Multicore and Multiprocessor
Systems: Part IV

Tree Reduction
The OpenMP reduction minimal example revisited: Data Sharing

Example (OpenMP reduction m

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char xargv[]) {
int sb, @p
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)

af[i] = b[i] =i » 1.0;
sum = 0.0;

#pragma omp parallel for reduction (+:sum)
for (i=0; i < n; i++)
sum = sum + (a[i] x b[i]);
printf (" Sum_=_%f\n", sum) ;

}

Jens Saak

: Tree Reduction
The OpenMP reduction minimal example revisited

The main properties of the reduction are
m accumulation of data via a binary operator (here +)

m intrinsically sequential operation causing a race condition in multi-thread
based implementations (since every iteration step depends on the result of its
predecessor.)

Jens Saak Scientific Computing Il 143/348

Tree Reduction

Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]
I aF s[5]
- ~) _
4 s[5]
_,Y\J
+

Figure: Tree reduction basic idea.

Jens Saak Scientific Computing Il 144 /348

@. @ Tree Reduction

\ '

Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]
4F 4 s[5]
. ~ J h_J
4 s[5]
_,—Y\/
+

Figure: Tree reduction basic idea.

Jens Saak Scientific Computing Il 144 /348

Tree Reduction

Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b € R1%. Further we have four equal cores. How
do we compute the accumulation in parallel?

Jens Saak Scientific Computing 11 145/348

Tree Reduction

Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b € R1%. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

Jens Saak Scientific Computing 11 145/348

;Y Tree Reduction
<
N @ Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b € R1%. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

Jens Saak Scientific Computing 11 145/348

;Y Tree Reduction
<
N @ Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b € R1%. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up. The
reduction is then performed on the results of the threads.

Jens Saak Scientific Computing 11 145/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 1: Gaussian elimination — row-by-row-version

Input: A € R™" allowing LU decomposition
Output: A overwritten by L, U
1 fork=1:n—1do
2 Ak+1:nk)=A(k+1:n,b)/A(k, k)
3 fori=k+1:ndo
4 forj=k+1:ndo

Jens Saak Scientific Computing Il 146/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 1: Gaussian elimination — row-by-row-version

Input: A € R™" allowing LU decomposition

Output: A overwritten by L, U

for k=1:n—1do
A(k+1:n,k)=A(k+1:n,b)/A(k, k)
fori=k+1:ndo
Lforj:k—i—l:ndo

R W N =

L A(”J) = A(’)J) - A(l’ k)A(kaJ)'

Observation:

m Innermost loop performs rank-1 update on the A(k+1:n,k+1:n)
submatrix in the lower right,

m i.e. a BLAS level 2 operation.

Jens Saak Scientific Computing Il 146/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 2: Gaussian elimination — Outer product formulation

Input: A € R"*" allowing LU decomposition
Qutput: L, U € R™" such that A= LU stored in A stored in A

1fork=1:n—1do

2
3
4

rows= k +1: n;
A(rows, k) = A(rows, k)/A(k, k);
A(rows,rows) = A(rows,rows) — A(rows, k)A(k,rows);

Jens Saak Scientific Computing Il

147/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 2: Gaussian elimination — Outer product formulation

Input: A € R™" allowing LU decomposition
Output: L, U € R™" such that A= LU stored in A stored in A
1 fork=1:n—-1do
2 rows= k +1: n;
3 A(rows, k) = A(rows, k)/A(k, k);
4 A(rows,rows) = A(rows,rows) — A(rows, k)A(k,rows);

Idea of the blocked version

m Replace the rank-1 update by a rank-r update ,

m Thus replace the O(n?) / O(n?) operation per data ratio the more desirable
O(n®) / O(n?) ratio,

m Therefore exploit the fast local caches of modern CPUs more optimally.

Jens Saak Scientific Computing Il 147/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 3: Gaussian elimination — Block outer product formulation

Input: A € R™" allowing LU decomposition, r prescribed block size
Output: A= LU with L, U stored in A

k=1;

while k < n do

¢ =min(n, k+r—1);

Compute A(k : ¢, k : £) = LU via Algorithm 7;

5 Solve [Z = A(k : £,£+1: n) and store Z in A;

6 Solve WU = A(£ +1: n, k :) and store W in A;

A W N =

7 Perform the rank-r update:
Al+1:nl+1:n)=Al+1:nl+1:n)— WZ,
8 k=0+1;

Jens Saak Scientific Computing Il 148/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Algorithm 3: Gaussian elimination — Block outer product formulation

Input: A € R™*" allowing LU decomposition, r prescribed block size
Output: A= LU with L, U stored in A

1 k=1;

2 while kK < n do

3 ¢=min(n, k+r—1);

4 | Compute A(k : £,k : £) = LU via Algorithm 7;

5 Solve [Z = A(k : £,£+1: n) and store Z in A;

6 Solve WU = A(£ +1: n, k : £) and store W in A;

7 Perform the rank-r update:
Al+1:nt+1:n=Al+1:nt+1:n)— WZ

8 k=0+1;

The block size r can be further exploited in the computation of W and Z and the rank-r
update. It is used to optimize the data portions for the cache.

Jens Saak Scientific Computing Il 148/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

‘\

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations

A, :
SO
w Repetition blocked algorithms

Al:€,£+1:n)

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak i fic i 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

A€+1:n,1:2)

Jens Saak i fic i 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations

Repetition blocked algorithms

Al+1:nt+1:n)—WZ

Jens Saak

Scientific Computing Il

149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing Il 149/348

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing 11 149/348

Dense Linear Systems of Equations

]

Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the block outer
product elimination in Algorithm 6.

Threaded BLAS available

m Compute line 4 with the sequential version of the LU
m Exploite the threaded BLAS for the block operations in lines 57

Jens Saak Scientific Computing Il 150/348

Dense Linear Systems of Equations

e

Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the block outer
product elimination in Algorithm 6.

Threaded BLAS available

m Compute line 4 with the sequential version of the LU
m Exploite the threaded BLAS for the block operations in lines 57

Netlib BLAS

m Compute line 4 with the sequential version of the LU

m Employ OpenMP /PThreads to perform the BLAS calls for the block
operations in lines 5—7 in parallel.

Jens Saak Scientifil i 150/348

Dense Linear Systems of Equations

Fork-Join parallel implementation for multicore machines

Both these approaches fall into the class of parallel codes described by the
following paradigm.

Definition (Fork-Join Parallelism)
An algorithm that performs certain parts sequentially between others that are
executed in parallel is called fork-join-parallel.

Figure: A sketch of the fork-join execution model.

Jens Saak Scientific Computing Il 151/348

Dense Linear Systems of Equations

Fork-Join parallel implementation for multicore machines

Advantages

m Easy to achieve.
m Many threaded BLAS implementations available.

m Basically usable from any user code that requires linear system
solves.

Disadvantages

m Very naive implementation.
m Sequential fraction limits the speedup (Amdahl’s law).
m Therefore, only useful for small numbers of cores.

Jens Saak Scientific Computing Il 152/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

<]

Definition (Directed Acyclic Graph (DAG))
A directed acyclic graph is a graph where
m all edges have one distinct direction,

m directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

m Consider every node in the graph a task in the computation.

Jens Saak Scientific Computing Il 153/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

<]

Definition (Directed Acyclic Graph (DAG))
A directed acyclic graph is a graph where
m all edges have one distinct direction,

m directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

m Consider every node in the graph a task in the computation.

m Every task requires a certain number of previous tasks to have finished.

Jens Saak Scientific Computing Il 153/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

<]

Definition (Directed Acyclic Graph (DAG))
A directed acyclic graph is a graph where
m all edges have one distinct direction,

m directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?
m Consider every node in the graph a task in the computation.
m Every task requires a certain number of previous tasks to have finished.
m Also none of the previous tasks depend on the later ones.

Jens Saak Scientific Computing Il 153/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

‘\

Definition (Directed Acyclic Graph (DAG))
A directed acyclic graph is a graph where
m all edges have one distinct direction,
m directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?
m Consider every node in the graph a task in the computation.
m Every task requires a certain number of previous tasks to have finished.
m Also none of the previous tasks depend on the later ones.

m Thus, the dependencies give us the directions and cycles can not appear by
construction.

Jens Saak Scientific Computing 11 153/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

Jens Saak Scientific Computing Il 154/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

Figure: Dependency graph of Algorithm 6 for a 3 x 3 block subdivision.

Jens Saak

Scientific Computing Il

155/348

Dense Linear Systems of Equations

DAG scheduling of block operations aiming at manycore systems

. o E_D - Fork-join
=S
- = o ==={ parallelism
=1 -F'-‘:'
DAG scheduled
parallelism
Time >

Figure: The superiority of DAG scheduling of tasks over fork-join parallelism.

Jens Saak Scientific Computing Il 156/348

