
POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Chapter 3

Multicore and
Multiprocessor Systems:

Part II

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 64/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Basics

Common to all the following commands:

Compiling and linking needs to be performed with
-pthread.

The pthread functions and related data types are
made available in a C program using:
#include <pthread.h>

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 65/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Creation of threads

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

thread unique identifier to distinguish from other threads,

attr attributes for determining thread properties. NULL means
default properties,

start routine pointer to the function to be started in the newly
created thread,

arg the argument of the above function.

Note that only a single argument can be passed to the threads start
function.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 66/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Creation of threads

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

thread unique identifier to distinguish from other threads,

attr attributes for determining thread properties. NULL means
default properties,

start routine pointer to the function to be started in the newly
created thread,

arg the argument of the above function.

Note that only a single argument can be passed to the threads start
function.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 66/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Creation of threads: multiple arguments of the start function

The argument of the start function is a void pointer. We can thus
define:

struct point3d{ double x,y,z; };
struct norm_args{
struct point3d *P;
double norm;

};
struct norm_args args;

and upon thread creation pass

err=pthread_create(tid, NULL, norm, (void *) &args);

to a start function

void *norm(void *arg) {
struct norm_args *args=(struct norm_args *)arg;
struct point3d *P;
P = args->P;
args->norm = P->x * P->x + P->y * P->y + P->z * P->z;
return NULL;

};

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 67/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Creation of threads: Possible race conditions

int main(int argc, char* argv[]){
pthread_t tid1,tid2;

struct point3d point;
struct norm_args args;

args.P = &point;

point.x=10; point.y=10; point.z=0;
pthread_create(&tid1, NULL, norm, &args);

point.x=20; point.y=20; point.z=-50;
pthread_create(&tid1, NULL, norm, &args);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

}

Depending on the execution of thread tid1 the argument point may
get overwritten before it has been fetched, the analogue holds for the
norm argument inside the function.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 68/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an
exit() call.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 69/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an
exit() call.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 69/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an
exit() call.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 69/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an
exit() call.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 69/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an
exit() call.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 69/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

int pthread_exit(void *retval);

retval return value of the exiting thread to the calling thread,

threads exit implicitly when their start function is exited,

the return value may be evaluated from another thread of the same
process via the pthread join() function,

after the last thread in a process exits the process terminates calling
exit() with a zero return value. Only then shared resources are
released automatically.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 70/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

POSIX Threads
Exiting threads and waiting for their termination

int pthread_join(pthread_t thread, void **retval);

Waits for a thread to terminate and fetches its return value.

thread the identifier of the thread to wait for,

retval destination to copy the return value (if not NULL) to.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 71/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex and conditional variables

The Pthread standard supports four types of synchronization and
coordination facilities:

1 pthread join(); we have seen this function above

2 Mutex variable functions for handling mutexes as defined above

3 Conditional variable functions treat a conditional variable that can
be used to indicate a certain event in which the threads are
interested. Conditional variable may be used to implement
semaphore like structures and triggers for special more complex
situation that require the threads to act in a certain way.

4 pthread once() can be used to make sure that certain
initializations are performed by one and only one thread when called
by multiple ones.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 72/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex and conditional variables

The Pthread standard supports four types of synchronization and
coordination facilities:

1 pthread join(); we have seen this function above

2 Mutex variable functions for handling mutexes as defined above

3 Conditional variable functions treat a conditional variable that can
be used to indicate a certain event in which the threads are
interested. Conditional variable may be used to implement
semaphore like structures and triggers for special more complex
situation that require the threads to act in a certain way.

4 pthread once() can be used to make sure that certain
initializations are performed by one and only one thread when called
by multiple ones.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 72/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex and conditional variables

The Pthread standard supports four types of synchronization and
coordination facilities:

1 pthread join(); we have seen this function above

2 Mutex variable functions for handling mutexes as defined above

3 Conditional variable functions treat a conditional variable that can
be used to indicate a certain event in which the threads are
interested. Conditional variable may be used to implement
semaphore like structures and triggers for special more complex
situation that require the threads to act in a certain way.

4 pthread once() can be used to make sure that certain
initializations are performed by one and only one thread when called
by multiple ones.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 72/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex and conditional variables

The Pthread standard supports four types of synchronization and
coordination facilities:

1 pthread join(); we have seen this function above

2 Mutex variable functions for handling mutexes as defined above

3 Conditional variable functions treat a conditional variable that can
be used to indicate a certain event in which the threads are
interested. Conditional variable may be used to implement
semaphore like structures and triggers for special more complex
situation that require the threads to act in a certain way.

4 pthread once() can be used to make sure that certain
initializations are performed by one and only one thread when called
by multiple ones.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 72/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization.

initialization may fail if the system has insufficient memory (error
code ENOMEM) or other resources (EAGAIN)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 73/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization.

initialization may fail if the system has insufficient memory (error
code ENOMEM) or other resources (EAGAIN)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 73/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization.

initialization may fail if the system has insufficient memory (error
code ENOMEM) or other resources (EAGAIN)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 73/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization.

initialization may fail if the system has insufficient memory (error
code ENOMEM) or other resources (EAGAIN)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 73/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization.

initialization may fail if the system has insufficient memory (error
code ENOMEM) or other resources (EAGAIN)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 73/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked
state,

If mutex is already locked the execution is blocked until the lock is
released and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should
again be locked by the same thread or a thread tries to unlock a
previously unlocked mutex and similar unintended situations. This
especially regards error handling and deadlock detection.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 74/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked
state,

If mutex is already locked the execution is blocked until the lock is
released and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should
again be locked by the same thread or a thread tries to unlock a
previously unlocked mutex and similar unintended situations. This
especially regards error handling and deadlock detection.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 74/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked
state,

If mutex is already locked the execution is blocked until the lock is
released and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should
again be locked by the same thread or a thread tries to unlock a
previously unlocked mutex and similar unintended situations. This
especially regards error handling and deadlock detection.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 74/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(), except
that it returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count
is increased by one and the function returns success.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 75/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(), except
that it returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count
is increased by one and the function returns success.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 75/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(), except
that it returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count
is increased by one and the function returns success.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 75/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the
mutex variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that
the counter is decreased by one and they become available once it
reaches zero

if the mutex becomes available, i.e., unlocked by the function call
and there are blocked threads waiting for it, the threading policy
decides which thread acquires mutex next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 76/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the
mutex variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that
the counter is decreased by one and they become available once it
reaches zero

if the mutex becomes available, i.e., unlocked by the function call
and there are blocked threads waiting for it, the threading policy
decides which thread acquires mutex next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 76/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the
mutex variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that
the counter is decreased by one and they become available once it
reaches zero

if the mutex becomes available, i.e., unlocked by the function call
and there are blocked threads waiting for it, the threading policy
decides which thread acquires mutex next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 76/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the
mutex variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that
the counter is decreased by one and they become available once it
reaches zero

if the mutex becomes available, i.e., unlocked by the function call
and there are blocked threads waiting for it, the threading policy
decides which thread acquires mutex next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 76/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex
variable again

if mutex is locked or referenced pthread mutex destroy()
fails with error code EBUSY

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 77/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex
variable again

if mutex is locked or referenced pthread mutex destroy()
fails with error code EBUSY

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 77/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex
variable again

if mutex is locked or referenced pthread mutex destroy()
fails with error code EBUSY

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 77/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex
variable again

if mutex is locked or referenced pthread mutex destroy()
fails with error code EBUSY

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 77/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1
and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

In case T1 is interrupted by the scheduler after locking ma, but
before locking mb and in the meantime T2 succeeds in locking it,
then the classical deadlock occurs.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1
and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

In case T1 is interrupted by the scheduler after locking ma, but
before locking mb and in the meantime T2 succeeds in locking it,
then the classical deadlock occurs.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1
and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

In case T1 is interrupted by the scheduler after locking ma, but
before locking mb and in the meantime T2 succeeds in locking it,
then the classical deadlock occurs.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1
and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

In case T1 is interrupted by the scheduler after locking ma, but
before locking mb and in the meantime T2 succeeds in locking it,
then the classical deadlock occurs.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in
the same order. This can easily be guaranteed by hierarchically ordering
the mutexes.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked
mutexes (it backs off of the protected resources),

after the back off it starts over from the first one.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked
mutexes (it backs off of the protected resources),

after the back off it starts over from the first one.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked
mutexes (it backs off of the protected resources),

after the back off it starts over from the first one.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked
mutexes (it backs off of the protected resources),

after the back off it starts over from the first one.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 78/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization,

every condition variable is associated to a mutex.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 79/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization,

every condition variable is associated to a mutex.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 79/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization,

every condition variable is associated to a mutex.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 79/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the
pthreads NULL gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing
features and guiding compilers and aiding in the caching
optimization,

every condition variable is associated to a mutex.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 79/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition
variable

if cond is blocking threads when destroyed the standard does not
specify the behavior of pthread cond destroy().

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 80/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition
variable

if cond is blocking threads when destroyed the standard does not
specify the behavior of pthread cond destroy().

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 80/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition
variable

if cond is blocking threads when destroyed the standard does not
specify the behavior of pthread cond destroy().

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 80/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition
variable

if cond is blocking threads when destroyed the standard does not
specify the behavior of pthread cond destroy().

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 80/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time
(atomically) releasing mutex

another thread may evaluate this to wake up the now blocked thread
(see pthread cond signal())

upon waking up the thread automatically tries to gain access to
mutex again,

if it succeeds it should test the condition again to check whether
another thread changed it in the meantime.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 81/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time
(atomically) releasing mutex

another thread may evaluate this to wake up the now blocked thread
(see pthread cond signal())

upon waking up the thread automatically tries to gain access to
mutex again,

if it succeeds it should test the condition again to check whether
another thread changed it in the meantime.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 81/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time
(atomically) releasing mutex

another thread may evaluate this to wake up the now blocked thread
(see pthread cond signal())

upon waking up the thread automatically tries to gain access to
mutex again,

if it succeeds it should test the condition again to check whether
another thread changed it in the meantime.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 81/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time
(atomically) releasing mutex

another thread may evaluate this to wake up the now blocked thread
(see pthread cond signal())

upon waking up the thread automatically tries to gain access to
mutex again,

if it succeeds it should test the condition again to check whether
another thread changed it in the meantime.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 81/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time
(atomically) releasing mutex

another thread may evaluate this to wake up the now blocked thread
(see pthread cond signal())

upon waking up the thread automatically tries to gain access to
mutex again,

if it succeeds it should test the condition again to check whether
another thread changed it in the meantime.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 81/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_signal(pthread_cond_t *cond);

if no thread is blocked on the condition variable cond there is no
effect,

otherwise, one of the waiting threads is woken up and proceeds as
described above.

int pthread_cond_broadcast(pthread_cond_t *cond);

wakes up all threads blocking on cond,

all of them try to acquire the associated mutex,

only one of them can succeed,

the others get blocked on the mutex now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 82/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

equivalent to pthread cond wait() except that it only blocks
for the period specified by abstime,

if the thread did not get signaled or broadcast before abstime
expires it returns with error code ETIMEDOUT.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 83/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
Conditional variables

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

equivalent to pthread cond wait() except that it only blocks
for the period specified by abstime,

if the thread did not get signaled or broadcast before abstime
expires it returns with error code ETIMEDOUT.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 83/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes
and conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1 A signal operation increments the counter and wakes up a task
blocked on the semaphore if one exists.

2 A wait operation simply decrements the counter if it is positive. If it
was zero already the thread is blocking on the semaphore.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 84/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes
and conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1 A signal operation increments the counter and wakes up a task
blocked on the semaphore if one exists.

2 A wait operation simply decrements the counter if it is positive. If it
was zero already the thread is blocking on the semaphore.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 84/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes
and conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1 A signal operation increments the counter and wakes up a task
blocked on the semaphore if one exists.

2 A wait operation simply decrements the counter if it is positive. If it
was zero already the thread is blocking on the semaphore.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 84/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A counting semaphore for Pthreads: Data type, Init and Cleanup

data structure for the semaphore:

typedef struct _sema_t{
int count;
pthread_mutex_t m;
pthread_cond_t c;

} sema_t;

the initialization

void InitSema(sema_t *ps){
pthread_mutex_init(&ps->m,NULL);
pthread_cond_init(&ps->c,NULL);

}

and the cleanup

void CleanupSema(void *arg){
pthread_mutex_unlock((pthread_mutex_t *) arg);

}

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 85/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A counting semaphore for Pthreads: Operation realization

void ReleaseSema(sema_t *ps){ // signal operation
pthread_mutex_lock(&ps->m) ;
pthread_cleanup_push(CleanupSema,&ps->m);
{
ps->count++;
pthread_cond_signal(&ps->c) ;

}
pthread_cleanup_pop (1) ;

}

void AcquireSema(sema_t *ps){ // wait operation
pthread_mutex_lock(&ps->mutex);
pthread_cleanup_push(CleanupSema,&ps->m);
{
while(ps->count==0)
pthread_cond_wait(&ps->c,&ps->m) ;

ps->count--;
}
pthread_cleanup_pop(1);

}

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 86/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Pthread coordination mechanisms
A typical application example for semaphores

Example (Producer/Consumer queue buffer protection)

A buffer of fixed size n is shared by

a producer thread generating entries and storing them in the buffer
if it is not full,

a consumer thread removing entries from the same buffer for further
processing unless it is empty.

For the realization of the protected access two semaphores are required:

1 Number of entries occupied (initialized by 0),

2 Number of free entries (initialized by n).

The Mechanism works for an arbitrary number of producers and
consumers. (Details will be worked out on exercise sheet 2.)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 87/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Coordination models for the cooperation of threads

1 Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2 Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3 Pipeline model:

Every thread (except for the first and last in line) produces output
that serves as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is
achieved.

4 Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example
next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 88/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Coordination models for the cooperation of threads

1 Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2 Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3 Pipeline model:

Every thread (except for the first and last in line) produces output
that serves as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is
achieved.

4 Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example
next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 88/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Coordination models for the cooperation of threads

1 Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2 Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3 Pipeline model:

Every thread (except for the first and last in line) produces output
that serves as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is
achieved.

4 Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example
next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 88/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Coordination models for the cooperation of threads

1 Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2 Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3 Pipeline model:

Every thread (except for the first and last in line) produces output
that serves as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is
achieved.

4 Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example
next.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 88/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Basic idea of the task pool

Idea:
Creation of a parallel threaded program that can dynamically schedule
tasks on the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a
dynamic assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 89/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Basic idea of the task pool

Idea:
Creation of a parallel threaded program that can dynamically schedule
tasks on the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a
dynamic assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 89/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Basic idea of the task pool

Idea:
Creation of a parallel threaded program that can dynamically schedule
tasks on the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a
dynamic assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 89/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Implementation of a basic task pool: Data structures

data strucutre for one task:

typedef struct _work_t{
void (*routine) (void*); //worker function to call
void* arg ;
struct _work_t *next;

} work_t ;

data structure for the task pool:

typedef struct _tpool_t{
int num_threads ; // number of threads
int max_size, curr_size; // max./cur. number of tasks in pool
pthread_t *threads; //array of threads
work_t *head , *tail; // start/end of the task queue
pthread_mutex_t lock; //access control for the task pool
pthread_cond_t not_empty ; // tasks are available
pthread_cond_t not_full ; // tasks may be added

} tpool_t ;

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 90/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Implementation of a basic task pool: Initialization

tpool_t *tpool_init(int num_threads , int max_size){
int i;
tpool_t *tpl;

tpl=(tpool_t *) malloc (sizeof(tpool_t));
tpl->num_threads=num_threads ;
tpl->max_size=max_size ;
tpl->cur_size=0;
tpl->head=tpl->tail=NULL;

pthread_mutex_init(&tpl->lock, NULL);
pthread_cond_init(&tpl->not_empty, NULL);
pthread_cond_init(&tpl->not_full, NULL);
tpl->threads=(pthread_t *) malloc(num_threads *sizeof(pthread_t));
for(i=0; i<num_threads; i++)
pthread_create(tpl->threads+i, NULL, tpool_thread, (void *)tpl) ;

return tpl;
}

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 91/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Implementation of a basic task pool: Worker Threads

void *tpool_thread(void *vtpl){
tpool_t *tpl=(tpool_t *) vtpl;
work_t *wl ;

for (; ;) {
pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==0)
pthread_cond_wait(&tpl->not_empty , &tpl->lock);

wl=tpl->head; tpl->cur_size--;
if(tpl->cur_size==0)
tpl->head=tpl->tail=NULL;

else tpl->head = wl->next;
if (tpl->cur_size==tpl->max_size-1) // pool full
pthread_cond_signal(&tpl->not_full);

pthread_mutex_unlock(&tpl->lock);
(*(wl->routine)) (wl->arg);
free(wl);

}
}

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 92/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Task Pools
Implementation of a basic task pool: Task insertion

void tpool_insert(tpool_t *tpl, void(*f) (void*), void *arg){
work_t *wl ;

pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==tpl->max_size)
pthread_cond_wait(&tpl->not_full, &tpl->lock);

wl=(work_t *) malloc(sizeof(work_t));
wl->routine=f; wl->arg=arg; wl->next=NULL ;
if(tpl->cur_size==0){
tpl->head=tpl->tail=wl;
pthread_cond_signal(&tpl->not_empty);

}
else{
tpl->tail->next=wl; tpl->tail=wl;

}
tpl->cur_size++;
pthread_mutex_unlock(&tpl->lock);

}

source: [Rauber/Rünger’10]

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 93/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Shared Memory Blocks
General shared memory blocks

In contrast to Threads, different processes do not share their address
space. Therefore, different ways to communicate in multiprocessing
applications are necessary.

One possible way are shared memory objects. Unix-like operating systems
provide at least one of:

old System V Release 4 (SVR4) Shared Memory2

new POSIX Shared Memory3.

Both techniques implement shared memory objects, like common
memory, semaphores and message queues, which are accessible from
different applications with different address spaces.

2 System V Interface Definition, AT&T Unix System Laboratories, 1991
3IEEE Std 1003.1-2001 Portable Operating System Interface System Interfaces

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 94/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Shared Memory Blocks
POSIX Shared Memory

Common Memory Locations

are used to share data between applications,

are managed by the kernel and not by the application,

each location is represented as a file in /dev/shm/,

handled like normal files,

created using shm open and mapped to the memory using mmap,

exist as long as no application deletes them, even when the creating
program exits they stay available,

seed manpage man 7 shm overview.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 95/342

POSIX Threads Pthread coordination mechanisms Task Pools Shared Memory Blocks

Shared Memory Blocks
POSIX Shared Memory

POSIX Semaphores

counting semaphores available form different address spaces,

correspond to pthread mutex * in threaded applications,

represented as a file in /dev/shm/sem.*,

see manpage man 7 sem overview.

Message Queues

generalized Signal concept which can transfer a small payload (2 to
4 KiB),

correspond to pthread cond * in threaded applications,

can be represented as file in /dev/mqueue,

see manpage man 7 mq overview.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 96/342

