Memory 000

Chapter 4

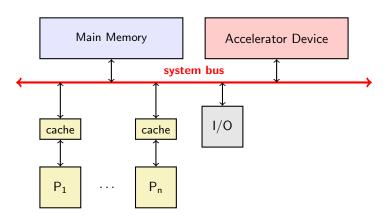
GPU Computing and Accelerators: Part I

Why use accelerators?

(b) Memory bandwidth

FigureThroughput comparison of Multicore CPUs and CUDA enabled GPUs (taken from CUDA C Programming Guide)

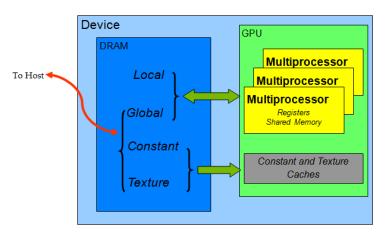
Why use accelerators?


Architecture	GFLOPS	GFLOPS/Watt	Utilization
Core i7-960	96	1.14	95%
Nvidia®GTX280	410	2.6	66%
Cell	200	5.0	88%
Nvidia®GTX480	940	5.4	70%
TI C66x DSP	74	7.4	57%

TablePower efficieny comparison of Multicore CPUs and accelerator chips (taken from Conference Poster by F. Igual and M. Ali)

Common Features

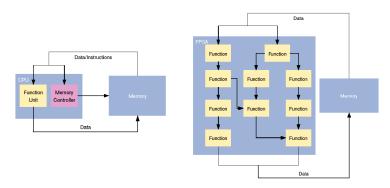
Memory Hierarchy with Accelerators



FigureSchematic of a general parallel system

Memory Hierarchy with Accelerators

Graphics Processing Units (GPUs)



FigureMemory configuration of a CUDA Device (taken from CUDA C Programming Guide)

Memory Hierarchy with Accelerators

Field Programmable Gate Arrays (FPGAs)

FigureComparison of CPUs and FPGA execution models.