

Model Reduction for Dynamical Systems

Deter Penner Libera For

Peter Benner Lihong Feng

Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics Summer term 2017

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

benner@mpi-magdeburg.mpg.de feng@mpi-magdeburg.mpg.de http://www.mpi-magdeburg.mpg.de/csc/teaching/17ss/mor

Mathematical Basics IV
 Systems and control theory

System Norms

Definition

The $L_2^n(-\infty, +\infty)$ space is the vector-valued function space $f: \mathbb{R} \mapsto \mathbb{R}^n$, with the norm

$$||f||_{L_2^n} = \left(\int_{-\infty}^{\infty} ||f(t)||^2 dt\right)^{1/2}.$$

Here and below, $||\cdot||$ denotes the Euclidean vector or spectral matrix norm.

Definition

The frequency domain $\mathcal{L}_2(\jmath\mathbb{R})$ space is the matrix-valued function space $F:\mathbb{C}\mapsto\mathbb{C}^{p\times m}$, with the norm

$$||F||_{\mathcal{L}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} ||F(j\omega)||^2 d\omega\right)^{1/2},$$

System Norms

Definition

The $L^n_\infty(-\infty, +\infty)$ space is the vector-valued function space $f: \mathbb{R} \mapsto \mathbb{R}^n$, with the norm

$$||f||_{L_{\infty}^n}=\sup_t||f(t)||_{\infty}.$$

System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let $f(z): \mathbb{C}^n \mapsto \mathbb{C}$ be a regular analytic, or holomorphic, function of n complex variables $z=(z_1,\ldots,z_n), n\geq 1$, defined on an (open) domain \mathbb{D} of the complex space \mathbb{C}^n , which is not a constant, $f(z)\neq \text{const.}$ Let $\max_f = \max\{|f(z)|: z\in \mathbb{D}\}.$

If f(z) is continuous in a bounded domain \mathbb{D} , then \max_f can only be attained on the boundary of \mathbb{D} , i.e. $\max_f = \max\{|f(z)| : z \in \partial \mathbb{D}\}$.

System Norms

The maximum modulus theorem will be used repeatedly.

Theorem

Let $f(z): \mathbb{C}^n \mapsto \mathbb{C}$ be a regular analytic, or holomorphic, function of n complex variables $z=(z_1,\ldots,z_n), n\geq 1$, defined on an (open) domain \mathbb{D} of the complex space \mathbb{C}^n , which is not a constant, $f(z)\neq \text{const.}$ Let $\max_f = \max\{|f(z)|: z\in \mathbb{D}\}.$

If f(z) is continuous in a bounded domain \mathbb{D} , then \max_f can only be attained on the boundary of \mathbb{D} , i.e. $\max_f = \max\{|f(z)| : z \in \partial \mathbb{D}\}.$

Consider the transfer function $G(s) = C(sI - A)^{-1}B + D$, and input functions $u \in \mathcal{L}_2(\jmath\mathbb{R})$, with the \mathcal{L}_2 -norm

$$||u||_{\mathcal{L}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(\jmath\omega)^H u(\jmath\omega) d\omega.$$

System Norms

Assume A is (asymptotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{Re}(z) < 0\}$. Then G is analytic in $\mathbb{C}^+ \cup \jmath \mathbb{R}$, and following the maximal modulus theorem, G(s) is bounded: $||G(s)||_F \leq M < \infty$, $\forall s \in \mathbb{C}^+ \cup \jmath \mathbb{R}$. Thus we have

$$\int_{-\infty}^{\infty} y(\jmath\omega)^{H} y(\jmath\omega) d\omega = \int_{-\infty}^{\infty} u(\jmath\omega)^{H} G(\jmath\omega)^{H} G(\jmath\omega) u(\jmath\omega) d\omega
= \int_{-\infty}^{\infty} ||G(\jmath\omega)u(\jmath\omega)||^{2} d\omega \le \int_{-\infty}^{\infty} M^{2} ||u(\jmath\omega)||^{2} d\omega
= M^{2} \int_{-\infty}^{\infty} u(\jmath\omega)^{H} u(\jmath\omega) d\omega < \infty,$$

So that $y = Gu \in \mathcal{L}_2(\jmath \mathbb{R})$. $(||Ax||_{\infty} \le ||Ax||_2 \le ||A||_F ||x||_2)$ Consequently, the \mathcal{L}_2 -induced operator norm is well defined:

$$||G||_{\mathcal{L}_{\infty}} := \sup_{||u||_{2} \neq 0} \frac{||Gu||_{\mathcal{L}_{2}}}{||u||_{\mathcal{L}_{2}}}.$$
 (1)

System Norms

It can be further proved that

$$||\mathit{G}||_{\mathcal{L}_{\infty}} = \sup_{\omega \in \mathbb{R}} ||\mathit{G}(\jmath \omega)|| = \sup_{\omega \in \mathbb{R}} \sigma_{\mathit{max}}\left(\mathit{G}(\jmath \omega)\right).$$

With the above defined $\mathcal{L}_{\infty}\text{-norm,}$ the frequency domain \mathcal{L}_{∞} space is defined as

Definition

The frequency domain $\mathcal{L}_{\infty}(\jmath\mathbb{R})$ space is the matrix-valued function space $F:\mathbb{C}\mapsto\mathbb{C}^{p\times m}$, with the norm

$$||F||_{\mathcal{L}_{\infty}} = \sup_{\omega \in \mathbb{R}} ||F(\jmath \omega)|| = \sup_{\omega \in \mathbb{R}} \sigma_{\max} (F(\jmath \omega)).$$

System Norms

Error bound 1

$$||\mathit{Gu}||_{\mathcal{L}_2} \leq ||\mathit{G}||_{\mathcal{L}_\infty}||\mathit{u}||_{\mathcal{L}_2}$$

Consequently,

$$||y - \hat{y}||_{\mathcal{L}_2} = ||Gu - \hat{G}u||_{\mathcal{L}_2} \le ||G - \hat{G}||_{\mathcal{L}_{\infty}}||u||_{\mathcal{L}_2}$$

System Norms

When the funtion has better property, for example analytic, then we can define ${\cal H}$ norms for these functions.

Definition

The Hardy space \mathcal{H}_{∞} is the function space of matrix-, scalar-valued functions that are analytic and bounded in $\mathbb{C}^+ := \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$.

The \mathcal{H}_{∞} -norm is defined as

$$||F||_{\mathcal{H}_{\infty}} := \sup_{z \in \mathbb{C}^+} ||F(z)|| = \sup_{\omega \in \mathbb{R}} ||F(\jmath \omega)|| = \sup_{\omega \in \mathbb{R}} \sigma_{\max} \left(F(\jmath \omega) \right).$$

The second equality follows the maximum modulus theorem.

Definition

The Hardy space $\mathcal{H}_2(\mathbb{C}^+)$ is the function space of matrix-, scalar-valued functions that are analytic in \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm defined as

$$||F||_{\mathcal{H}_2} := \frac{1}{2\pi} \left(\sup_{\sigma > 0} \int_{-\infty}^{\infty} ||F(\sigma + j\omega)||_F^2 d\omega \right)^{\frac{1}{2}}$$
$$= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||F(j\omega)||_F^2 d\omega \right)^{\frac{1}{2}}.$$

The last equality follows maximum modulus theorem.

System Norms

Theorem [[Antoulas '05]](Section 5.5.1)

Practical Computation of the \mathcal{H}_2 -norm of the transfer function $||G||_{\mathcal{H}_2}^2 = \operatorname{tr}(B^T Q B) = \operatorname{tr}(C P C^T),$

where P,Q are the controllability and observability Gramians (the infinite Gramians) of the corresponding LTI system.

System Norms

Following [Antoulas, Beattie, Gugercin '10] 1 (pp. 15-16), the \mathcal{H}_2 approximation error gives the following bound

where (*) uses the facts $y(\jmath\omega)=G(\jmath\omega)u(\jmath\omega)$ and $||Ax||_\infty\leq ||Ax||_2\leq ||A||_F||x||_2$ (http://de.wikipedia.org/wiki/Frobeniusnorm). G and \hat{G} are original and reduced transfer functions. $||\cdot||_\infty$ is the vector norm in Euclidean space for any fixed t.

A. C. Antoulas, C. A. Beattie, S. Gugercin. Interpolatory Model Reduction of Large-scale Dynamical Systems.

System Norms

Then

Error bound 2

$$||y - \hat{y}||_{\infty} \le ||G - \hat{G}||_{\mathcal{H}_2}||u||_{\mathcal{L}_2}.$$

System Norms

(Plancherel Theorem)

The Fourier transform of $f \in L_2^n(-\infty, \infty)$:

$$F(\xi) = \int_{-\infty}^{\infty} f(t)e^{-\xi t}dt$$

is a Hilbert space isomorphism between $L_2^n(-\infty,\infty)$ and $\mathcal{L}_2(\jmath\mathbb{R})$. Furthermore, the Fourier transform maps $L_2^n(0,\infty)$ onto $\mathcal{H}_2(\mathbb{C}^+)$. In addition it is an isometry, that is, it preserves distances:

$$L_2^n(-\infty,\infty)\cong\mathcal{L}_2(\jmath\mathbb{R}),\quad L_2^n(0,\infty)\cong\mathcal{H}_2(\mathbb{C}^+).$$

Consequently, L_2^n -norm in time domain and \mathcal{L}_2 -norm, \mathcal{H}_2 -norm in frequency domain coincide.

Approximation Problems

Therefore the Error bound 1,

$$||y - \hat{y}||_2 = ||Gu - \hat{G}u||_2 \le ||G - \hat{G}||_{\mathcal{L}_{\infty}}||u||_2,$$
 (2)

holds in time and frequency domain due to Plancherel theorem, i.e. the $||\cdot||_2$ in (2) can be the L_2^n -norm in time domain, or the \mathcal{L}_2 -norm in frequency domain.

The transfer function is analytic, therefore $||G||_{\mathcal{H}_{\infty}}$ is defined. Futhermore, from their definitions, we have

$$||G||_{\mathcal{L}_{\infty}} = ||G||_{\mathcal{H}_{\infty}},$$

so that,

$$||y - \hat{y}||_2 \le ||G - \hat{G}||_{\mathcal{H}_{\infty}}||u||_2.$$

Approximation Problems

Similarly, the Error bound 2 holds as

$$||y - \hat{y}||_{\infty} \le ||G - \hat{G}||_{\mathcal{H}_2}||u||_2,$$

where $||\cdot||_2$ can be the L_2^n -norm in time domain, or the \mathcal{L}_2 -norm in frequency domain.

Finally, we get two error bounds,

Output errors bounds

$$\begin{aligned} ||y - \hat{y}||_2 & \leq ||G - \hat{G}||_{\mathcal{H}_{\infty}} ||u||_2 & \Longrightarrow \left| |G - \hat{G}| \right|_{\infty} < \text{tol} \\ ||y - \hat{y}||_{\infty} & \leq ||G - \hat{G}||_{\mathcal{H}_2} ||u||_2 & \Longrightarrow ||G - \hat{G}||_{\mathcal{H}_2} < \text{tol} \end{aligned}$$

Goal of MOR: $||G - \hat{G}||_{\infty} < tol$ or $||G - \hat{G}||_{\mathcal{H}_2} < tol$.

Approximation Problems

Similarly, the Error bound 2 holds as

$$||y - \hat{y}||_{\infty} \le ||G - \hat{G}||_{\mathcal{H}_2}||u||_2,$$

where $||\cdot||_2$ can be the L_2^n -norm in time domain, or the \mathcal{L}_2 -norm in frequency domain.

Finally, we get two error bounds,

Output errors bounds

$$\begin{aligned} ||y - \hat{y}||_2 & \leq ||G - \hat{G}||_{\mathcal{H}_{\infty}} ||u||_2 & \Longrightarrow \left| |G - \hat{G}| \right|_{\infty} < \text{tol} \\ ||y - \hat{y}||_{\infty} & \leq ||G - \hat{G}||_{\mathcal{H}_2} ||u||_2 & \Longrightarrow ||G - \hat{G}||_{\mathcal{H}_2} < \text{tol} \end{aligned}$$

Goal of MOR: $||G - \hat{G}||_{\infty} < tol$ or $||G - \hat{G}||_{\mathcal{H}_2} < tol$.

Computable error measures

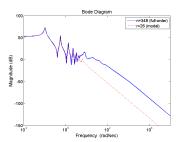
Evaluating system norms is computationally very (sometimes too) expensive.

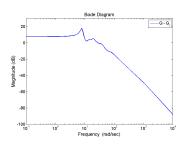
Other measures

- lacksquare absolute errors $\left|\left|G(\jmath\omega_j)-\hat{G}(\jmath\omega_j)\right|\right|_2$, $\left|\left|G(\jmath\omega_j)-\hat{G}(\jmath\omega_j)\right|\right|_\infty$ $(j=1,\ldots,N_\omega)$;
- relative errors $\frac{\left|\left|G(\jmath\omega_j)-\hat{G}(\jmath\omega_j)\right|\right|_2}{\left|\left|G(\jmath\omega_j)\right|\right|_2}$, $\frac{\left|\left|G(\jmath\omega_j)-\hat{G}(\jmath\omega_j)\right|\right|_\infty}{\left|\left|G(\jmath\omega_j)\right|\right|_\infty}$;
- "eyeball norm", i.e. look at **frequency response/Bode (magnitude) plot**: for SISO system, log-log plot frequency vs. $|G(\jmath\omega)|$ (or $|G(\jmath\omega) \hat{G}(\jmath\omega)|$) in decibels, $1 \text{ dB} \simeq 20 \log_{10}(\text{value})$.

Computable error measures

For MIMO systems, $q \times m$ array of plots G_{ij} .





1. A.C. Antoulas.

Approximation of Large-Scale Dynamical Systems. *SIAM Publications*, Philadelphia, PA, 2005.