of the problem. This
corresponds to the observation in Example 4.19 that the backward error
is still small in this case.

102 Chapter 4. Error Analysis and Machine Numbers

case 2: a2 " b In this case capf, a, bq « 1. The same can easily be seen for
cbpf, a, bq when considering b

a2
Ñ 0 ô b Ñ 0 and applying L’Hôpitals

rule. That means, we find that the problem is well conditioned in this
case. Having large forward and backward errors here, therefore, means
that our computation method is unstable.

Since our method for computing y1 in the above examples was performing well
in most cases and only misbehaved in the case where a2 " b, we also call the
method conditionally stable .

We conclude this section with a couple of facts that we should be aware of
when trying to evaluate the quality of numerical computations.

1. cpf, xq in general not only depends on the problem but also on the data
supplied to it. A mathematical problem thus is not generally good or bad,
but it depends on where in D we evaluate it.

2. Condition numbers can be categorized as follows:
cpf, xq « 1 ñ well conditioned.
cpf, xq " 1 ñ ill-conditioned.
cpf, xq ! 1 may be bad as well since we can easily “lose infor-

mation” due to the large possible backward errors.

3. An unstable algorithm can result from the decomposition of a (possi-
bly well conditioned) mathematical problem into a concatenation of sub-
tasks, i.e.,

fpxq “ pgk ˝ gk´1 ˝ . . . ˝ g1qpxq,

where one or more of the gj are ill-conditioned. For example, if the gj are
elementary operations and one of them is suffering from cancellation,
then the loss of information resulting from the cancellation may prevail
the remaining computation.

4. The main property of the connection between forward error, backward
error and condition number is sketched by the rough rule:

forward error « condition numberˆ backward error.

This again illustrates the implication

backward stability ñ forward stable

The following rule of thumb gives a good assessment of the numerically com-
puted results:

good conditioning & stable algorithm ùñ reliable result.
bad conditioning or unstable algorithm ùñ unsure result.

References and Further Reading 103

References and Further Reading

[1] PETER DEUFLHARD AND ANDREAS HOHMANN, Numerical analysis in mod-
ern scientific computing. An introduction., no. 43 in Texts in Applied Mathe-
matics., Springer, new york ed., 2003.

[2] OTTO FORSTER, Analysis 1. Differential and integral calculus of one vari-
able. (Analysis 1. Differential- und Integralrechnung einer Veränderlichen.)
10th revised and expanded ed., Wiesbaden: Vieweg+Teubner, 2011.

[3] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM Pub-
lications, Philadelphia, PA, second ed., 2002.

[4] M. L. OVERTON, Numerical Computing with IEEE Floating Point Arithmetic,
SIAM, Apr. 2001.

104 Chapter 4. Error Analysis and Machine Numbers

640K is more memory than anyone will ever need on a computer.

among the top 5 myths about
BILL GATES

CHAPTER 5

Memory Architecture and Memory Management

Contents
5.1 Virtual Memory Concept 107

5.1.1 Paging . 108
5.1.2 Memory Related Error Signals 108

5.2 Volatile memory . 109
5.2.1 Registers . 109
5.2.2 Cache . 109
5.2.3 Main Memory . 110

5.3 Non-Volatile Storage . 111
5.3.1 Local Storage Media 111
5.3.2 Local Network . 111
5.3.3 Cloud and Remote Network Services 112

5.4 Non Uniform Memory Access 112
5.4.1 Cache Coherence 112
5.4.2 Memory Consistency 113

References and Further Reading 113

Several different layers of memory exist in a modern computer environment.
Each of the layers in this hierarchy has a certain relevance in and special
properties for scientific computing tasks. This chapter is dedicated to a brief
introduction of the single layers with their most important properties. The pre-
sentation of these properties will help understand the storage structures and
blocking strategies introduced in Chapter 6.

105

106 Chapter 5. Memory Architecture and Memory Management

• L3 Cache
• L2 Cache
• L1 Cache
• Registers

• Main Random Access Memory
(RAM)

• Network Storage
• Local Storage

– Tape
– Hard Disk Drive (HDD)
– Solid State Disk (SSD)

• Cloud

fast

medium

slow and
very slow

Figure 5.1: Memory Classes in Scientific Computing

Hardware sided the relevant memory comes mainly in four types

• Static Random Access Memory (SRAM)

• Dynamic Random Access Memory (DRAM)

• Flash Electrically Erasable Programmable Read-Only Memory (Flash-
EEPROM)

• Magnetic surfaces

Here the first two types are so called volatile memory devices which only hold
the information as long as they are supplied with electric power. The other
two are designed to preserve their content during phases where the power is
switched of. Naturally the secure storage of data (with respect to power-off)
comes at a cost. The cost we have to pay is the increased time for especially
write accesses. The magnetic storage types here are the slowest. This is
especially due to the mechanic subsystems involved in the process. On a hard
disk drive the magnetic read write head has to be positioned at the right place
prior to operation. This equivalently has to be done with the tapes in a tape
drive. Both types are, therefore, mainly usable for long term storage of final
results. Hard disks are to some extent also useful during computations, when
the main memory is running short. Special techniques often called cache to
disk or double buffering are used to store data portions that will not be used
for a longer time in the computation to the local storage and so free up main
memory for intermediate computations.

Nevertheless in basic operation the static and dynamic random access memory
types are the more important ones. Both are electronic memory devices con-
sisting of integrated circuits (ICs) as basic realizations. Their main difference
is that the SRAM circuits are transistor based and the DRAMs are capacitor

5.1. Virtual Memory Concept 107

based. It is now easy to imagine that SRAMs can switch essentially instanta-
neous, whereas DRAMs have to wait for the capacitors to charge completely
and require periodic refresh signals to prevent the capacitors from discharg-
ing. On the other hand, DRAMS are producible in higher density at lower costs
and have a smaller energy consumption. The main properties are compared in
Table 5.1.

Feature SRAM DRAM

Storage Circuit Base Transistor Capacitor
Speed Same as CPU Slower than CPU
Latency Low High
Density Low High
Power Consumption High Low
Cost High Low

Table 5.1: Comparison of Volatile Memory Types

Due to the low cost the largest part of a modern computers memory, namely
the main memory is made out of DRAM chips. The faster and more expensive
SRAM chips are only used on the part of the memory that is closest to the
actual processing units on the CPU. That means the Cache (see Figure 5.1) is
made out of SRAMs, which is one reason why it is usually very limited.

The main concerns in this chapter will be:

• memory organization (pages, page sizes),

• swapping,

• memory related error signals,

• memory transfer and alignment,

• virtual memory concept.

5.1 Virtual Memory Concept

Definition 5.1 (Virtual memory and memory pages): Virtual memory is
an operating system abstraction layer, that allows to access the various
memory layers as one large device. It usually consists of memory pages,
the smallest accessible units of memory (normally ě 4 kBytes).

Virtual memory covers:

108 Chapter 5. Memory Architecture and Memory Management

• main memory

• cache (via CPU memory management unit (MMU))

• memory mapped files

• SWAP (usually specially structured part of disks)

Data relocation relies on hardware support, mainly implemented in the memory
management unit of the CPU.

Definition 5.2 (swapping and double buffering): Relocation of potentially
unused data to the local storage by the operating system is called swap-
ping. Moving data to the local storage may cause large overhead in wait-
ing time. Any technique that moves that data at strategically better times
to avoid swapping is called double buffering.

5.1.1 Paging

• paged virtual memory is the most common implementation.

• page size ě 4 kBytes

• generally data can be located anywhere in a page.

• some operations expect the data to be located at the start of a memory
page.
Ñ page aligned memory
Ñ increases memory fragmentation

• page locked memory is a special type of memory that is not allowed to
get swapped

5.1.2 Memory Related Error Signals

The two important memory related signals are:

• SIGSEGV

– segmentation violation or segmentation fault signal

– usually leads to immediate abortions of the process

– caused by accessing memory segments in foreign address spaces.

• SIGBUS

5.2. Volatile memory 109

– Bus error signal

– abortion also immediate

– one common cause: Improper replacement of so-libs during execu-
tion

5.2 Volatile memory

5.2.1 Registers

• very small number

• small (<100 Bytes)

• MMX, SSE, AVX
looooooooomooooooooon

local vectorization

• we rely on compiler capabilities

5.2.2 Cache

• L1: « 16´ 32 kBytes, split for data and instructions, installed per core

• L2: now« 256 kBytes, installed per core, keeps frequently used data and
instructions of the current core.

• L3: same as L2 for a group of cores making a processor, connects to
RAM, « few MBytes per core.

transfer rates « few GB/s.
Cache is small, high speed memory made out of SRAM.

data lookup: Ñ L1 Ñ L2 Ñ L3 Ñ request data from main memory.

Successful lookup is called Cache Hit, and date is transferred to the registers
at maximum speed.

Cache Miss:

• data not available in cache

• needs to be loaded from main memory

• results in a miss penalty (Cache Latency)

Hit ratio: percentage of memory accesses satisfied by the cache (« 80´90%).

Missratio: 100%´ Hit ratio

110 Chapter 5. Memory Architecture and Memory Management

Arranged in so called cache lines of 4´ 64 Bytes.

The cache behaviour can be explored using valgrind’s cachegrind compo-
nent.

Cache line replacement: e.g.

• LRU - least recently used

• random

Rules of thumb:

cache transfer rate [Bytes/s] “ width (no. bits) ˆ clockrate ˆ data per clock / 8

The secret of a fast method is program locality, i.e., as many
operations as possible on data already residing in the caches.

5.2.3 Main Memory

made of DRAM mainly availabe in 3 types

• asynschronous
(FPRAM, EDORAM) (outdated)

• synchronous
(SDRAM, DDRSDRAM, DDR2SDRAM, DDR3SDRAM, DDR4SDRAM)

• Rambus
(RDRAM, XDRDRAM, XDR2DRAM)

Standard PCs today often use DDR3SDRAM.

Memory clock 100-2662
3 MHz

clock cycle times 33
4 -10 ns

I/O bus clock 400-10662
3 MHz

Data rate 800-21331
3 MT/s

Peak transfer rate 6.4-17.07 GB/s
CAS Latency 10-15 ns

The latest DDR4SDRAM chips feature double the manufacturing density, lower
operation voltage (1.2V compared to 1.5V) and higher operation frequencies
1600-3200MHz.

Columns Address Stroke Latency (CAS Latency): time for waiting between a
request of data and their availability at the memory pins.

Currently available sizes: 256 MB - 2 TB

5.3. Non-Volatile Storage 111

5.3 Non-Volatile Storage

5.3.1 Local Storage Media

Maximum possible transfer rates are bounded by the capabilities of the bus
interface

Type theoretic peak transfer release introduction
ATA 33/66/100 33/66/100 MB/s

SATA I 150 MB/s “̂ 0.15 GB/s
SATA II 300 MB/s “̂ 0.30 GB/s « 2005

SATA 3.0 600MB/s “̂ 0.60 GB/s 05.2009
SAS 300 MB/s - 12 GB/s current developments

Solid State Disk vs. Hard Disk Drive Both are connected to the same
host/bus interface.

Feature/Property SSD HDD
Noise + -

Reliabilty, Lifetime - +
Price – +

Capacity - +
Fragmentation + -

mechanical delay + -
practical transfer rates 100-600 MB/s ď 140 MB/s
random access time 0.1 ms 2.9-12 ms

Developments connecting the SSD to the PCIe bus get 2 GB/s.

Currently available sizes: ď6 TB (HDD).

RAID (Redundant Array of Independent Disks)

• can increase total storage capacity by grouping disks to larger logical
volumes

• can increase the performance and data safety by multiply/redundantly
storing the same data.

5.3.2 Local Network

High variance in speeds from 10-100 Mb/s on slow local network to 10-40 Gb/s
on high speed Infiniband server networks. 56/80/100 Gb/s have recently en-
tered the market. Higher speeds are in development.

112 Chapter 5. Memory Architecture and Memory Management

5.3.3 Cloud and Remote Network Services

Usually only useful for storing results for post processing. Involves additional
synchronization.

5.4 Non Uniform Memory Access

The non uniform memory access (NUMA) model is part of Flynn’s taxonomy of
parallel architectures which will be treated in more detail in term 2. The basic
characterization of a NUMA machine is the type of architecture that appears
when several independent processing units have the memory associated lo-
cally to single units. The entire shared memory of all processing units is the
sum of the local memories. Then parts of the memory can only be accessed
indirectly with the help of other processing units and additional latencies are
unavoidable.

Example 5.3: A system is equipped with 2 processors an 32 GB of main mem-
ory, which is separated into two blocks of 16 GB, one for each processor.

The MMUs each organize 16GB locally and need to access the other 16GB via
the other MMU.

A less obvious appearance of this phenomenon is on Multicore processors,
where each core has its own L1 and L2 Cache.

5.4.1 Cache Coherence

Example 5.4: Consider a dual Core system with L1/L2 caches for each proces-
sor core. The situation that a memory block is present in both caches and one
of the copies invalidates the other copy due to a write access, can appear.

The problem described in Example 5.4 is called cache coherence problem.
The task of keeping different copies of the data coherent, i.e., consistent with
respect to read access, is introducing additional management work that can
increase read access times.

A system that is investing this extra work is called ccNUMA (for cache coherent
NUMA) machines.

References and Further Reading 113

5.4.2 Memory Consistency

Cache Coherence ensures the same view to the global memory through the
local cache for each processing unit.

ñ At eacht point in time each processor performing a read access gets the
latest data.

The corresponding problem for write accesses describes the memory concis-
tency problem.

References and Further Reading

[1] Auto-vectorization with gcc 4.7. http://locklessinc.com/
articles/vectorize/. accessed November 19, 2012.

[2] Dynamic random-access memory. http://en.wikipedia.org/
wiki/Dynamic_random-access_memory. accessed November 19,
2012.

[3] Flash memory. http://en.wikipedia.org/wiki/Flash_
memory. accessed November 19, 2012.

[4] Paging. http://en.wikipedia.org/wiki/Paging. accessed
November 19, 2012.

[5] Static random-access memory. http://en.wikipedia.org/wiki/
Static_Random_Access_Memory. accessed November 19, 2012.

[6] GABRIEL TORRES, How the memory cache works.
http://www.hardwaresecrets.com/article/
How-The-Memory-Cache-Works/, September 2007.

http://locklessinc.com/articles/vectorize/
http://locklessinc.com/articles/vectorize/
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Static_Random_Access_Memory
http://en.wikipedia.org/wiki/Static_Random_Access_Memory
http://www.hardwaresecrets.com/article/How-The-Memory-Cache-Works/
http://www.hardwaresecrets.com/article/How-The-Memory-Cache-Works/

114 Chapter 5. Memory Architecture and Memory Management

Mathematics is the queen of the sciences.

CARL FRIEDRICH GAUSS

CHAPTER 6

Basic Operations, Formats and Matrix-Norms

Contents
6.1 Vector Norms and Inner Products 116

6.2 Linear Operators, Operator and Matrix Norms 118

6.2.1 Spectral Norm and Spectral Radius 124

6.2.2 Condition Number and Singular Values 126

6.2.3 Some Remarks on κ2pAq 128

6.3 Matrix Storage Formats . 129

6.3.1 Dense Matrices . 130

6.3.2 Sparse Matrices . 132

6.3.3 Complex Matrices 137

6.4 Linear Algebra Software 138

6.4.1 Basic Linear Algebra Subroutines (BLAS) 138

6.4.2 Linear Algebra PACKage (LAPACK) 142

6.4.3 SuiteSparse . 144

6.4.4 ITPACK . 145

6.4.5 Trilinos . 145

6.4.6 Native Packages for other Programming Environments
and Languages . 145

References and Further Reading 146

115

116 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.1 Vector Norms and Inner Products

Definition 6.1: Let X be a linear space over the field F. A mapping

‖.‖ : X Ñ R,

with
i) ‖x‖ ě 0 @x P X, (positivity)
ii) ‖x‖ “ 0 ðñ x “ 0, (definiteness)
iii) ‖αx‖ “ |α|‖x‖ @α P F@x P X, (homogeneity)
iv) ‖x` y‖ ď ‖x‖` ‖y‖ @x, y P X, (triangle inequality)

is called norm on X. A linear space together with a norm pX, ‖.‖Xq is
called normed linear space.

Example 6.2: Let X “ Rn, p P N. The functions

‖x‖p :“ p

g

f

f

e

n
ÿ

i“1

|xi|p p P N

‖x‖8 :“ max
i

|xi|

define norms on X.

Definition 6.3: Let X be a linear space over the field F P tR, Cu. An
inner product on X is defined by a sesquilinear form

p., .q : X ˆX Ñ F

with properties
i) px, xq P Rě0 @x P X, (positivity)
ii) px, xq “ 0 ðñ x “ 0, (definiteness)
iii) px, yq “ py, xq @x, y P X, (symmetry)
iv) pαx`βy, zq “ αpx, zq`βpy, zq @x, y, z P X, @α, β P F(linearity)

A linear space with an inner product pX, p., .qq is called a pre-Hilbert
space.

6.1. Vector Norms and Inner Products 117

Theorem 6.4: Let pX, p., .qq be a pre-Hilbert space. Then

‖x‖ :“
a

px, xq @x P X

defines a norm in X.

Proof. Homework

Definition 6.5: Two norms ‖x‖a, ‖x‖b on a linear space X are called
equivalent, if and only if any sequence converging with respect to ‖x‖a
also converges with respect to ‖x‖b and vice versa.

Theorem 6.6: ‖.‖a, ‖.‖b on the linear space X are equivalent

ô Dα, β ą 0 : α||x||a ď ||x||b ď β||x||a @x P X (6.1)

Idea of the proof. "ð": direct consequence of (6.1) applied to x “ yn´y8 for
a sequence pynqnPN Ñ y8 in either ‖.‖a, or ‖.‖b.

"ñ": Find β P Rą0 with ‖x‖a ă β @x P X with ‖x‖b “ 1 (by contradiction)
then @y P Xzt0u

‖y‖a “ ‖‖y‖b
y

‖y‖b
‖a “ ‖y‖b‖

y

‖y‖b
‖a ď ‖y‖bβ

The other half can be proved analogously.

As another direct consequence of equation (6.1) we get

Corollary 6.7: The limits of a sequence with respect to equivalent norms
coincide.

Theorem 6.8: Let X be a finite dimensional linear space over R, or C. All
norms on X are equivalent.

Proof. Literature

118 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.2 Linear Operators, Operator and Matrix Norms

Definition 6.9: Let pX, ‖.‖Xq, pY, ‖.‖Y q normed linear spaces. An oper-
ator A : X Ñ Y is called

i) continuous in x P X, if for all sequences pxnqnPN in X with xn Ñ x
for nÑ8 we have

Axn Ñ Ax for nÑ8

ii) continuous, if A is continuous in all x P X.
iii) linear if it fulfills

Apαx` βyq “ αAx` βAy

iv) bounded if A is linear and DC ě 0, such that

‖Ax‖Y ď C‖x‖X @x P X

Any C with this property are called upper bound of A.

In Chapter 4 we saw that those norms compatible with a vector norm are of
special importance. The most important among those norms are the induced
operator or matrix norms introduced in the following definition.

Definition 6.10: Let A : X Ñ Y be a linear operator pX, ‖.‖Xq, pY, ‖.‖Y q
normed linear spaces. The operator norm of A is defined as

‖A‖ :“ sup
||x||X“1

||Ax||Y “ sup
xPXzt0u

||Ax||Y
||x||X

‖A‖ is also called induced operator norm. In case A is a matrix, one also
speaks of an induced matrix norm.

We have talked about upper bounds to the operator A in the sense of norms
of images and preimages. The operator norm takes a distinguished position
among those bounds.

Theorem 6.11: ‖A‖ is the smallest upper bound of A and A is bounded
if and only if ‖A‖ ă 8.

6.2. Linear Operators, Operator and Matrix Norms 119

Proof. "ñ": Let A be bounded Ñ D8 ą C ě 0 with

||Ax||Y ď C @x P X, ||x||X “ 1

and

‖A‖ “ sup
||x||X“1

||Ax||Y ď C ă 8.

Especially ‖A‖ ď C for all upper bounds C.

"ð": Let A be linear with ‖A‖ ă 8. Now for arbitrary x P Xzt0u we have

‖Ax‖Y “ ‖‖x‖XA
ˆ

x

‖x‖X

˙

‖Y “ ‖x‖X‖A
ˆ

x

||x||X

˙

‖Y

ď ‖x‖X sup
‖z‖X“1

‖Az‖Y “ ‖x‖X‖A‖.

That means A is bounded with upper bound ‖A‖.

Matrices are a special type of linear operator. The linear operators as part of the
operators from one linear space to another have some very distinct properties
that we will collect next.

Theorem 6.12: Let pX, ‖.‖Xq and pY, ‖.‖Y q be normed linear spaces,
and A : X Ñ Y a linear operator.
The following are equivalent:

i) A is continuous in x “ 0
ii) A is continuous
iii) A is bounded

Proof. i)ñii): Let x P X, pxnqnPN Ď X with xn Ñ x, nÑ8

ñ Axn
A linear
“ Apxn ´ xq

loooomoooon

‖.‖X
Ñ 0, nÑ8

`Ax
‖.‖Y
Ñ Ax for nÑ8

ii)ñiii): We prove this part using a contradiction argument. Assume A contin-
uous but unbounded. Then there exists pxnqnPN Ď X with ||xn||X “ 1
and ||Axn|| ě n. Define:

yn :“
xn

||Axn||Y
.

120 Chapter 6. Basic Operations, Formats and Matrix-Norms

Then we immediately get

||yn||X “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn
||Axn||Y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

“
||xn||X
||Axn||Y

“
1

||Axn||Y
ď

1

n

and thus

yn
‖.‖X
ÝÑ 0 nÑ8.

On the other hand,

‖Ayn‖Y “ ‖A xn
‖Axn‖Y

‖Y “
‖Axn‖Y
‖Axn‖Y

“ 1

for all n P N, which contradicts continuity of A in x “ 0.

iii)ñi): Let A be bounded and pxnqnPN Ď X with xn
‖.‖X
Ñ x for nÑ8. Then

‖Axn‖Y ď ‖A‖‖xn‖X Ñ 0 as nÑ8

and thus A continuous in x “ 0.

An especially appealing feature of linear operators is that their properties are
inherited to product operators, since these are established through simple con-
catenation of the application of the involved linear operators, as we can see
from the following lemma.

Lemma 6.13 (Submultiplicativity): Let pX, ‖.‖Xq, pY, ‖.‖Y q, pZ, ‖.‖Zq be
normed linear spaces.

A :X Ñ Y

B :Y Ñ Z

bounded linear operators, then the operator concatenation

BA : X Ñ Z

is bounded with

‖BA‖ ď ‖B‖‖A‖. (6.2)

Proof. First we note that for any x P X due to boundedness of A and B we
have

‖BAx‖ ď ‖B‖‖Ax‖Y ď ‖B‖‖A‖‖x‖X

6.2. Linear Operators, Operator and Matrix Norms 121

The lemma thus is a direct consequence of

‖BA‖ “ sup
‖x‖X“1

‖BAx‖ ď sup
‖x‖X“1

‖B‖‖Ax‖Y

ď sup
‖x‖X“1

‖B‖‖A‖‖x‖X “ ‖B‖‖A‖

A bounded linear operator from one finite dimensional linear space into another
can always be expressed as a matrix. This is due to the fact that an evaluation
of the operator on a basis immediately provides the matrix representation. We
collect some notation to classify matrices.

Definition 6.14: i) Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m
...

. . .
...

an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Rnˆm,

the transposed matrix AT is defined as

A “

»

—

–

a11 ¨ ¨ ¨ an1
...

. . .
...

a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Rmˆn,

ii) If AT “ A, then A is called symmetric pn “ mq
iii) If ATA “ I, then A is called orthogonal pn ď mq
iv) If ATA “ AAT , then A is called normal pn “ mq

122 Chapter 6. Basic Operations, Formats and Matrix-Norms

Definition 6.15: i) Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m
...

. . .
...

an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Cnˆm,

the conjugate transposed matrix AH is defined as

A “

»

—

–

a11 ¨ ¨ ¨ an1
...

. . .
...

a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Cmˆn,

ii) If AH “ A, then A is called hermitian pn “ mq
iii) If AHA “ I, then A is called unitary pn ď mq
iv) If AHA “ AAH , then A is called normal pn “ mq

Definition 6.16: Let X “ Rn, or X “ Cn. A matrix A : X Ñ X is called
i) upper triangular, if aij “ 0 @i ą j,
ii) lower triangular, if aij “ 0 @i ă j,
iii) diagonal, if aij “ 0 @i “ j,
iv) positive semidefinite if pAx, xq2 ě 0 @x P X,
v) positive definite if pAx, xq2 ą 0 @x P Xzt0u,
vi) negative (semi)definite if ´A is positive (semi)definite.

Two linear systems of equations are called equivalent if and only if their sets of
solutions coincide.

Lemma 6.17: Let P P Cnˆn be regular and A P Cnˆn, then the linear
systems of equations Ax “ y and PAx “ Py for x, y P Cn are equiva-
lent.

Proof.

P is regular ñ ”Px “ 0 ðñ x “ 0”

ñ ”P pAx´ yq “ 0 ðñ Ax´ y “ 0”

6.2. Linear Operators, Operator and Matrix Norms 123

Lemma 6.18: The linear system Ax “ b permits a solution if and only if
rank pAq “ rank pA, bq

Proof. Homework

Some structural properties of matrices are preserved in products of matrices.
This is often exploited to generate structure preserving algorithms or limit error
amplification. The following two Lemmas collect such properties and will be
proved in the exercises.

Lemma 6.19: Products of lower (upper) triangular matrices are lower (up-
per) triangular.

Lemma 6.20: Products of orthogonal matrices are orthogonal matrices.

Some matrix norm examples:

i) ‖A‖ :“ max
i,j
|aij | (induced by the pair (‖.‖1, ‖.‖8) of norms, not sub-

multiplicative,)

ii) ‖A‖F :“

d

n
ř

i“1

n
ř

j“1
|a2
ij | (not induced, compatible with the vector ‖.‖2-

norm)

iii) ‖A‖1 :“ max
j“1,...,n

n
ř

i“1
|aij | (induced, column sum norm)

iv) ‖A‖8 :“ max
i“1,...,n

n
ř

j“1
|aij | (induced, row sum norm)

v) ‖A‖2 :“ sup
‖x‖2“1

‖Ax‖2 (induced, spectral norm)

Theorem 6.21: Any matrix A P Cnˆn is bounded in every matrix norm.

Proof. Homework

124 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.2.1 Spectral Norm and Spectral Radius

A complex number λ P C is called eigenvalue of a matrix A if Dx “ 0

Ax “ λx

Then x is called (right) eigenvector of A. The set of all eigenvalues is ΛpAqtλ P
C : Ax “ λxu, called spectrum of A. The value ρpAq “ maxt|λ| : λ P ΛpAqu
is called the spectral radius of A.

Theorem 6.22 (Schur decomposition): Let A P Cnˆn (Rnˆn). There ex-
ists a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

T “ U˚AU

is a (quasi) upper triangular matrix.

Proof. Homework.

Remark 6.23: • ΛpAq “ ttii : i “ 1, . . . , nu pA P Cnˆnq
• The Schur decomposition can be computed in a QR-algorithm in
Opn3q.

Corollary 6.24: Let A P Cnˆn pRnˆnq hermitian (symmetric). There ex-
ists a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

„

@
@
@

“ diag pλ1, . . . , λnq “ U˚AU

Here λi pi “ 1, . . . , nq is the i-th eigenvalue of A with the i-th column of
U the corresponding eigenvector.

Theorem 6.25: The ‖.‖2 operator norm of A is called spectral norm since
we have:

i) ‖A‖2 “
a

ρpA˚Aq
ii) ρpAq ď ‖A‖ for an arbitrary induced norm ‖.‖
iii) A “ A˚ ñ ρpAq “ ‖A‖2

6.2. Linear Operators, Operator and Matrix Norms 125

Proof. i) pA˚Aq “ pA˚Aq˚ thus Corollary 6.24 tells us that there exists an
orthogonal matrix U with

U˚A˚AU “

»

—

–

λ1

. . .
λn

fi

ffi

fl

Further for all x P Cn we find coefficients αi i “ 1, . . . , n such that

x “
n
ÿ

i“1

αiui

Thus,

A˚Ax “
n
ÿ

i“1

λiαiui,

and therefore

‖Ax‖2 “ pAx,Axq2 “ px,A
˚Axq2

“ p
ÿ

αiui,
ÿ

λiαiuiq2

“
ÿ

pαiui, λiαiuiq2

“
ÿ

λi|αi|
2pui, uiq2

“
ÿ

λi|αi|
2‖u‖2

2

“
ÿ

λi|αi|
2

ď ρpA˚Aq
ÿ

|αi|
2

“ ρpA˚Aq‖x‖2,

such that

||Ax||2
||x||2

ď ρpA˚Aq

and λi ě 0@i. Now let λi0 “ ρpA˚Aq, and ui0 the corresponding eigen-
vector, then

‖Aui0‖2
2

‖ui0‖2
2

“
λi0‖ui0‖2

2

‖ui0‖2
2

“ λi0 “ ρpA˚Aq.

So we have proved the first statement.

ii) By definition of the induced norm we have for each pair of eigenvalue λ
and corresponding eigenvector u that

‖A‖ “ sup
||x||“1

||Ax|| ě ||Au|| “ ||λu|| “ |λ|||u|| “ |λ|,

and therefore ρpAq ď ‖A‖.

126 Chapter 6. Basic Operations, Formats and Matrix-Norms

iii) A˚ “ A:

‖A‖2 “
a

ρpA˚Aq “
a

ρpA2q “
a

ρpAq2 “ ρpAq

In fact the last statement is true also for normal matrices. The proof is slightly
more technical, though, since it requires the full eigendecomposition of A and
the knowledge that for normal matrices the left and right eigenbases coincide.

6.2.2 Condition Number and Singular Values

Recall:

crelpf, xq “
||x||

||fpxq||
¨ ||f 1pxq||

Now let f ” A and A regular ñ

y “ Axô x “ A´1y

ñ
||x||

||fpxq||
“
||x||

||Ax||
“
||A´1y||

||y||
ď sup

y “0

||A´1y||

||y||
“ ||A´1||.

Since the Jacobian of a linear operator is the linear operator, we have

f 1pxq “ A
ˇ

ˇ

x
.

Such that we find
crelpA, xq ď ‖A‖‖A´1‖.

In case A “ I we further have

crel “
||x||

||x||
||I|| “ 1 “ ||I||||I´1||,

which proves that the bound is indeed sharp. This motivates the following defi-
nition.

Definition 6.26: Let A P Cnˆn and ‖.‖a an induced operator norm

κapAq :“ ‖A‖a‖A´1‖a

denotes the a-condition number of A.

Lemma 6.27: For any induced operator norm ‖.‖a it holds

κapAq ě κapIq “ 1

6.2. Linear Operators, Operator and Matrix Norms 127

Proof.

κapIq “ ||I||a||I
´1||a “ 1 “ ||I||a “ ||AA

´1||a

Lemma 6.13
ď ‖A‖a‖A´1‖a “ κapAq

In the following we will, for ease of notation, leave out the index a if a property
holds for all possible values of a.

Theorem 6.28: Let A P Rnˆn, b P Rn. Let x be the exact solution of
Ax “ b and x`∆x the exact solution of the disturbedApx`∆xq “ b`∆b.
Then

||∆x||

||x||
ď κpAq

||∆b||

||b||
.

Theorem 6.29: Ax “ b as in Thm. 6.28. ek :“ A´1b´xk, rk :“ b´Axk
the error and residual in step k of an iterative solver for Ax “ b. It holds:

1

κpAq

||rk||

||r0||
ď
||ek||

||e0||
ď κpAq

||rk||

||r0||
ď κpAq2

||ek||

||e0||
. (6.3)

Proof. Note

||rk|| “ ||b´Axk|| “ ||ApA
´1b´ xkq|| “ ||Aek|| ď ‖A‖||ek||

and analogously

||ek|| “ ||A
´1b´ xk|| ď ||A

´1||||rk||

Thus

1

κpAq

||rk||

||r0||
“

1

‖A‖||A´1||

||rk||

||r0||
ď

1

‖A‖
||rk||

||A´1r0||
“

1

‖A‖
||Aek||

||e0||
ď
||ek||

||e0||
.

This proves the leftmost inequality in (6.3). The others can be shown similarly.

128 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.2.3 Some Remarks on κ2pAq

Theorem 6.30: Let A P Rnˆn. There exist orthogonal matrices U, V P

Rnˆn such that

UTAV “

¨

˚

˝

σ1 0
. . .

0 σn

˛

‹

‚

(6.4)

where 0 ď σn ď ¨ ¨ ¨ ď σ1. For i “ 1, . . . , n we further have

detpATA´ σ2
i Iq “ 0 (6.5)

i.e. σi “ λi with λi P ΛpAq.

Proof. ATA is symmetric and positive semidefinite, so there exists V P Rnˆn,
such that

V TATAV “ diag pλ1, . . . , λnq

where λ1 ě ¨ ¨ ¨ ě λn ě 0. Thus σi “
?
λi is well defined in Theorem 6.6

and (6.5) follows from Corollary 6.24. For (6.4) we define U “ AVD´1, where
D “ diag pσ1, . . . , σnq. Since we have

UTU “ D´TV TATAVD´1 “ D´1 diag pλ1, . . . , λnqD
´1 “ I

U is ortogonal and

UTAV “ D´TV TATAV “ D´1 diag pλiq “ D

In addition for regular A we have σn ą 0 and λn ą 0.

Definition 6.31: The σi in Theorem 6.30 are called singular values of A.
The corresponding columns in U , V are called the i-th left/right singular
vectors.

Now from

sup
x “0

||Ax||22
||x||22

“ sup
x “0

pAx,Axq2
px, xq2

“ sup
x“0

xTATAx

xTx

V reg.
“ sup

V x “0

xTV TATAV x

xTV TV x

U,V orth.
“ sup

x “0

xTV TATUUTAV x

xTx
“ sup

x “0

xTDTDx

xTx
“ σ2

1,

6.3. Matrix Storage Formats 129

we analogously find for the infimum

inf
x “0

||Ax||2
||x||2

“ σn.

Further we have
UTAV “ diag pσ1, . . . , σnq ,

and

V TA´1U “ diag

ˆ

1

σ1
, . . . ,

1

σn

˙

and thus ‖A‖2 “ σ1 and ‖A´1‖2 “
1
σn

, which proves the following Corollary.

Corollary 6.32: Let A P Rnˆn regular, σ1, σn its largest and smallest
singular values, then we have

κ2pAq “
σ1

σn

If A is in addition normal and λ1 and λn are its largest and smallest mag-
nitude eigenvalues, then we also have

κ2pAq “
|λ1|
|λn|

Here the second part uses the fact that A P Cnˆn normal guarantees that
DU P Cnˆn unitary, such that U˚AU is diagonal (compare, e.g., [4, Corollary
7.1.4]).

Definition 6.33: (compare Theorem 6.6)
‖.‖a, ‖.‖b vector norms on Rn. The condition numbers κa, κb are called
equivalent if one can find α, β ą 0 such that

ακapAq ď κbpAq ď βκapAq @A P Rnˆn regular

The equivalence constants α, β coincide with the constants α, β in Theorem 6.6.

6.3 Matrix Storage Formats

In this section we will introduce different ways of storing matrices in C data
structures. Depending on the type of matrix (judged by the number of non-
zero entries) we apply different techniques. The varying suggested storage

130 Chapter 6. Basic Operations, Formats and Matrix-Norms

schemes will be demonstrated using the example matrix

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

.

6.3.1 Dense Matrices

Definition 6.34: A matrix is called dense, or densely populated if essen-
tially all its entries are non-zero.

Dense matrices should be stored as some storage type that resembles a 2d
array.

2d Arrays in C We have seen this in Chapter 3. In principle for the C pro-
gramming language two definitions of 2d arrays are available:

• double A[5][10] (static array),

• double **A + malloc() (dynamic array).

Both versions result inA being a 2d array. In both cases it is stored “row major”,
i.e., the order of elements follows the model:

Differences of Static and Dynamic 2d Array in C

i) A static array in C is essentially one big row vector:
double A[5][10]

a00, . . . , a09 a10, . . . , a19 a20, . . . , a29 a30, . . . , a39 a40, . . .

ii) For a dynamic array the rows may be stored somewhere (possibly) not
consecutively arranged
double **A;

6.3. Matrix Storage Formats 131

a0˚

a1˚

a2˚

a3˚

...

a00, . . . , a09

a10, . . . , a19

a20, . . . , a29

a30, . . . , a39

i) is only usable when size is known a priori.

ii) is more flexible, but destroys data locality. An advantage of this format, how-
ever, is easy swapping of rows, since no data needs to be copied, but only
pointers are rearranged.

2d Arrays in Fortran Section 6.4 introduces basic mathematical / linear al-
gebra operations based on Fortran 77/90 implementations.

Static Fortran arrays (all arrays in Fortran 77) are stored “column major”, i.e.,

a00, . . . , an0 a01, . . . , an1 a02, . . . , an2 a03, . . . , an3 a04, . . .

This behavior can be implemented as 1d array with index transformation in C,
as well. To this end we introduce an important expression that will play an even
more important role in Section 6.4, again.

Definition 6.35: The distance between the beginning of 2 subsequent
columns in a 2d array counted in the number of elements, is called the
leading dimension (LD) of the array.

ñ akl“̂Arl ¨ LD ` ks

In Fortran 77 this behavior is already part of the language definition. The ex-
pression ApLD, :q does this mapping automatically.

Advantages :

132 Chapter 6. Basic Operations, Formats and Matrix-Norms

• Data locality is enforced also for dynamic arrays since the single row/col-
umn pointers can no longer be scattered around the main memory.

• More importantly, the array is now stored in Fortran 77 compliant col-
umn major format and can thus be passed directly to (optimized) Fortran
libraries.

Basic Object Oriented Design Although C does not directly support object
oriented programming, structures and functions on structures can be used to
mimic the object oriented behavior and increase code efficiency.

struct my_matrix_st{
INT cols;
INT rows;
INT LD;

double *values;

char structure;
};

The matrix A would thus lead to A.cols“ 4, A.rows“ 4, A.LD“ 4 and

A.values= 1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

The structure entry in this case could be NULL to indicate, that the matrix is
not specially structured. In order to better understand the value of the leading
dimension concept, consider we want to manipulate the 2ˆ2 sub-matrix starting
in the (2,2)-position in A, i.e., the matrix

B “

„

3 4
5 0

.

The corresponding values would then be B.cols“ 2, B.rows“ 2, B.LD“ 4,
again B.structure“NULL and the B.values pointer would be set to the
A.values[5]. This way we know that in B.values the entry with value 4 is
4 (B.LD) positions ahead of the one where the 3 is stored.

6.3.2 Sparse Matrices

Definition 6.36: We call a matrix A P Rnˆn or A P Cnˆn sparse if only a
few entries of A per row or column are non-zero, in average.
Precisely, we want A to be such that storing A uses Opnq storage and
multiplication with A is performed in Opnq effort.

6.3. Matrix Storage Formats 133

Both conditions boil down to the number of non-zero entries inA (nnzpAq) being
Opnq. Several formats for storing sparse matrices exist. Some important ones
are introduced below. They all follow the same fundamental principle.

Basic idea: In order to save memory we store “only” the non-zero entries and
neglect the zeros.

Coordinate Storage (COO)

StoresA in 3 vectors of length nnzpAq for entry values, row indices, and column
indices:

. . .vals
0 nnz´1

(float, double)

. . .rows
0 nnz´1

(int, long)

. . .cols
0 nnz´1

(int, long)

Advantages:

• easy to implement

• easy addition of new entries

• easy elementwise access

Drawbacks:

• non local memory access

• (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the
storage for the matrix A might look like

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

134 Chapter 6. Basic Operations, Formats and Matrix-Norms

which is using C indexing starting at 0 to avoid index shifts in, e.g., matrix vector
product implementations, where the indices in the vector are C, i.e., zero based.

Remark 6.37: The coordinate storage format is, e.g., the basis of the
sparse matrix version of the Matrix Marketa file exchange format.

ahttp://math.nist.gov/MatrixMarket/

Compressed Sparse Row Storage (CSR/CRS)

As above the format uses three vectors to store the data. Two vectors vals and
cols store the entry values and column indices. The third vector holding the
row indices (rows) stores, where the corresponding row starts in the vectors
vals and cols. Additionally, the last entry stores the number of non-zero
entries nnzpAq. Not that, since the start of the first row is evident, the first entry
is actually not needed, but it simplifies implementations as discussed below.

. . .vals
0 nnz´1

(float, double)

. . .cols
0 nnz´1

(int, long)

. . .rows
0 n` 1

(int, long)

Advantages:

• optimal storage requirements

• can exploit BLAS (Section 6.4) in per row operations

• allows multithreading

Drawbacks:

• non local memory access due to indirect indexing

• (load balancing problem in threading due to different row lengths)

http://math.nist.gov/MatrixMarket/

6.3. Matrix Storage Formats 135

Remark 6.38: An equivalent format swapping the roles of row and column
pointers in the above, is used, e.g., in MATLAB. It is called compressed
sparse column storage (CSC/CCS).

Note that the first entry in the rows pointer actually contains redundant infor-
mation, since it is clear that the corresponding row starts at the first position in
both other arrays. However most implementations still use the version includ-
ing the redundant value since then loops running over all entries in a row can
simply be written as something like

for (j = rowptr [i] ; j < rowptr[i+1]; j++) {...}

and the first and last rows do not need any special treatment.

The matrix A in CSR format looks as follows

1 2 3 4 5 6 7vals

0 1 1 2 1 3 2cols

0 2 4 6 7rows

where again we have used zero based indexing of columns as usual in C to
avoid index shifts.

Ellpack and Ellpack-R (ELLR)

This describes a format that was introduced as storage format specially tailored
for vector computers. The main idea was to automatically balance the workload
and exploit data parallelism1. Let nr be the maximum row length. Ellpack stores
two 2d-arrays vals and cols with size n ˆ nr. The Ellpack-R (ELLR) format
adds an additional vector storing the actual lengths of the single rows in order
to avoid processing of zero elements.

1Details will be introduced in Term 2.

136 Chapter 6. Basic Operations, Formats and Matrix-Norms

2

3

1

2

1

2

4

2

3

2

vals
(n ˆ nr)

cols
(n ˆ nr)

r
(n)

(float,
double)

(int,
long)

(int,
long)

Advantages:

• constant per row length good load balancing properties

• (coalesced memory access (threads k, k+1 access consecutive memory
cells))

• (no synchronization required)

Drawbacks:

• The storage requirement is dominated by the longest row. ñ Possibly,
many zeros are stored.

¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

good bad

• The zeros are actually processed without leading to new information.

Advantage of the ELLR:

• The unnecessary processing of zeros is avoided.

Drawback of the ELLR:

• Additional n integers for storing of the row lengths are required.

6.3. Matrix Storage Formats 137

• Load balancing features of the Ellpack format are no longer valid.

Also here we present the matrix A in the form of the stored data for this for-
mat. As in the examples above we again use the C/zero based indexing in the
cols array to avoid index shifts in loops using this matrix together with vectors
implemented as 1d arrays.

1 02 1

3 14 2

5 16 3

7 20 0

2

2

2

1

vals
(4 ˆ 2)

cols
(4 ˆ 2)

r
(4)

Remark 6.39: In the Nvidia® CUDA® toolkit for acceleration of codes
using Nvidia® graphics adapters, or more precisely in the corresponding
cusparse library used for working with sparse matrices, a hybrid matrix
storage format is used. This format is using Ellpack for the short rows,
i.e., rows with only few non-zero entries. The exceptionally long rows that
are causing the storage problems in both Ellpack and ELLR, are stored
and treated separately.

6.3.3 Complex Matrices

In the above sections we have focused on the storage schemes for real ma-
trices. In the dense case, the structure for a possibly complex matrix could
simply be extended by a second double pointer ivals for storing the imag-
inary parts and a second char that indicates whether the matrix is real or
complex, i.e., whether ivals contains useful values or is simply NULL. Since
the information in the additional char is in principle redundant, this could also
be hidden in the structure field by using clever preprocessor defines indi-
cating the different structures in addition with the information whether they are
real or complex. However, this version breaks the property of the values field to
be directly passable to the Fortran call. Therefore, in the dense complex case,
the vals array should be double as large and real and imaginary parts of each
entry should be stored next to each other. This can, e.g., be achieved by using
the double complex, or float complex types from complex.h (in the
C99 standard). These are compatible with the Fortran types COMPLEX*16 and
COMPLEX*8=COMPLEX.

Similarly, for sparse matrices the vals field gets a twin ivals. Also, similar to
the above, special structures together with the indication of real or complex data

138 Chapter 6. Basic Operations, Formats and Matrix-Norms

storage can be handled by an additional information member like structure.

6.4 Linear Algebra Software

One of the most basic tasks in most applications in scientific computing is the
necessity to provide a basic set of routines dealing with the linear algebra sub-
tasks. Due to the foresight of a couple of developers in the mid 1970s this is a
rather easy task, as long as the involved linear operators can be represented
as dense matrices. Then, the related functions and solutions are usually well
approximated by simple vectors in Rn, or Cn. The basic operations that are
required in this case have been grouped in three classes, the so-called levels, in
the basic linear algebra subroutines (BLAS) library introduced in Section 6.4.1.
Those levels are

• basic vector operations,

• matrix-vector operations,

• and matrix-matrix operations.

Each of the levels is described in a separate paragraph below. The BLAS library
only contains the most basic operations like products and weighted sums. The
application of those operations in more complex tasks, like linear system solves,
eigenvalue computation, matrix factorizations and similar calculations, is imple-
mented in a set of routines gathered in the linear algebra package (LAPACK).
We will briefly sketch its content in Section 6.4.2. There exist several implemen-
tations of these two libraries. The main reference implementation is hosted
at http://www.netlib.org. It provides source codes for both libraries
that can be compiled on basically any machine. Hardware manufacturers have
started early to provide their own implementations. The most well known one
today is probably the Intel® Math Kernel Library2 (MKL) that contains optimized
versions of both libraries. Also AMD has an own implementation called AMD
Core Math Library3 (ACML).

6.4.1 Basic Linear Algebra Subroutines (BLAS)

The basic linear algebra subroutines BLAS are sub-divided into three classes,
called levels, that are mainly standing for the involved memory and computation
complexities, but also for their historic development.

2http://software.intel.com/en-us/intel-mkl/
3http://developer.amd.com/tools/cpu-development/

amd-core-math-library-acml/

http://www.netlib.org
http://software.intel.com/en-us/intel-mkl/
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml/
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml/

6.4. Linear Algebra Software 139

• Level 1 described in [5]: Opnq operation on Opnq data

• Level 2 described in [2]: Opn2q operations on Opn2q data

• Level 3 described in [1]: Opn3q operations on Opn2q data

The reference implementation is available on http://www.netlib.org/
blas. Vendor versions are available from major hardware manufacturers:

• Intel® Math Kernel Library (MKL)

• AMD Core Math Library (ACML)

• Apple Accelerate framework

• ¨ ¨ ¨

BLAS has a Fortran induced naming scheme: (Level 1)4

cblas_
looomooon

X XXXX

prefix datatype operation

Data types (allowed specifiers)

• s - single precision real

• c - single precision complex

• d - double precision real

• z - double precision complex

Operations (examples)

• axpy y Ð αx` y

• dot r Ð xT y

• nrm2 r Ð ||x||2 “
?
xTx

• asum r Ð ||x||1 “
ř

i
|xi|

Example 6.40: cblas_daxpy double precision real version of y Ð ax` y in
the C wrapped format.

The prefix is usually only needed in C versions. It is empty for calling the F77
versions (compare also Section 3.11).

4We base our presentation on the prefix used, e.g., in the Apple Accelerate framework.

http://www.netlib.org/blas
http://www.netlib.org/blas

140 Chapter 6. Basic Operations, Formats and Matrix-Norms

Levels 2 and 3 additionally respect/exploit matrix structures and indicate them
in the correspndign function names:

cblas_
looomooon

X XX XXX

prefix datatype structure operations

Possible values for the structure placeholder are:

GE general GB general banded
SY symmetric SB symmetric banded SP symmetric packed
HE hermitian HB hermitian banded HP hermitian packed
TR triangular TB triangular banded TP triangular packed

Typical arguments For triangular matrix operations the type of triangular
structure is controlled by the argument UPLO. It is taking character values ’L’,
’U’ for lower or upper triangular, respectively.

The operand order (e.g., decision about left or right multiplication) is steered by
the SIDE arguments ’L’ or ’R’.

For triangular matrices the DIAG argument specifies whether they have a unit
diagonal ’U’ or not ’N’.

Transposition is decided via TRANS argument taking either of the following val-
ues:

’N’ non transposed X
’T’ transposed XT

’C’ conjugate transposed XH

Remark 6.41: Note that ’H’ is not defined by the standard and not under-
stood by the general implementations. Although some implementations
may support it, it should therefore never be used.

As two examples, we report on the double precision and double precision com-
plex matrix-matrix-product routines that perform the operation

C Ð αoppAq ¨ oppBq ` βC,

where op(.) refers to the transposition types above. The Fortran interfaces and
data types are

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
REAL*8 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

6.4. Linear Algebra Software 141

!.. Array Arguments ..
REAL*8 A(LDA,*),B(LDB,*),C(LDC,*)

for the real case and

SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
COMPLEX*16 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)

for the complex one. Thus, the corresponding C prototypes look like

void dgemm_(char transa, char transb, int m, int n, int k,
double alpha, double *A, int *lda,
double *B, int *ldb,
double *beta, double *C, int *ldc);

for the real and

void zgemm_(char *transa, char *transb, int *m, int *n, int
*k,
double complex *alpha, double complex *A, int *lda,
double complex *B, int *ldb,
double complex *beta, double complex *C, int *ldc);

for the complex case.

Vector Operations (BLAS level 1)

• scaling and addition: αx, αx` y,

• inner products: x˚y,

• norm expressions: ||x||2, ||x||1,||x||8.

Matrix-Vector Operations (BLAS level 2)

Let F P tC,Ru, α, β P F, A P Fmˆn, x, y P Fn:

• scaling and addition: αAx` βy, αA˚x` βy,

• rank-1/2 updates: A` αxy˚, A` αxx˚, A` αxy˚ ` βyx˚,

• triangular solves: αT´1x, αT´˚x, T triangular.

142 Chapter 6. Basic Operations, Formats and Matrix-Norms

Matrix-Matrix Operations (BLAS level 3)

• αAB ` βC, αAB˚ ` βC, αA˚B˚ ` βC,

• rank k updates: αAA˚ ` βC, αA˚A` βC

• rank 2k updates: αA˚B ` βC, αB˚A` βC

• triangular multi-solves: αT´1C, αT´˚C, T triangular.

Idea Behind the Level 3 Performance Gain The performance of Level 3
operations increases by block sub-structuring the operations. The special case
C Ð C `ABT of the above GEMM operation, evaluated in a simple 2ˆ 2 block
structured form becomes

„

C11 C12

C21 C22

`

„

A11

A21

“

BT
11 B

T
21

‰

,

which allows to compute the single blocks in the result as:

C11 Ð C11 `A11B
T
11, C12 Ð C12 `A12B

T
21,

C21 Ð C21 `A21B
T
11, C22 Ð C22 `A21B

T
21.

Analogous formulas result from further refinement of the block-subdivision. Op-
timal block sizes depend on the processors cache hierarchy (see Chapter 5).
They are intended to keep data in the caches as long as they are required.
This way the implementation aims at minimizing the transfers of single data el-
ements between cache and main memory. This is paying off since each data
element is involved Opnq-times in the operation. Also the order of operations
during calculations can influence the amount of data copied per time unit.

Tuning is done by exploiting knowledge about the hardware specifications in
vendor implementations (MKL, ACML, but also OpenBLAS), or by optimizing
the block sizes at compilation time as in ATLAS5 (automatically tuned linear
algebra subroutines).

6.4.2 Linear Algebra PACKage (LAPACK)

LAPACK is a Fortran 90 based library that provides routines for

• solution of linear systems of equations,

• least squares solutions of linear systems of equations,

• solutions of eigenvalue problems,

5http://math-atlas.sourceforge.net/

http://math-atlas.sourceforge.net/

6.4. Linear Algebra Software 143

• and singular value problems.

The associated matrix factorizations that are underlying these algorithms are
also provided, as are related operations (e.g., reordering of Schur factorizations
to achieve other orderings of the eigenvalues.)

LAPACK was first released Feb 1992. The latest version is 3.5.0 and was pub-
lished November 16, 2013. The library is in conception an add-on to BLAS,
especially BLAS Level 3. It uses the appropriate BLAS routines wherever pos-
sible. That especially means that LAPACK supports the same data types as
BLAS and uses, respectively, exploits the same matrix structures as described
for the BLAS above.

The reference implementation is available at http://netlib.org/lapack.

Vendor versions are for example included in :

• Intel® MKL

• AMD ACML

• Apple Accelerate framework (ATLAS based)

The automatically tuned linear algebra subroutines (ATLAS) also cover the op-
erations defined in LAPACK.

LAPACK routines are divided in 3 Categories

i) auxiliary routines

ii) computational routines

iii) driver routines

The general naming scheme follows the BLAS Level-2/3 approach.

• auxiliary routines: these routines in LAPACK provide common helper
functionality: scaling, reordering, machine specifications. Examples are:

– disnan, sisnan - check the argument for NaN

– dlamch, slamch - retrieve machine parameters, i.e., get M, eps,
base, length of mantissa, emin, emax

– cerbla - error handling in case of invalid inputs

• computational routines: perform simple specific tasks

– factorizations: LU , LL˚, LDL˚, QR, LQ, . . .

– eigenvalue and singular value computations

– recovery of eigenvectors, Schur vector

http://netlib.org/lapack

144 Chapter 6. Basic Operations, Formats and Matrix-Norms

• driver routines: these routines call a set of computational routines to solve
linear algebra problems

– linear equations: Ax “ b

– linear least squares: min
x
||b´Ax||2

– generalized linear least squares

– eigenvalue decompositions

– generalized eigenvalue/singular value decompositions

Related software:

• CLAPACK (C wrapper to LAPACK)
http://www.netlib.org/clapack/

• ScaLAPACK (distributed parallel version)
http://www.netlib.org/scalapack/

• PLASMA (Parallel Linear Algebra for Scalable Multicore Architectures)
http://icl.cs.utk.edu/plasma/software/

• MAGMA (Matrix Algebra on GPU and Multicore Architectures)
http://icl.cs.utk.edu/magma/

• LAPACK95 (Fortran 95)
http://www.netlib.org/lapack95/

• JLAPACK (rather outdated Fortran-Java LAPACK)

• lapack++ (native C++ implementation last update in 2000)
http://math.nist.gov/lapack++/

6.4.3 SuiteSparse

SuiteSparse is a collection of software packages/tools related to sparse factor-
izations (LU, Cholesky and QR) and direct solution of sparse linear systems.
The UMFPACK tool from the collection is working behind the application of
backslash to sparse linear systems in MATLAB. The main authors are T. A.
Davis and his team at the Texas A&M University6.

6http://faculty.cse.tamu.edu/davis/suitesparse.html

http://www.netlib.org/clapack/
http://www.netlib.org/scalapack/
http://icl.cs.utk.edu/plasma/software/
http://icl.cs.utk.edu/magma/
http://www.netlib.org/lapack95/
http://math.nist.gov/lapack++/
http://faculty.cse.tamu.edu/davis/suitesparse.html

6.4. Linear Algebra Software 145

6.4.4 ITPACK

This package is intended for solving large sparse linear systems by iterative
methods. It is hosted at http://www.netlib.org/itpack.

The main library consists of three sub-packages for

• single precision,

• double precision,

• vector machines.

It uses CG, PCG, Chebyschev acceleration and generalized CG for non-symmetric
systems.

The development of this Fortran based package takes place at Center for Nu-
merical Analysis at University of Texas at Austin.

6.4.5 Trilinos

“Trilinos is a collection of open source software libraries intended a building
blocks for the development of scientific applications”.7

Trilinos is developed at the Sandia National Labs. The current version is 11.12.1
from Oct. 2014. The package is licensed under the terms of the LGPL8 and
covers:

• construction and usage of sparse and dense matrices, graphs and vec-
tors.

• Iterative and direct solution of linear systems

• parallel multilevel and algebraic preconditioning

• and many more . . .

The basic library is written in C++ with Fortran kernels. Moreover Python
bindings are provided via SWIG. Trilinos can be found online at: http://
trilinos.sandia.gov

6.4.6 Native Packages for other Programming Environments and
Languages

• C++
7http://en.wikipedia.org/wiki/Trilinos
8see, e.g., http://opensource.org/licenses/lgpl-license

http://www.netlib.org/itpack
http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://en.wikipedia.org/wiki/Trilinos
http://opensource.org/licenses/lgpl-license

146 Chapter 6. Basic Operations, Formats and Matrix-Norms

– boost - supports threading as well
http://www.boost.org/

– MTL - The Matrix Template Library
http://www.simunova.com/en/node/24

* The library uses boost and BLAS in kernels.

* A single computer version available as OpenSource.

* MTL4 has distributed computing capabilities, but those are con-
nected to a payed license release.

• Python

– NumPy - provides proper n-d array for Python
http://www.numpy.org/

– SciPy - amongst many others provides LAPACK functionality (calling
F90 LAPACK)
http://www.scipy.org/

• Java

– JaMa - Java Matrix Package provides basic linear algebra in Java
http://math.nist.gov/javanumerics/jama/

– JaMPack - same as JaMa

– maintenance questionable: latest release Nov 2012, previous ver-
sion July 2005.

References and Further Reading

[1] J. J. DONGARRA, J. DU CROZ, I. S. DUFF, AND S. HAMMARLING, A set of
Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Software, 16
(1990), pp. 1–17.

[2] J. J. DONGARRA, J. DU CROZ, S. HAMMARLING, AND R. J. HANSON, An
extended set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans.
Math. Software, 14 (1988), pp. 1–17.

[3] M. GATES, Routines for BLAS and LAPACK 3.3.1. http://web.eecs.
utk.edu/~mgates3/docs/lapack.html, Feb. 2012. last visited
2015-03-25.

[4] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins
University Press, Baltimore, third ed., 1996.

http://www.boost.org/
http://www.simunova.com/en/node/24
http://www.numpy.org/
http://www.scipy.org/
http://math.nist.gov/javanumerics/jama/
http://web.eecs.utk.edu/~mgates3/docs/lapack.html
http://web.eecs.utk.edu/~mgates3/docs/lapack.html

References and Further Reading 147

[5] C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, Basic linear algebra
subprograms for FORTRAN usage, ACM Trans. Math. Software, 5 (1979),
pp. 303–323.

148 Chapter 6. Basic Operations, Formats and Matrix-Norms

An algorithm must be seen to be believed.

Donald Ervin Knuth

CHAPTER 7

The Solution of Moderate Size Dense Linear Systems

Contents
7.1 Important Preliminaries . 149

7.2 Cache/BLAS Exploitation 152

7.2.1 Triangular System 152

7.2.2 Triangular Systems with Multiple Right Hand Sides
and BLAS Level-3 formulation 153

7.2.3 BLAS Level-3 based Gaussian Elimination 154

7.3 Iterative Refinement . 155

References and Further Reading 157

7.1 Important Preliminaries

In this section we collect some facts that should be known from Numerical
Analysis I

149

150 Chapter 7. The Solution of Moderate Size Dense Linear Systems

Theorem 7.1 (LU decomposition): LetA P Rnˆn and for k “ 1, . . . , n´1,
Ak “ Ap1 : k, 1 : kq P Rkˆk the leading k ˆ k sub-matrix.

i) If @k “ 1, . . . , n´ 1 it holds detpAkq “ 0, then DL,U P Rnˆn such
that

A “ LU

with

L “ @
@

1

1

@@ (unit lower triangular)

and

U “
@
@
@

(upper triangular).

ii) If A “ LU exists and A is regular then the LU factorization is
unique.

iii) If A “ LU as in (ii) then

detpAq “ u11 ¨ ¨ ¨ ¨ ¨ unn

Proof. homework.

Note that the simple regular 2ˆ 2 matrix A “
„

0 1
1 0

does not allow for an LU

decomposition, but applying a single row permutation we get:

Ã :“ PA “

„

1 0
0 1

, where P “
„

0 1
1 0

Ã has an LU decomposition by Theorem 7.1. This observation motivates the
following theorem.

Theorem 7.2: Let A P Rnˆn regular. There exists a permutation matrix
P P Rnˆn such that

PA “ LU

for L,U as in Theorem 7.1.

idea of the proof. Exploit properties of Gaussian elimination procedure, that
defines the L and U matrices, and permutation matrices. The full proof can
be found, e.g. in [1, 3]

7.1. Important Preliminaries 151

Gaussian elimination is used to compute the L and U matrices. It consists
of a triple loop procedure. The straight forward row-by-row elimination version
reads:

Algorithm 7.1: Gaussian Elimination “kij”-formulation
Input: A P Rnˆn
Output: A overwritten by L,U

1 for k “ 1 : n´ 1 do
2 Apk ` 1 : n, kq “ Apk ` 1 : n, kq{Apk, kq;
3 for i “ k ` 1 : n do
4 for j “ k ` 1 : n do
5 Api, jq “ Api, jq ´Api, kqApk, jq;

There are 5 other versions kji, ikj, ijk, jik, jki. The jki version is sometimes
called left looking LU. It will become important for sparse matrices in Chapter 8.

Clever data arrangement (vector formulation) in kij-version leads to the so
called outer product Gaussian Elimination:

Algorithm 7.2: Outer product Gaussian Elimination
Input: A P Rnˆn fulfilling Theorem 7.1
Output: L,U P Rnˆn such that A “ LU as in Theorem 7.1 A is

overwritten by the factors.
1 for k “ 1 : n´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk, kq;
4 Aprows,rowsq “ Aprows,rowsq ´Aprows, kqApk,rowsq;

Algorithm 7.2 is a rank-1 update, i.e., BLAS Level 2 operation formulation of the
Gaussian elimination process. It involves 2

3n
3 flops. Solving Ax “ b for x P Rn

given A P Rnˆn, b P Rn now is performed as in

Algorithm 7.3: Linear System solver using Gaussian Elimination and for-
ward/backward substitution

Input: A P Rnˆn, b P Rn
Output: x P Rn

1 Compute L,U as in Theorem 7.1, such that
A “ LU (e.g. via Algorithm 7.2);

2 Solve Ly “ b by forward substitution (e.g., using Algorithm 7.5);
3 Solve Ux “ y by backward substitution;

152 Chapter 7. The Solution of Moderate Size Dense Linear Systems

Algorithm 7.4: Forward Substitution (Row Version)
Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 bp1q “ bp1q
Lp1,1q ;

2 for i “ 2 : n do
3 bpiq “ bpiq´Lpi,1:i´1qbp1:i´1q

Lpi,iq

7.2 Cache/BLAS Exploitation

7.2.1 Triangular System

Consider

a11x1 “ b1,

a21x1 ` a22x2 “ b2.

In case a11 “ 0 and a22 “ 0 this leads to

x1 “
b1
a11

,

x2 “
b2 ´ a11x1

a22
“
b2 ´

a21
a11
b1

a22

In the i-th equation in a system Lx “ b in Algorithm 7.3 we find:

xi “

bi ´
i´1
ř

j“1
lijxj

lii

For the computation of all xi we find a complexity of n2 flops.

An accuracy discussion can be found in [2]. It states that the rounding error in
each element of the solution vector is smaller than n ¨ u.

Note that row-wise access to L is “bad” in column major storage, since it de-
stroys memory locality. Algorithm 7.5 presents a column major storage oriented
version of the procedure.

Note further that the backward substitution can be derived completely analo-
gously.

7.2. Cache/BLAS Exploitation 153

Algorithm 7.5: Forward Substitution (Column Version)
Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 for j “ 1 : n´ 1 do
2 bpjq “ bpjq

Lpj,jq ;

3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;

4 bpnq “ bpnq
Lpn,nq ;

Algorithm 7.6: Block Forward Substitution
Input: L,B as in 7.1
Output: X solving LX “ B

1 for j “ 1 : N do
2 Solve Ljjxj “ Bj for Xj ;
3 for i “ j ` 1 : N do
4 Bi “ Bi ´ LijXj

7.2.2 Triangular Systems with Multiple Right Hand Sides and BLAS
Level-3 formulation

Let B P Rnˆq leading to a family of linear systems LX “ B with X P Rnˆq. L
is (unit) lower triangular and we consider the block substructure as in

»

—

—

—

–

L11 0 ¨ ¨ ¨ 0
L21 L22 ¨ ¨ ¨ 0

...
...

. . .
...

LN1 LN2 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X1

X2
...

XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B1

B2
...
BN

fi

ffi

ffi

ffi

fl

(7.1)

Now we apply Algorithm 7.5 with the Lp1, 1q element replaced by the L11 block
to get

»

—

—

—

–

L22 0 ¨ ¨ ¨ 0
L32 L33 ¨ ¨ ¨ 0

...
...

. . .
...

LN2 LN3 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X2

X3
...

XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B2 ´ L21X1

B3 ´ L31X1
...

BN ´ LN1X1

fi

ffi

ffi

ffi

fl

after computing X1 from L11X1 “ B1 by Algorithm 7.5. Continuing with
L22X2 “ B̃2 and so forth, we derive the block forward elimination scheme
given in Algorithm 7.6

We can optimize the block sizes in (7.1) such that we get optimal performance
out of the BLAS Level 3 block operations.

154 Chapter 7. The Solution of Moderate Size Dense Linear Systems

Again the backward substitution case allows for the analogous approach. This
allows to accelerate the last two steps in Algorithm 7.3 by fast BLAS Level 3
operations.

7.2.3 BLAS Level-3 based Gaussian Elimination

The above rises the obvious question:

Can we do something similar for the Gaussian elimination process?

In fact we can. The following derivation will provide the block outer product
formulation of the outer product Gaussian elimination in Algorithm 7.2. To this
end, let A P Rnˆn with partitioning

A “

„

A11 A12

A21 A22

(7.2)

Here A11 P Rrˆr, A12 P Rpn´rqˆr, A21 P Rrˆpn´rq, A22 P Rpn´rqˆpn´rq, for
a blocking parameter 1 ď r ď n. Now we can compute A11 “ L11U11, e.g.,
using Algorithm 7.2 and solve the triangular systems

L11U12 “ A12 for U12,

L21U11 “ A21 for L21.

Then it follows:
„

A11 A12

A21 A22

“

„

L11 0

L21 Ã22

 „

U11 U12

0 In´r

,

where
Ã22 “ A22 ´ L21U12. (7.3)

Now if Ã22 “ L22U22 were the LU of the updated p2, 2q block, then
„

A11 A12

A21 A22

“

„

L11 0
L21 L22

 „

U11 U12

0 U22

Since we did not post special assumptions on the matrix A in Equation (7.2)
other than the existence of the LU-decomposition, we can proceed with Ã22 as
above. This leads to the procedure summarized in Algorithm 7.7.

Algorithm 7.7 reguires 2
3n

3 flops, just like Algorithm 7.2 but the rank-r update
is a BLAS Level 3 operation, so optimizing the size of r according to our CPUs
cache hierarchy we can expect superior performance. However, for N “ n

r , [1]
shows that the fraction of BLAS Level 3 operations in Algorithm 7.7 is 1 ´ 1

N2 ;
and 1´ 1

N for the block-triangular solves. Note that this contradicts choosing r
as large as possible and requires an additional level of optimization.

7.3. Iterative Refinement 155

Algorithm 7.7: Block Outer Product LU
Input: A P Rnˆn as in Theorem 7.1, r as above
Output: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 l “ minpn, k ` r ´ 1q;
4 Compute Apk : l, k : lq “ L̃Ũ via Algorithm 7.2;
5 Solve L̃Z “ Apk : l, l ` 1 : nq and store Z;
6 Solve WŨ “ Apl ` 1 : n, k : lq and store W ;
7 Perform the rank-r update:

Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´WZ;
8 k “ l ` 1;

Algorithm 7.8: iterative refinement
Input: A P Rnˆn, b P Rn, x̂ an approx. solution
Output: x̂ a solution (approximation)

1 repeat
2 r “ b´Ax̂;
3 solve Ad “ r;
4 update x̂ “ x̂` d

5 until x̂ accurate enough;

7.3 Iterative Refinement

Iterative refinement is a fixed point type approach that seeks to improve the
computed result of a linear system solve. In the notation of Chapter 4 let x̂ be
the computed solution of Ax “ b. The iterative refinement process is summa-
rized in the Algorithm 7.8. A common application is the iterative refinement of
single precision results on a double precision architecture. This is, e.g., used
in connection with accelerator devices such as graphics processing units, that
are usually working a lot faster in single precision, than in double precision.

Motivation: Let r “ b´Ax̂ and d “ A´1r, x̃ “ x̂`d. Then in exact arithmetic
we have

Ax̃ “ Apx̂` dq “ Ax̂`Ad “ pb´ rq `AA´1r “ b´ r ` r “ b

Thus in exact arithmetic the updated x̂ in Algorithm 7.8 would be the exact
solution after 1 step.

The literature distinguishes mainly 2 approaches:

156 Chapter 7. The Solution of Moderate Size Dense Linear Systems

i) fixed precision refinement

ii) mixed precision refinement

In fixed precision refinement all steps in Algorithm 7.8 are computed in the
same precision (u).

For mixed precision refinement the residual r is computed in a higher precision
pūq. Classically û “ u2, i.e., u corresponds to single precision, and ū then
stands for double precision.

Notation: Let A P Rnˆn be a square matrix. The absolute value of A is
defined component-wise:

|A| “ p|aij |qi,j“1,...,n.

Under the assumption

pA`∆Aqx̂ “ b |∆A| ď uW (7.4)

for W non-negative depending on A, n, and u (but not on b), [2] proves the
following two theorems based on forward analysis:

Theorem 7.3 (Mixed Precision Refinement): Let Ax “ b be a non-
singular linear system solved with a method satisfying (7.4) and residuals
in double the working precision. Moreover

η “ u|||A´1p|A| ` wq||8

If η ă 1 ´ δ for δ large enough, then iterative refinement reduces the
forward error by a factor approx. η at each stage until

||x´ x̂||8
||x||8

« u

Theorem 7.4 (Fixed Precision Refinement): Setting as in Theorem 7.3
but with residual computation in working precision. The same reduction
holds, but with limit

||x´ x̂||8
||x||8

ď 2nu
|||A´1||A||x|||8

||x||8
loooooooomoooooooon

condpA,xq

(7.5)

References and Further Reading 157

Remark 7.5: • (7.5) is essentially the best we can expect in fixed pre-
cision.

• Note that the solver need not be of LU type and ū is not limited to
u2.

• When working in û “ u2, i.e., system solves in single precision
and residual in double precision, one can reuse the LU decompo-
sition from the outer solve. That means the iterative refinement is
of Opn2q complexity, i.e., one order of magnitude cheaper than the
actual solve and the amount of data copied is reduced due to single
precision storage.

• Fixed precision iterative refinement may be used to stabilize unsta-
ble solvers for Ax “ b, e.g., LU “ PA computed with poor pivoting
(see [2, Section 12.2]).

• rule of thumb:
machine precision: 10´d “ u, κ8pAq « 10q k steps of mixed
precision refinement lead to approximately minpd, kpd´ qqq correct
digits in x.

Convergence of iterative refinement from the splitting method point of
view: Splitting Methods: A “ B ` pA´Bq

ñ Ax “ bô B´1pB ` pA´Bqqx “ B´1b

ô pI ` pB´1A´ Iqqx “ B´1b

ô x` pB´1A´ Iqx “ B´1b

 xi`1 “ B´1b´ pB´1A´ Iqxi (*)

“ xi `B
´1 pb´Axiq

loooomoooon

ri
looooooomooooooon

di

If B´1 “ pL̂Ûq´1 this reflects a refinement of the LU . From (*) we immediately
find xi`1 “ B´1b`B´1pB ´Aq

loooooomoooooon

“:M

xi. As for the splitting methods in general, by

the Banach fixed point theorem we then have that the iteration converges if M
is a contraction, i.e. ρpMq ă 1.

References and Further Reading

[1] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins

158 Chapter 7. The Solution of Moderate Size Dense Linear Systems

University Press, Baltimore, fourth ed., 2013.

[2] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM Pub-
lications, Philadelphia, PA, second ed., 2002.

[3] A. MEISTER, Numerik linearer Gleichungssysteme. Eine Einführung in
moderne Verfahren., Vieweg+Teubner, Wiesbaden, 4th revised ed. ed.,
2011.

Hier kann auch noch was hin damit man beim Skript lesen auch mal
was zu lachen hat.

CHAPTER 8

Solving Linear Systems With Sparse Matrices

Contents
8.1 Preconditioning . 162

8.1.1 Diagonal Preconditioning 162

8.1.2 Splitting Methods 163

8.1.3 Multigrid approaches 163

8.1.4 Incomplete Factorizations 163

8.1.5 Sparse Approximate Inverses (SPAI) 164

8.2 Krylov Subspaces and Projection Methods 164

8.3 Conjugate Gradients . 166

8.4 Direct Solvers for Sparse Symmetric Systems 168

8.4.1 The Elimination Graph Model for Symmetric Matrices 169

8.4.2 The filled graph G`pAq 171

8.4.3 Characterization of Fill-in 171

8.4.4 Heuristic Fill Reduction 172

8.4.5 Related Software 178

References and Further Reading 179

Recall:

• sparse matrix: A P Rnˆn, such that y “ Ax can be computed in Opnq
complexity.

• storage:

159

160 Chapter 8. Solving Linear Systems With Sparse Matrices

– only non-zero entries are stored,

– indirect indexing is mandatory for minimal storage requirements,

– e.g., CSR (compressed sparse row storage, with C/zero based in-
dexing)
»

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

fl

Ñ

«

1 2 3 4 5 6 7
0 1 1 2 1 3 2
0 2 4 6 7

ff

values (double)
column indices (long)
row-pointers (long)

number of non-zeroes

Issues

“Cache” Indirect indexing requires the value, index and row-pointer vectors to
reside in the cache simultaneously for optimal performance.
Consider:

• 64 bit architecture

• in average 10 entries per row

• 4MB cache

• A P R24 000ˆ24 000

Required storage:

p24 000` 240 000` 240 000q ˆ 8 Bytes “ 504ˆ 8 Bytes

“ 4032 kBytes

That means we have 4096 ´ 4032 kBytes“ 64 kByte of cache left for
instructions in y “ Ax. In applications one easily wants to work with
n “ 106 . . . 108, which on modern computers usually easily fits into RAM.
The execution speed of operations with A are thus strictly limited by data
transfer rate from the main memory to the caches.

“Fill in” Another important issue with sparse matrices arises with direct solvers.
These require matrix factorizations. However, it can not be guaranteed
that the factors stay sparse if the matrix A is sparse. Usually the factors
get a certain amount of new entries. The new entries are referred to as
fill or fill-in. We will see more details on this phenomenon in Section 8.4.

161

Example 8.1: (Fill-In) The diagrams below show the non-zero en-
try distribution in A, L and U for A sparse and A “ LU .

A L U

worst case

best case

Definition 8.2 (pattern): Let A P Rnˆn be a matrix.
We call the set

PpAq “ tpi, jq : aij “ 0u

the pattern of A.
Furthermore, we define

PRpA, iq “ tj : aij “ 0u

as the pattern of the i-th row of A.

Definition 8.3 (structural rank): Let PpAq Ă N2 be a pattern of a matrix
A P Rnˆn. The number

rkSpAq “ maxtrank pBq : B P Rnˆn : ρpBq “ ρpAqu

is called the structural rank of A.
If rkSpAq ď n, then A is called structural rank deficient

Example 8.4:

A “

„

1 1
1 1

, C “

„

0 1
0 0

rkSpAq “ 2 “ 1 “ rank pAq rkSpCq “ 1 “ rank pCq

162 Chapter 8. Solving Linear Systems With Sparse Matrices

Remark 8.5: The structural rank of A is:
• a property related to the pattern PpAq,
• much cheaper to compute than the (numerical) rank,
• available via sprank() in MATLAB,
• an upper bound to the rank of A.

8.1 Preconditioning

In everything presented here, we will only use the so-called left preconditioning.
Other versions like right, or two sided preconditioning also exist. The ideas are
very similar there, therefore we restrict the presentation to the most simple
case.

Recall Lemma 6.17:

P P Cnˆn regular, A P Cnˆn, x, y P Cn

Ax “ bô PAx “ Pb

The matrix P can be used to lower the condition number for finding x. The
perfect candidate for such a matrix P is obviously A´1, since then PA “ I and
κpPAq “ 1.

However, A´1 is not accessible and especial has even worse “fill in” restrictions
than the factorizations. Good approximations to A´1 are thus required that are:

• cheap to generate,

• easily and efficiently applicable,

• able to get stored with similar memory requirement as A.

P does not need to be a matrix, e.g., sometimes other (iterative) solvers are
used.

8.1.1 Diagonal Preconditioning

P´1 “ diag pAq

• also called Jacobi preconditioning

• very simple and cheap

• might improve certain problems, e.g., diagonal dominant systems

8.1. Preconditioning 163

• generally not sufficient

• more sophisticated variants use diagonal kˆ k (k ą 1) blocks or multiple
diagonals (e.g., tridiagonal preconditioning)

8.1.2 Splitting Methods

Recall Section 7.3. Set A “ B ` pA´Bq and define:

xi`1 “ B´1b`B´1pB ´Aq
loooooomoooooon

M

x.

If we can ensure ρpMq ă 1 ñ then by a fixed point argument we can guarantee
convergence.

Example 8.6: Two common examples of splitting methods are:

• B “ diag pAq Jacobi method

• B “ lower triangular Gauß Seidel method

Splitting methods are often considered to be smoothers rather than precondi-
tioners. They mainly damp out high frequency parts of the error. Therefore,
often they are used in combination with multigrid techniques in order to smooth
interpolation errors.

8.1.3 Multigrid approaches

If A was generated by a hierarchical approach (e.g., the finite element method
(FEM) with successive mesh refinement), the multiple layers (FEM grids) can
be used to successively restrict the current iterate of the outer iteration to the
coarsest grid/mesh. Then one gets a good solution there and performs inter-
polation to get back to the finest level.

Splitting methods are used to smooth out the high frequency interpolation er-
rors. If the hierarchy is unknown or unusable, algebraic approaches can be
used to generate the hierarchy from the connectivity graph of the matrix, i.e.,
the graph with nodes 1, . . . , n and edges from i to j if pi, jq P PpAq. Clusters
and subclusters of nodes then produce the required hierarchy.

8.1.4 Incomplete Factorizations

Computation of LU “ A is often infeasible due to fill-in.
Basic idea: ILU“̂ILUp0q.

164 Chapter 8. Solving Linear Systems With Sparse Matrices

Only allow entries in L,U corresponding to PpAq.

• usually only poor approximation

• variants allow:

– “levels of fill” (ILUpkq)

– fill-in that exceeds a drop tolerance (ILUpεq)

– adding dropped fill to the diagonal pMICq

8.1.5 Sparse Approximate Inverses (SPAI)

The basic idea of the sparse approximate inverse (SPAI) is to find the matrix
M P Rnˆn that best approximatesA´1 among all matrices with PpMq “ PpAq,
in the sense

min
m

‖AM ´ I‖2
F “ min

M

n
ÿ

j“1

‖Amj ´ ej‖2
F

looooooooomooooooooon

n independent least squares problems

.

The SPAI preconditioner is especially attractive in parallel computing due to the
independent column wise computation.

In any case, only matrix vector products are required for the application of the
preconditioner.

8.2 Krylov Subspaces and Projection Methods

Definition 8.7: A P Cnˆn regular, b P Cn. A projection method forAx “ b
is a procedure for approximation of x by xm P x0 `Km, which satisfies

pb´Axmq K Lm. (8.1)

Here, x0 P Cn is an arbitrary initial vector and Km, Lm arem-dimensional
subspaces of Cn.
(8.1) represents orthogonality in the Euclidean sense.
In case Km “ LM , (8.1) is called Galerkin-condition and one has an
orthogonal projection method. In case Km “ Lm, (8.1) is called Petrov-
Galerkin-condition and one has an oblique projection method.

8.2. Krylov Subspaces and Projection Methods 165

Definition 8.8: A P Cnˆn regular, y P Cn.
i) KmpA, yq “ Spanty,Ay,A2y, . . . , Am´1yu is called the m-th

Krylov subspace of A for a seed vector y.
ii) A projection method with Km “ KmpA, yq is called Krylov subspace

(projection) method.

Definition 8.9 (minimal polynomial of A): Let pvpλq “
λ
ř

j“0
ajλ

j . pv is

called minimal polynomial of A if v P N is the smallest degree such that
pvpAq “ 0.

In exact arithmetic we get the exact solution with m “ u, since

v
ÿ

j“0

ajA
j “ 0 ô A

v
ÿ

j“1

ajA
j´1 “ ´a0I

thus

A´1 “ ´
1

a0

v
ÿ

j“1

ajA
j´1

which, in turn, means

x “ A´1b “ ´
1

a0

v
ÿ

j“1

ajA
j´1b P KvpA, bq

Now we let x0 P Cn be the initial vector and r0 :“ b ´ Ax0 the correspond-
ing initial residual. Further, let Km “ KmpA, r0q, Lm be subspaces, and the
columns of Vm,Wm P Cnˆm bases of Km and Lm, respectively.

Then, for xm P x0 ` Km there exists a σm P Cm with xm “ x0 ` Vmσm and
(8.1) holds if and only if

ô 0 “WH
m pb´Apx0 ` Vmσmqq

ô 0 “WH
m pb´Ax0q ´W

H
mAVmσm

ôWH
mAVmσm “WH

m r0

ô σm “ pW
H
mAVmq

´1WH
m r0.

Thus xm “ x0 ` VmpW
H
mAVmq

´1WH
m r0

rm “ b´Axm

“ b´Apx0 ` VmpW
H
mAVmq

´1WH
m r0q

“ r0 ´AVmpW
H
mAVmq

´1WH
m r0

166 Chapter 8. Solving Linear Systems With Sparse Matrices

The projection Pm to the m-th subspace is then given as Pm “ I ´Qm, where
Qm “ pWH

mAVmq
´1WH

m . The above derivation proves the following simple
lemma.

Lemma 8.10: If WH
mAVm is invertible, then (8.1) has a unique solution

given as
xm “ x0 ` VM pW

H
mAVmq

´1WH
m r0

with corresponding residual

rm “ r0 ´AVmpW
H
mAVmq

´1WH
m r0

The invertibility assumption is sometimes easily guaranteed. For example if A
is symmetric positive definite (s.p.d.) with Km “ KmpA, r0q “ Lm

ñWm “ Vm and dimKm “ m

ñWH
mAVm “ V H

m AVm s.p.d.

Analogously, for A invertible and Lm “ AKm ñ Wm “ AVm with dimKm “

m “ dimLm, we immediately see that WH
mAVm “ V H

m AHAVm is s.p.d..

8.3 Conjugate Gradients

Different choices of Km and Lm lead to different methods. Let ARnˆn be
symmetric and positive definite. If we choose xm P x0 ` KmpA, r0q and
rm K KmpA, r0q this leads to the choice Km “ Lm “ KmpA, r0q. Then,
also Vm “ Wm and therefore, as we have investigated, WH

mAVm “ V H
m AWm

is s.p.d. for all m. The resulting method is called conjugate gradients (CG)
method and is summarized in Algorithm 8.1. We have discussed the neces-
sity of preconditioning in Section 8.1 above. The algorithm that results from
the application of left preconditioning in Algorithm 8.1 is the preconditioned CG
presented in Algorithm 8.2. Note that the algorithm can be formulated such that
we only need one additional matrix vector product at the cost of one additional
vector in memory, namely the preconditioned residual.

8.3. Conjugate Gradients 167

Algorithm 8.1: Conjugate Gradient Method
Input: A P Rnˆn, b P Rn, x0 P Rn
Output: x “ A´1b

1 p0 “ r0 “ b´Ax0, α0 “ ‖r0‖2
2;

2 for m “ 0, . . . , n´ 1 do
3 if αm “ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq

;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 αm`1 “ ‖rm`1‖2

2;
9 pm`1 “ rm`1 `

αm`1

αm
pm;

10 else
11 STOP;

Remark 8.11: The CG method is often derived from minimization of the
functional

F : Rn Ñ R,

x ÞÑ
1

2
pAx, xq2 ´ pb, xq2

In fact CG minimized the error em :“ xm´A
´1b with respect to the norm

‖x‖A :“
a

pAx, xq2

induced by the matrix A due to symmetry and positive definiteness.

Theorem 8.12: Let
em “ xm ´A

´1b

denote the error in the m-th step of the CG algorithm. Then it holds

‖em‖A ď 2

ˆ

κ2pAq ´ 1

κ2pAq ` 1

˙m

‖e0‖A.

Proof. any textbook on iterative methods.

168 Chapter 8. Solving Linear Systems With Sparse Matrices

Algorithm 8.2: Preconditioned Conjugate Gradient Method

Input: A P Rnˆn, b P Rn, x0 P Rn, A´1 « P P Rnˆn
Output: x “ A´1b

1 r0 “ b´Ax0, p0 “ z0 “ Pr0, α0 “ pr0, p0q;
2 for m “ 0 : n´ 1 do
3 if αm “ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq2

;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 zm`1 “ Prm`1;
9 αm`1 “ prm`1, zm`1q2;

10 pm`1 “ zm`1 `
αm`1

αm
pm;

11 else
12 STOP;

8.4 Direct Solvers for Sparse Symmetric Systems

In the following, to ease the presentations, we will follow the general assump-
tions that

• A P Rnˆn is sparse and symmetric,

• and no pivoting is used.

For non-symmetric matrices the presented concepts have to be generalized
from undirected to directed graphs. We leave these details out to get a better
view on the basic ideas and avoid the additional technical difficulties that might
distract a beginning reader.

Definition 8.13: Two graphs are easily related to the matrix A P Rnˆn.
i) V “ t1, . . . , nu is called the set of vertices, i.e., variable indices.
ii) The set of edges E Ď V 2 is the set of pairs pi, jq P E ô aij “ 0.
iii) The directed connectivity graph of A GdpAq “ pV, Eq associates a

direction to an edge by the order of indices in the pair.
iv) The undirected connectivity graph of A GpAq “ pV, Eq identifies
pi, jq “ pj, iq, and thus neglects the direction.

8.4. Direct Solvers for Sparse Symmetric Systems 169

Remark 8.14: We collect some properties of the symmetric case treated
in this chapter.

• A symmetric ñ aij “ aji ñ “pi, jq P E ô pj, iq P E”
ñ its is sufficient to the treat the undirected graph

• If A s.p.d. then @i aii ą 0 ñ pi, iq P E , i.e., the graph contains
the trivial edges (usually not included in graphical representations
of the graph)

• The number of nonzero elements in column i equals the number of
neighbors of the vertex i in the graph GpAq.

• Symmetric permutations, i.e., permutations of the matrix where
both columns and rows are swapped simultaneously, are equiva-
lent to renumbering the graph, i.e., application of a permutation to
the elements of V .

• E“̂PpAq

8.4.1 The Elimination Graph Model for Symmetric Matrices

Idea: Compute LLT from a sequence of rank-1 reductions, following the lines
of the derivation of Algorithm 7.2

A “ A0 “ H0 “

„

d1 vT1
v1 H̃1

, H̃1 P Rn´1ˆn´1

“

« ?
d1 0

1?
d1
v1 In´1

ff

loooooooomoooooooon

L1

„

1 0
0 H1

looomooon

A1

«?
d1

1?
d1
vT1

0 In´1

ff

loooooooomoooooooon

LT
1

A “ pL1L2L3 . . . Ln´1qInpL
T
n´1 . . . L

T
3 L

T
2 L

T
1 q

“ pL1L2L3 . . . Ln´1qInpL1L2L3 . . . Ln´1q
T

“ LLT

vjv
T
j influence the structure, i.e., pattern of Hj . It is a usually dense (but prob-

ably scattered) sub-block of Hj . If PpvjvTj qzpPpvjvTj q X PpHj´1qq “ H then
step j leads to fill-in in Hj .

What does this procedure mean in terms of the graphs? The answer is
best understood following a simple example.

170 Chapter 8. Solving Linear Systems With Sparse Matrices

Example 8.15: This example demonstrates the graph elimination procedure
and resulting fill-in for the Cholesky decomposition of a simple 6 ˆ 6 exam-
ple. Actual values are unimportant and thus replaced by ˚’s. The indices are
indicated on the diagonal.

1

2

34

6 5

(a) initial graph G0

H0 “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) corresponding submatrix 0

2

34

6 5

(c) elimination graph G1

H1 “

»

—

—

—

—

–

2 ˚ ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

fl

(d) corresponding submatrix 1

34

6 5

(e) elimination graph G2

H2 “

»

—

—

–

3 ˚ ˚ ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ ˚ 6

fi

ffi

ffi

fl

(f) corresponding submatrix 2

4

6 5

(g) elimination graph G3

H3 “

»

–

4 ˚ ˚

˚ 5 ˚

˚ ˚ 6

fi

fl

(h) corresponding submatrix 3

Figure 8.1: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition

8.4. Direct Solvers for Sparse Symmetric Systems 171

Algorithm 8.3: graph eliminations process
Input: GpAq “ pV, Eq undirected graph of A
Output: G1, . . . ,Gn´1 sequence of eliminations graphs

1 for k=1:n-1 do
2 V “ Vztku (remove vertex k);
3 E “ pEztpk, lq : l neighbor of kuq Y tpx, yq : x, y neighbors of ku;

8.4.2 The filled graph G`pAq

The procedure above introduces new elements. Let F “ L ` LT , then PpF q
is the filled pattern of A and GpF q ist called the filled graph of A denoted by
G`pAq. For the example above we have:

1

2

34

6 5

(a) The filled graph G`pAq “ GpF q

F “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚ ˚

˚ 3 ˚ ˚ ˚

˚ ˚ 4 ˚ ˚

˚ ˚ 5 ˚

˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) The final matrix F “ L` LT with fill.

Figure 8.2: The filled graph and matrix of a Cholesky decomposition example.

Obviously, the filled graph G`pAq is the union of the elimination graphs G0,G1, . . .
In fact one can prove:

Lemma 8.16 ([3]): pi, jq P G`pAq ô pi, jq P GpAq, or Dk ă minpi, jq,
such that pi, kq P G`pAq and pk, jq P G`pAq.

8.4.3 Characterization of Fill-in

Let L “ plijqi,j“1,...,n be a Cholesky factor of A, i.e., A “ LLT .

Theorem 8.17 (Fill-path-theorem (Rose/Trjan/Lueker 1976)): lij “ 0 ô D

path in GpAq between i and j such that all nodes (vertices’s) in the path
have indices’s smaller than both i and j.

172 Chapter 8. Solving Linear Systems With Sparse Matrices

We have seen in the introduction of Chapter 8, that reordering of variables can
have strong impact on the amount of fill-in and consequently on the subsequent
operations.

Definition 8.18: The minimum fill-in problem describes the problem of
finding the optimal permutation of vertex labels that produces the smallest
possible number of new edges in G`pAq compared to GpAq.

[6] shows that the minimum fill-in problem is NP-complete and thus NP-hard
in general. Several heuristic approaches exist that come up with sub-optimal
solutions.

8.4.4 Heuristic Fill Reduction

Mainly 3 classes of methods exist.

i) Global approaches

• Structured permutation

• Fill in only in the resulting structure

• Examples: (reverse) Cuthill-McKee, nested dissection

ii) Local heuristics

• Incorporated into pivoting strategies

• Symmetric case: minimum degree, minimum fill

• General case: Markowitz criterion

iii) Hybrid method

(a) Permutation to block structure

(b) Local heuristic applied on the single blocks

(Reverse) Cuthill-McKee Reordering (RCM)

A global strategy that approaches the minimum fill problem by bandwidth mini-
mization is the (Reverse) Cuthill-McKee reordering. Its general aim is to find a
symmetric permutation such that

b “ max
i

max
aij “0

|i´ j|

8.4. Direct Solvers for Sparse Symmetric Systems 173

is minimized. Recall that a symmetric permutation is just the same as a vertex
relabeling.

Example 8.19: Influence of the ordering of the degrees of freedom on the re-
sulting fill-in in the Cholesky decomposition is demonstrated in the following two
figures.

1 2 3

4

56

(a) Graph before reordering.

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Bandwidth 5 pattern.

Figure 8.3: Graph and sparsity pattern before reordering.

2 3 5

1

64

(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚

2 ˚ ˚

˚ ˚ 3 ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 2 pattern.

Figure 8.4: Graph and sparsity pattern after RCM reordering.

Basically, RCM reordering selects a root-mode, forms the tree that consists of
all shortest paths to all other vertices in GpAq and then performs an ordered
breadth first search on that tree to fill the permutation vector.

In contrast to a standard breadth first search, here the vertexes are ordered
with respect to their increasing degree.

Step 12 in Algorithm 8.4 is mandatory for the reverse reordering, when avoided
the algorithm implements Cuthill-McKee reordering. Selection of a good root
node in Step 3 is crucial as we learn from the next example.

Example 8.20: This example shows the importance of the selection of the root
node in Step 3 of Algorithm 8.4.

174 Chapter 8. Solving Linear Systems With Sparse Matrices

Algorithm 8.4: RCM reordering
Input: A P Rnˆn with PpAq symmetric
Output: p P Rn such that Ã “ App, pq has reduced bandwidth

1 Q “ rs, R “ rs;
2 repeat
3 Select root node P ;
4 R “ rP,Rs;
5 Q “ rQ,@g adjacent to P ordered by increasing degrees;
6 while Q “ H do
7 C “ Qp1q;
8 if C R R then
9 R “ rR,Cs,

10 Q “ rQp2 : endq, all nodes adjacent of C that are not in R by
increasing degrees;

11 until all nodes are contained in R;
12 p “ Rpn : ´1 : 1q;

4

2

1 3

6 5
R “ 4 Q “ 2
R “ r4, 2s Q “ r1, 3s
R “ r4, 2, 1s Q “ r3, 6s
R “ r4, 2, 1, 3s Q “ r6, 5s
R “ r4, 2, 1, 3, 6, 5s Q “ rs
p “ r5, 6, 3, 1, 2, 4s

6

1

2

4

5

3

R “ r6s Q “ r1, 5s
R “ r6, 1s Q “ r5, 2s
R “ r6, 1, 5s Q “ r2, 3s
R “ r6, 1, 5, 2s Q “ r3, 4s
R “ r6, 1, 5, 2, 3, 4s Q “ rs
p “ r4, 3, 2, 5, 1, 6s

Here the right column shows exactly the procedure that lead to the bandwidth
2 representation in Example 8.19.

8.4. Direct Solvers for Sparse Symmetric Systems 175

Algorithm 8.5: Generic local strategy
Input: A,m
Output: p P Rn such that Ã “ App, pq is the reordered matrix

1 repeat
2 Select node P (the pivot element) with min. metric value p “ rp, P s;
3 Update elimination graph erasing P ;
4 Update metric for all m ą n selected nodes;
5 until all nodes selected ;

Local heuristics

Let A P Rnˆn sparse symmetric GpAq “ pV, Eq the undirected corresponding
graph of A and m : V Ñ R such that mpiq ă mpjq implies that vertex i is
“better” than vertex j a metric

Note:

• Step 4 in Algorithm 8.5 should be restricted to those nodes where m
changed due to the graph update.

• The local pivot search allows combination with classical pivoting strate-
gies to increase the numerical stability.

Minimum degree idea: The basic strategy behind minimum degree reorder-
ing is to choose the degree of a vertex as the metric. That means mpiq ă mpjq
if node i has less neighbors than node j. Especially the degrees only change
for adjacent nodes of P during the elimination of P , i.e., we have a very local
metric updated.

Step 3 of Algorithm 8.5 is performed as in Section 8.4.1.

Minimum degree reordering is not always optimal as we see from the following
example.

Example 8.21: We consider the following matrix A P R9ˆ 9 for which factor-
ization is possible without fill-in.

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ˚ ˚ ˚

˚ 2 ˚ ˚

˚ ˚ 3 ˚

˚ ˚ ˚ 4 ˚

˚ 5 ˚

˚ 6 ˚ ˚ ˚

˚ 7 ˚ ˚

˚ ˚ 8 ˚

˚ ˚ ˚ 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

176 Chapter 8. Solving Linear Systems With Sparse Matrices

GpAq looks like this

1

2

3

4 5 6

7

8

9

Now the minimum degree metric suggests to choose node 5 (of degree 2) for
elimination, which results in:

1

2

3

4 6

7

8

9

This obviously introduces a new edge from node 4 to node 6, i.e., results in
fill-in. On the other hand, all other nodes could obviously be removed without
causing additional edges.

All heuristic approaches to the minimum fill problem in general only produce
suboptimal solutions. This is however clear, since the optimal solution is usually
not accessible since it is the solution to an n-p hard problem.

Example 8.22 (minimum degree metric versus minimum fill metric): The fol-
lowing simple graph (edges) shows the discrepancies between minimum
degree and minimum fill as metrics.

1

2

3

4

5

67

8

9

The potential fill is indicated by the colored edges. The edges indicate the

8.4. Direct Solvers for Sparse Symmetric Systems 177

fill resulting from the removal of node 4. The edges show that all edges that
are required to preserve paths after removal of node 9 do already exist. That
means, the degree and the fill measures of node 4 are both 3, while the degree
of node 9 is 4, but the fill measure is 0. Below we collect a comparison of the
two metrics on the entire graph.

node degree metric value fill metric value

1 1 0
2 2 1
3 2 1
4 3 3
5 5 4
6 4 0
7 4 0
8 5 4
9 4 0

Hybrid method and graph components

Definition 8.23 (connected): In an undirected graph G two vertices’s u
and v are called connected if G contains a path from u to v. Otherwise,
they are called disconnected.
A Graph G is said to be connected if each pair of vertices’s is connected.
A connected component is a maximal connected subgraph of G.

That mean, if u, v are vertexes in G from different connected components, then
u, v are disconnected. Thus, the corresponding degrees of freedom in the
linear system are independent of each other.

Especially, reordering A corresponding to the connected components leads to
a block diagonal matrix. The resulting diagonal blocks can then be treated by
local strategies or dense solvers.

For general non-symmetric matrices strongly connected components have to
be used. That means, both directed paths between two vertexes need to exist.
Therefore, not all diagonal blocks decouple completely, since only one direc-
tion may exist for a pair of vertexes in two components. Nonetheless strongly
connected components may form so-called supernodes that can be used to
localize the memory access. This idea leads to the SuperLU algorithm and
software package.

178 Chapter 8. Solving Linear Systems With Sparse Matrices

Sparse Matrix Vector Products and Reordering

Consider the matrix vector product of a matrix A stored in CSR format and a
dense vector x.

Naively looking at the problem one might think: Even if the elements in A are
scattered all over the row, in the CSR format they are stored one after the other,
anyway. This would lead us to the expectation that we get no advantage due to
reordering.

However, this is only half the truth. Consider an RCM reordered matrix with
small bandwidth. The relevant indices’s corresponding to the entries are local,
as well. Thus, a local portion of x is used. Additionally, the next row has a very
similar set of indices containing entries. That means, in the next row product
almost the entire portion of x can be reused, which leads to only little cache
misses on x.

In contrast to this scattered row entries will lead to a rather irregular and espe-
cially non-sequential access to x causing lots of cache misses.

8.4.5 Related Software

• SuiteSparse (Section 6.4.3)

– CSparse - Introductory basic direct solver library used for “The sparse
backslash book” [2]

– UMFPACK - The library behind the sparse “z” in MATLAB and the
sparse direct solver in SciPy1

– Approximate Minimum Degree related reordering

• ITPack - see Section 6.4.4

• Trilinos - see Section 6.4.5

• METIS2 / SCOTCH3 - 2 libraries for graph partitioning, clustering and
computation of fill reducing reorderings.

1http://www.scipy.org
2http://www.cs.umn.edu/~metis
3http://www.labri.fr/perso/pelegrin/scotch/

http://www.scipy.org
http://www.cs.umn.edu/~metis
http://www.labri.fr/perso/pelegrin/scotch/

References and Further Reading 179

References and Further Reading

[1] T. A. DAVIS, Direct methods for sparse linear systems (lec-
tures). http://www.youtube.com/playlist?list=
PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB.

[2] , Direct Methods for Sparse Linear Systems, no. 2 in Fundamentals of
Algorithms, SIAM, Philadelphia, PA, USA, 2006.

[3] S. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3
(1961), pp. 119–130.

[4] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,
PA, 2003.

[5] H. A. VAN DER VORST, Iterative Krylov Methods for Large Linear Systems,
Cambridge University Press, Cambridge, 2003.

[6] M. YANNAKAKIS, Computing the minimum fill-in is np-complete, SIAM Jour-
nal on Algebraic Discrete Methods, 2 (1981), pp. 77–79.

http://www.youtube.com/playlist?list=PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB
http://www.youtube.com/playlist?list=PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB

180 Chapter 8. Solving Linear Systems With Sparse Matrices

References and Further Reading 181

	Linux and the Commandline
	A short History of an Accidental Revolution
	The Linux Shell and Basic Commands for Handling Files
	Getting Help
	Manipulation of Simple Commands
	Script File Basics
	Simple Automatic File Manipulation
	Remote Computing on Encrypted Connections
	Screen an Online/Offline Terminal
	The Toolchain
	References and Further Reading

	Revision Control
	Types of Revision Control Systems
	Local Revision Control
	Central Revision Control
	Distributed Revision Control

	Collaborative Work on Projects
	Conflicts
	Branches
	Tags

	Introduction to C and the GNU Toolchain
	The Programming Environment
	C Statements, Types and Operators
	Control Structures
	Complex Data Types and Arrays
	Functions
	An Introduction to the Standard Library
	stdio.h and stdlib.h
	math.h and complex.h
	string.h

	File Input and Output
	The Preprocessor and Header Files
	Makefiles
	Writing Own Libraries
	Interfacing Fortran
	Automatic Generation of Documentations Using DOXYGEN
	References and Further Reading

	Error Analysis and Machine Numbers
	Machine Numbers
	Rounding Errors and Error Propagation
	Rounding Rules
	Computer Arithmetic
	Error Propagation
	The IEEE Standard 754

	Error Analysis
	References and Further Reading

	Memory Architecture and Memory Management
	Virtual Memory Concept
	Paging
	Memory Related Error Signals

	Volatile memory
	Registers
	Cache
	Main Memory

	Non-Volatile Storage
	Local Storage Media
	Local Network
	Cloud and Remote Network Services

	Non Uniform Memory Access
	Cache Coherence
	Memory Consistency

	References and Further Reading

	Basic Operations, Formats and Matrix-Norms
	Vector Norms and Inner Products
	Linear Operators, Operator and Matrix Norms
	Spectral Norm and Spectral Radius
	Condition Number and Singular Values
	Some Remarks on 2(A)

	Matrix Storage Formats
	Dense Matrices
	Sparse Matrices
	Complex Matrices

	Linear Algebra Software
	Basic Linear Algebra Subroutines (BLAS)
	Linear Algebra PACKage (LAPACK)
	SuiteSparse
	ITPACK
	Trilinos
	Native Packages for other Programming Environments and Languages

	References and Further Reading

	The Solution of Moderate Size Dense Linear Systems
	Important Preliminaries
	Cache/BLAS Exploitation
	Triangular System
	Triangular Systems with Multiple Right Hand Sides and BLAS Level-3 formulation
	BLAS Level-3 based Gaussian Elimination

	Iterative Refinement
	References and Further Reading

	Solving Linear Systems With Sparse Matrices
	Preconditioning
	Diagonal Preconditioning
	Splitting Methods
	Multigrid approaches
	Incomplete Factorizations
	Sparse Approximate Inverses (SPAI)

	Krylov Subspaces and Projection Methods
	Conjugate Gradients
	Direct Solvers for Sparse Symmetric Systems
	The Elimination Graph Model for Symmetric Matrices
	The filled graph G+(A)
	Characterization of Fill-in
	Heuristic Fill Reduction
	Related Software

	References and Further Reading

