

Model Reduction for Dynamical Systems

-Lecture 4-

Peter Benner Lihong Feng

Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics Summer term 2017

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de http://www.mpi-magdeburg.mpg.de/csc/teaching/17ss/mor

1. Mathematical Basics III
Systems and control theory

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

The **McMillan degree** of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A **minimal realization** is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A **minimal realization** is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

Theorem

A realization (A, B, C, D) of a linear system is minimal \iff (A, B) is controllable and (A, C) is observable.

Theorem

A realization (A, B, C, D) of a linear system is minimal \iff (A, B) is controllable and (A, C) is observable.

For stable systems, the infinite Gramians are defined as

Infinite Gramians

$$P = \int_0^\infty e^{At} B B^T e^{A^T t} dt.$$

$$Q = \int_0^\infty e^{A^T t} C^T C e^{At} dt.$$

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is **balanced** if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is **balanced** if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

When does a balanced realization exist?

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is **balanced** if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

When does a balanced realization exist? Assume A to be Hurwitz, i.e. $\Lambda(A) \subset \mathbb{C}^-$. Then:

Theorem

Given a **stable** minimal linear system $\Sigma : (A, B, C, D)$, a balanced realization is obtained by the state-space transformation with

$$T_h := \Sigma^{-\frac{1}{2}} V^T R$$

where $P = S^T S$, $Q = R^T R$ (e.g., Cholesky decompositions) and $SR^T = U \Sigma V^T$ is the SVD of SR^T .

Proof. Exercise!

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is **balanced** if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the **Hankel singular values** of Σ .

Note: $\sigma_1,\ldots,\sigma_n\geq 0$ as $P,Q\geq 0$ by definition, and $\sigma_1,\ldots,\sigma_n>0$ in case of minimality! For nonbalanced systems, the Hankel singular values can be computed by $\{\sigma_1,\ldots,\sigma_n\}=(\Lambda(PQ))^{\frac{1}{2}}$. I.e. they are the square roots of the eigenvalues of PQ.

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is **balanced** if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the **Hankel singular values** of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality! For nonbalanced systems, the Hankel singular values can be computed by $\{\sigma_1, \ldots, \sigma_n\} = (\Lambda(PQ))^{\frac{1}{2}}$. I.e. they are the square roots of the eigenvalues of PQ.

Theorem

The infinite controllability/observability Gramians P/Q satisfy the **Lyapunov** equations

$$AP + PA^{T} + BB^{T} = 0, \quad A^{T}Q + QA + C^{T}C = 0.$$

Balanced Realizations

Theorem

The infinite controllability/observability Gramians P/Q satisfy the **Lyapunov** equations

$$AP + PA^{T} + BB^{T} = 0, \quad A^{T}Q + QA + C^{T}C = 0.$$

Proof. (For controllability Gramian only, observability case is analogous!)

$$AP + PA^{T} + BB^{T} = A \int_{0}^{\infty} e^{At}BB^{T}e^{A^{T}t}dt + \int_{0}^{\infty} e^{At}BB^{T}e^{A^{T}t}dt A^{T} + BB^{T}$$

$$= \int_{0}^{\infty} \underbrace{Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}}_{=\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t}} dt + BB^{T}$$

$$= \underbrace{\lim_{t \to \infty} e^{At}BB^{T}e^{A^{T}t}}_{=0} - \underbrace{e^{A\cdot 0}BB^{T}e^{A^{T}\cdot 0}}_{=I_{n}} + BB^{T}$$

$$= 0.$$

Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. The HSVs of a stable minimal linear system are $(\Lambda(PQ))^{\frac{1}{2}}$. Now let

$$(\hat{A}, \hat{B}, \hat{C}, D) = (TAT^{-1}, TB, CT^{-1}, D)$$

be any transformed realization with associated controllability Lyapunov equation

$$0 = \hat{A}\hat{P} + \hat{P}\hat{A}^{T} + \hat{B}\hat{B}^{T} = TAT^{-1}\hat{P} + \hat{P}T^{-T}A^{T}T^{T} + TBB^{T}T^{T}.$$

This is equivalent to

$$0 = A(T^{-1}\hat{P}T^{-T}) + (T^{-1}\hat{P}T^{-T})A^{T} + BB^{T}.$$

The uniqueness of the solution of the Lyapunov equation (for stable systems) implies that $\hat{P} = TPT^T$ and, analogously, $\hat{Q} = T^{-T}QT^{-1}$.

Balanced Realizations

Therefore,

$$\hat{P}\hat{Q} = TPQT^{-1},$$

showing that $\Lambda(\hat{P}\hat{Q}) = \Lambda(PQ) = {\sigma_1^2, \dots, \sigma_n^2}.$

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading $\hat{n} \times \hat{n}$ submatrices equal to $\operatorname{diag}(\sigma_1, \dots, \sigma_{\hat{n}})$, and

$$\hat{P}\hat{Q} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_{\hat{n}}^2, 0, \dots, 0).$$

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].