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Symmetric Multiprocessing

Definition (Symmetric Multiprocessing (SMP))

The situation where two or more identical processing elements access a
shared periphery (i.e., memory, I/O,. . . ) is called symmetric
multiprocessing or simply (SMP).

The most common examples are

Multiprocessor systems,

Multicore CPUs.
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Figure: Schematic of a general parallel system
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Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all
processors at the same time scale, independent of which processor
preforms the request and which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means
classical multicore chips are an example of a UMA system.
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Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary
depending on whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors
per socket and a separate portion of the memory controlled by each
socket. Also recent “cluster on a chip” design processors like AMDs
bulldozer
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Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Figure: AMDs Bulldozer layout is a NUMA example.1

1
By The Portable Hardware Locality (hwloc) Project (Raysonho@Open Grid Scheduler / Grid Engine) [see page for license], via

Wikimedia Commons
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Memory Hierarchy
Cache Coherence

Definition (cache coherence)

The problem of keeping multiple copies of a single piece of data in the
local caches of the different processors that hold it consistent is called
cache coherence problem.

Cache coherence protocols:

guarantee a consistent view of the main memory at any time.

Several protocols exist.

Basic idea is to invalidate all other copies whenever one of them is
updated.
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Processes and Threads
Multiprocessing

Definition (Process)

A computer program in execution is called a process.

A process consists of:

the programs machine code,

the program data worked on,

the current execution state, i.e., the context of the process, register
and cache contents, . . .

Each process has a separate address space in the main memory.

Execution time slices are assigned to the active processes by the
operating systems (OSs) scheduler. A switch of processes requires
exchanging the process context, i.e., a short execution delay.
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Processes and Threads
Multiprocessing

Multiple processes may be used for the parallel execution of compute
tasks.

On Unix/Linux systems the fork() system call can be used to generate
child processes. Each child process is generated a copy of the calling
parent process. It receives an exact copy of the address space of the
parent and a new unique process ID (PID).

Communication between parent and child processes can be implemented
via sockets or files, which usually leads to large overhead for data
exchange.
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Processes and Threads
Threading

Definition (Thread)

In the thread model a process may consist of several execution
sub-entities, i.e, control flows, progressing at the same time. These are
usually called threads, or lightweight processes.

All threads of a process share the same address space.
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Processes and Threads
Threading

Two types of implementations exist:

user level threads:

administration and scheduling in user space,
threading library maps the threads into the parent process,
quick task switches avoiding the OS.

kernel threads:

administration and scheduling by OS kernel and scheduler,
different threads of the same process may run on different processors,
blocking of single threads does not block the entire process,
thread switches require OS context switches.

Here we concentrate on POSIX threads, or Pthreads. These are available
on all major OSes. The actual implementations range from from user
space wrappers (pthreads-w32 mapping pthreads to windows threads)
to lightweight process type implementations (e.g. Solaris 2).
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Processes and Threads
Mapping of user level threads to kernel threads or processes
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Figure: N:1 mapping for OS incapable of kernel threads
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Mapping of user level threads to kernel threads or processes
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Figure: 1:1 mapping of user threads to kernel threads

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 56/342



Symmetric Multiprocessing Memory Hierarchy Processes and Threads

Processes and Threads
Mapping of user level threads to kernel threads or processes
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Figure: N:M mapping of user threads to kernel threads with library thread
scheduler
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Processes and Threads
Properties and Problems

Parallel versus concurrent execution
1 Often the two notions parallel and concurrent execution are used as

synonyms of each other. In fact concurrent is more general.

2 The parallel execution of a set of tasks requires parallel hardware on
which they can be executed simultaneously.

3 The concurrent execution only requires a quasi parallel environment
that allows all tasks to be in progress at the same time.

4 That means “parallel” execution defines a subset of “concurrent”
execution.
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Processes and Threads
Properties and Problems

Definition (race condition)

When several threads/processes of a parallel program have read and write
access to a common piece of data, access needs to be mutually exclusive.
Failure to ensure this, leads to a race condition, where the final value
depends on the sequence of uncontrollable/random events. Usually data
corruption is then unavoidable.

Example

Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1
write 2

Thread 1 Thread 2 value

0
read 0

read 0
increment 0

write 1
increment 1
write 1
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Processes and Threads
Protection of critical regions

Definition (semaphore)

A semaphore is a simple flag (binary semaphore) or a counter (counting
semaphore) indicating the availability of shared resources in a critical region.

Definition (mutual exclusion variable (mutex))

The mutual exclusion variable, or shortly mutex variable, implements a simple
locking mechanism regarding the critical region. Each process/thread checks
the lock upon entry to the region. If it is open the process/thread enters and
locks it behind. Thus, all other processes/threads are prevented from entering
and the process in the critical region has exclusive access to the shared data.
When exiting the region the lock is opened.

Both the above definitions introduce the programming models. Actual

implementations may be more or less complete. For example the

pthreads-implementation lacks counting semaphores.
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Processes and Threads
Protection of critical regions

deadlock
A deadlock describes the unfortunate situation, when semaphores, or
mutexes have not, or have inappropriately been applied such that no
process/thread is able to enter the critical region anymore and the
parallel program is unable to proceed.
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Processes and Threads
Dining Philosophers

Example (dining philosophers)

Figure: The dining philosophers
problem

Each philosopher alternatingly eats or
thinks,

to eat the left and right forks are both
required,

every fork can only be used by one
philosopher at a time,

forks must be put back after eating.

Image by Benjamin D. Esham / Wikimedia Commons [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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Processes and Threads
Dining Philosophers

simple solution attempt

think until the left fork is available; when it is, pick it up;

think until the right fork is available; when it is, pick it up;

when both forks are held, eat for a fixed amount of time;

then, put the right fork down;

then, put the left fork down;

repeat from the beginning.

All philosophers decide to eat at the same time ⇒ deadlock.

More sophisticated solutions avoiding the deadlocks have been found
since [Dijstra ’65]. Three of them are also available on Wikipediaa.

ahttp://en.wikipedia.org/wiki/Dining_philosophers_problem
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