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Why use accelerators?

(a) Floating point operations

(b) Memory bandwidth

Figure: Throughput comparison of Multicore CPUs and CUDA enabled GPUs (taken
from CUDA C Programming Guide)
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Why use accelerators?

Architecture GFLOPS GFLOPS/Watt Utilization

Core i7-960 96 1.14 95%

Nvidia®GTX280 410 2.6 66%
Cell 200 5.0 88%

Nvidia®GTX480 940 5.4 70%
TI C66x DSP 74 7.4 57%

Table: Power efficieny comparison of Multicore CPUs and accelerator chips (taken from
Conference Poster by F. Igual and M. Ali)
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Memory Hierarchy with Accelerators
Common Features
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Figure: Schematic of a general parallel system
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Memory Hierarchy with Accelerators
Graphics Processing Units (GPUs)

Memory Optimizations

www.nvidia.com
CUDA C Best Practices Guide DG-05603-001_v5.0 | 23

bit of metadata (or as hard-coded information in the program) for each pointer.
Using UVA, on the other hand, the physical memory space to which a pointer
points can be determined simply by inspecting the value of the pointer using
cudaPointerGetAttributes().

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical
host and device pointers, so it is not necessary to call cudaHostGetDevicePointer()
for such allocations. Host memory allocations pinned after-the-fact via
cudaHostRegister(), however, will continue to have different device pointers than
their host pointers, so cudaHostGetDevicePointer() remains necessary in that case.

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data
directly across the PCIe bus for supported GPUs in supported configurations, bypassing
host memory.

See the CUDA C Programming Guide for further explanations and software requirements
for UVA and P2P.

6.2  Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include global,
local, shared, texture, and registers, as shown in Figure 2  Memory spaces on a CUDA
device.

Figure 2  Memory spaces on a CUDA deviceFigure: Memory configuration of a CUDA Device (taken from CUDA C Programming
Guide)
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Memory Hierarchy with Accelerators
Field Programmable Gate Arrays (FPGAs)

Figure: Comparison of CPUs and FPGA execution models.
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Compute Unified Device Architecture (CUDA)
What is CUDA?

CUDA is two things at the same time:

1. platform model
for the hardware implementation of general purpose graphics
processing units made by the Nvidia® Corporation.

2. programming model
realizing the software implementation and scheduling of tasks of
the parallel programs on the above hardware.
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Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are executing
several threads simultaneously. The GPU-threads are therefore grouped in so
called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds mostly
32 threads per warp which in turn is the smallest number of tasks executed in
SIMD style.
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Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is a larger group of threads that can contain 64-512 threads.

Ideally it contains a multiple of 32 threads so it can be split optimally into warps
by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed to a one
or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.
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Compute Unified Device Architecture (CUDA)
Basic Definitions

Figure: Grids of Thread Blocks (taken from CUDA C programming guide)
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Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program are
those of host and device. Here host refers to the computer that hosts the GPU.
Especially the CPU and memory of the host are relevant. The device then is the
GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple CPUs,
each GPU is connected to a single CPU representing a single NUMA node of the
host system.

The host CPU controls the execution of the program. However host and device
may execute their tasks asynchronously. When not specified differently data
transfers between them serve as implicit synchronization points.
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Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (kernel)

The kernel is the core element of a CUDA parallel program. It represents the
function that specifies the work a certain thread in a block on a grid has to
execute.

We will see in the course of this Chapter how the thread executing the kernel
knows which part of the global problem it has to perform.
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Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

We will next introduce the most basic elements of the CUDA C language
extension. These consist of two important things.

1. qualifiers that apply to functions and specify where the function should be
executed,

2. launch size specifiers that control the grid and block sizes that are used to
run a kernel.

An extensive API, defining C-style functions and data types to be used in CUDA
programs, together with a handful of libraries for several kinds of tasks (e.g., a
BLAS implementation) complete the picture.
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Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

Figure: The CUDA GPU computing applications framework (taken from CUDA C
programming guide)
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Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.
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Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

The basic launch size specification for a kernel takes the form

<<< grid , block size >>>

where grid specifies the block distribution and block size indicates the
number of threads per block in the grid.

Example

<<<1,1>>> launches 1 block with 1 thread

<<<N,1>>> launches N blocks with 1 thread each

<<<1,N>>> launches 1 block with N threads

<<<N,M>>> launches a 1d grid of N blocks running M threads each
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Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

Both the arguments can be two dimensional distributions. CUDA defines special
tuple hiding types for these declarations. Using

dim3 grid(3,2)
dim3 threads(16,16)

one defines a 3× 2 grid of blocks for running 256 threads arranged in a 16× 16
local grid. These are then used in the launch specification as

<<< grid, threads>>>

Launch size specifications are simply appended to the kernel function name upon
calling it.
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Compute Unified Device Architecture (CUDA)
Introductory Examples

The following examples are taken from the “CUDA by Example” book.

Example

#include "../common/book.h"

__global__ void kernel( void ) { }

int main( void ) {
kernel<<<1,1>>>();
printf( "Hello, World!\n" );
return 0;

}
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Compute Unified Device Architecture (CUDA)
Introductory Examples

Example

#include "../common/book.h"

__global__ void add( int a, int b, int *c ) {

*c = a + b;
}

int main( void ) {
int c;
int *dev_c;
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) );

add<<<1,1>>>( 2, 7, dev_c );

HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost ) );

printf( "2 + 7 = %d\n", c );
HANDLE_ERROR( cudaFree( dev_c ) );

return 0;
}
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Compute Unified Device Architecture (CUDA)
Introductory Examples

Example

#include "../common/book.h"

__device__ int addem( int a, int b ) {
return a + b;

}

__global__ void add( int a, int b, int *c ) {

*c = addem( a, b );
}

int main( void ) {
int c;
int *dev_c;
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) ) );

add<<<1,1>>>( 2, 7, dev_c );

HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost ) );

printf( "2 + 7 = %d\n", c );
HANDLE_ERROR( cudaFree( dev_c ) );

return 0;
}
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Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

In order to be able to compile the previous examples, one needs to check a few
prerequisites:

Nvidia® device drivers and hardware,

Nvidia® CUDA toolkit installation,

compiler for the host code.
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Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda.

The Toolkit and all the information on the
included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.

Regarding the hardware, basically every Nvidia®GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows: Visual Studio

Linux: Gnu Compiler Collection (GCC)

MacOS: GCC as well via Apple’s Xcode
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Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

We will in the following restrict ourselves to the Linux world again.

Consider our basic “Hello World!” example is stored in a text file called
hello world.cu. Using the nvcc compiler provided in the CUDA Toolkit we
can compile it by

nvcc hello_world.cu

Since on Linux nvcc uses gcc to compile the host code this will also generate a
binary called a.out. As for gcc we can specify the output filename, i.e. name of
the resulting executable via

nvcc hello_world.cu -o hello_world

The file extension .cu is used to indicate that we have a C file with CUDA C
extensions.
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Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Among the further compiler options we meet many old friends:

-c for generating object files of single .c or .cu files

-g for generating debug information in the host code

-pg the same for profiling information

-O for specifying the optimization level for the host code

-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.

-G generates debug information for the device code

-arch specifies the GPU architecture to be assumed, i.e. the compute capabilities
of the device (e.g. -arch=sm 20)
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