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Performance Measures: Part
I

Jens Saak Scientific Computing II 32/348



Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.
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Time Measurement and Operation Counts
Instructions: Timings and Counts

clock rate and cycle time

The clock rate of a processor tells us how often it can switch instructions per
second. Closely related is the (clock) cycle time, i.e., the time elapsed between
two subsequent clock ticks.

Example

A CPU with a clock rate of 3.5 GHz = 3.5 · 109 1/s executes 3.5 · 109 clock ticks
per second. The length of a clock cycle thus is

1/(3.5 · 109) s = 1/3.5 · 10−9 · s ≈ 0.29 ns
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Time Measurement and Operation Counts
Instructions: Timings and Counts

Different instructions require different times to get executed. This is represented
by the so called cycles per instruction (CPI) of the corresponding instruction. An
average CPI is connected to a process A via CPI(A).

This number determines the total user CPU time together with the number of
instructions and cycle time via

TU CPU(A) = ninstr (A) · CPI (A) · tcycle

Clever choices of the instructions can influence the values of ninstr (A) and CPI (A).
 compiler optimization.
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Time Measurement and Operation Counts
MIPS versus FLOPS

A common performance measure of CPU manufacturers is the Million instructions
per second (MIPS) rate.

It can be expressed as

MIPS(A) =
ninstr (A)

TU CPU(A) · 106
=

rcycle
CPI (A) · 106

,

where rcycle is the cycle rate of the CPU.

This measure can be misleading in high performance computing, since higher
instruction throughput does not necessarily mean shorter execution time.
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Time Measurement and Operation Counts
MIPS versus FLOPS

More common for the comparison in scientific computing is the rate of floating
point operations (FLOPS) executed. The MFLOPS rate of a program A can be
expressed as

MFLOPS(A) =
nFLOPS(A)

TU CPU(A) · 106
[1/s],

with nFLOPS(A) the total number of FLOPS issued by the program A.

Note that not all FLOPS (see also Chapter 4 winter term) take the same time to
execute. Usually divisions and square roots are much slower. The MFLOPS rate,
however, does not take this into account.
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Time Measurement and Operation Counts
CPU Time versus Execution Time

Example (A simple MATLAB® test)
Input:

ct0=0;
A=randn(1500);

tic
ct0=cputime;
pause(2)
toc
cputime-ct0

tic
ct0=cputime;
[Q,R]=qr(A);
toc
cputime-ct0

Output:

Elapsed time is 2.000208 seconds.

ans =

0.0300

Elapsed time is 0.733860 seconds.

ans =

21.6800

Executed on a 4x8core Xeon® system.
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Time Measurement and Operation Counts
CPU Time versus Execution Time

Obviously, in a parallel environment the CPU time can be much higher than the
actual execution time elapsed between start and end of the process.

In any case, it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time into
user/system CPU time and waiting time. The process is mainly waiting for the
sleep system call to return whilst basically accumulating no active CPU time.

The second result is due to the fact that the activity is distributed to several
cores. Each activity accumulates its own CPU time and these are summed up to
the total CPU time of the process.
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Parallel Cost and Optimality

Definition (Parallel cost and cost-optimality)

The cost of a parallel program with data size n is defined as

Cp(n) = p ∗ Tp(n).

Here Tp(n) is the parallel runtime of the process, i.e., its execution time on p
processors.

The parallel program is called cost-optimal if

Cp = T ∗(n).

Here, T ∗(n) represents the execution time of the fastest sequential program
solving the same problem.

In practice T ∗(n) is often approximated by T1(n).
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Speedup

The speedup of a parallel program

Sp(n) =
T ∗(n)

Tp(n)
,

is a measure for the acceleration, in terms of execution time, we can expect from
a parallel program.

The speedup is strictly limited from above by p Since otherwise the parallel
program would motivate a faster sequential algorithm. See [Rauber/Rünger ’10]

for details.

In practice often the speedup is computed with respect to the sequential version
of the code, i.e.,

Sp(n) ≈ T1(n)

Tp(n)
.
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Parallel Efficiency

Usually, the parallel execution of the work a program has to perform comes at the
cost of certain management of subtasks. Their distribution, organization and
interdependence leads to a fraction of the total execution, that has to be done
extra.
Definition

The fraction of work that has to be performed by a sequential algorithm as well is
described by the parallel efficiency of a program. It is computed as

Ep(n) =
T ∗(n)

Cp(n)
=

Sp(n)

p
=

T ∗

p · Tp(n)
.

The parallel efficiency obviously is limited from above by Ep(n) = 1 representing
the perfect speedup of p.
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Amdahl’s Law

In many situations it is impossible to parallelize the entire program. Certain
fractions remain that need to be performed sequentially. When a (constant)
fraction f of the program needs to be executed sequentially, Amdahl’s law
describes the maximum attainable speedup.

The total parallel runtime Tp(n) then consists of

f · T ∗(n) the time for the sequential fraction and

(1− f )/p · T ∗(n) the time for the fully parallel part.

The best attainable speedup can thus be expressed as

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.
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Scalability of Parallel Programs

Question

Is the parallel efficiency of a parallel program independent of the number of
processors p used?

The question is answered by the concept of parallel scalability. Scientific
computing and HPC distinguish two forms of scalability:

strong scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed total problem size.

weak scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed problem size per processor.
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