
Lecture Notes

“Scientific Computing I”

winter term 2018/2019

Dr. Jens Saak

jens.saak
@mpi-magdeburg.mpg.de

Dipl.-Math. Martin Köhler

martin.koehler
@mpi-magdeburg.mpg.de

1 for j :“ i, . . . , n do
2 for k :“ 1, . . . , i´ 1 do
3 Ai,j´ “ Ai,kAk,j

version from January 23, 2019

2

Contents

1 Linux and the Commandline 1

1.1 A short History of an Accidental Revolution 2

1.2 The Linux Shell and Basic Commands for Handling Files 4

1.3 Getting Help . 15

1.4 Manipulation of Simple Commands 15

1.5 Script File Basics . 17

1.6 Simple Automatic File Manipulation 18

1.7 Remote Computing on Encrypted Connections 23

1.8 Screen an Online/Offline Terminal 24

1.9 The Toolchain . 27

Bibliography . 28

2 Introduction to C and the GNU Toolchain 29

2.1 The Programming Environment 30

2.2 C Statements, Types and Operators 34

2.3 Control Structures . 39

2.4 Complex Data Types and Arrays 44

2.5 Functions . 51

2.6 An Introduction to the Standard Library 53

2.6.1 stdio.h and stdlib.h 53

2.6.2 math.h and complex.h 56

2.6.3 string.h . 58

2.7 File Input and Output . 59

2.8 The Preprocessor and Header Files 60

2.9 Makefiles . 63

2.10 Writing Own Libraries . 66

i

ii Contents

2.11 Interfacing Fortran . 68

2.12 Automatic Generation of Documentations Using DOXYGEN . . . 70

Bibliography . 71

3 Revision Control 73

3.1 Types of Revision Control Systems 74

3.1.1 Local Revision Control . 74

3.1.2 Central Revision Control 75

3.1.3 Distributed Revision Control 75

3.2 Collaborative Work on Projects 76

3.2.1 Conflicts . 76

3.2.2 Branches . 76

3.2.3 Tags . 76

3.3 Revision Control meets Social Networking 77

3.3.1 Issues . 77

3.3.2 Pull Request / Merge Request 77

3.3.3 Forks . 78

3.3.4 A generic workflow . 78

4 Error Analysis and Machine Numbers 79

4.1 Machine Numbers . 80

4.2 Rounding Errors and Error Propagation 83

4.2.1 Rounding Rules . 83

4.2.2 Computer Arithmetic . 87

4.2.3 Error Propagation . 88

4.2.4 The IEEE Standard 754 92

4.3 Error Analysis . 95

4.3.1 Conditioning/Condition Number 96

4.3.2 Stability . 96

4.3.3 Forward Error Analysis 97

4.3.4 Backward Error Analysis 98

4.3.5 Perturbation Analysis . 101

Bibliography . 105

5 Memory Architecture and Memory Management 107

5.1 Virtual Memory Concept . 109

5.1.1 Paging . 110

5.1.2 Memory Related Error Signals 110

5.2 Volatile memory . 111

5.2.1 Registers . 111

5.2.2 Cache . 111

5.2.3 Main Memory . 112

5.3 Non-Volatile Storage . 113

5.3.1 Local Storage Media . 113

Contents iii

5.3.2 Local Network . 113

5.3.3 Cloud and Remote Network Services 114

5.4 Non Uniform Memory Access . 114

5.4.1 Cache Coherence . 114

5.4.2 Memory Consistency . 114

Bibliography . 115

6 Basic Operations, Formats and Matrix-Norms 117

6.1 Vector Norms and Inner Products 118

6.2 Linear Operators, Operator and Matrix Norms 120

6.2.1 Spectral Norm and Spectral Radius 125

6.2.2 Condition Number and Singular Values 128

6.2.3 Some Remarks on κ2pAq 129

6.3 Matrix Storage Formats . 131

6.3.1 Dense Matrices . 132

6.3.2 Sparse Matrices . 135

6.3.3 Complex Matrices . 139

6.4 Linear Algebra Software . 140

6.4.1 Basic Linear Algebra Subroutines (BLAS) 141

6.4.2 Linear Algebra PACKage (LAPACK) 145

6.4.3 SuiteSparse . 147

6.4.4 ITPACK . 147

6.4.5 Trilinos . 147

6.4.6 Native Packages for other Programming Environments

and Languages . 148

Bibliography . 148

7 The Solution of Moderate Size Dense Linear Systems 151

7.1 Important Preliminaries . 151

7.2 Cache/BLAS Exploitation . 154

7.2.1 Triangular System . 154

7.2.2 Triangular Systems with Multiple Right Hand Sides and

BLAS Level-3 formulation 155

7.2.3 BLAS Level-3 based Gaussian Elimination 156

7.3 Iterative Refinement . 157

Bibliography . 159

8 Solving Linear Systems With Sparse Matrices 161

8.1 Preconditioning . 164

8.1.1 Diagonal Preconditioning 164

8.1.2 Splitting Methods . 165

8.1.3 Multigrid approaches . 165

8.1.4 Incomplete Factorizations 165

8.1.5 Sparse Approximate Inverses (SPAI) 166

iv Contents

8.2 Krylov Subspaces and Projection Methods 166

8.3 Conjugate Gradients . 168

8.4 Direct Solvers for Sparse Symmetric Systems 170

8.4.1 The Elimination Graph Model for Symmetric Matrices . . 171

8.4.2 The filled graph G`pAq 172
8.4.3 Characterization of Fill-in 173

8.4.4 Heuristic Fill Reduction 174

8.4.5 Related Software . 180

Bibliography . 180

Preface

German Die Vorlesung “Wissenschaftliches Rechnen 1” verfolgt das Ziel, Ver-

fahren und Algorithmen der Numerischen Mathematik praktisch umzusetzen.

Sie soll Wissen und Strategien vermitteln, welche notwendig sind, um Ideen aus

der Theorie in praktisch nutzbare Programme zu übersetzen und diese effizient

zu implementieren. Dies soll mehrheitlich mit Hilfe der Programmiersprache C

geschehen, da sie eine der ammeisten eingesetzten Sprachen ist
1
und auch im

Bereich von eingebetteten System unverzichtbar ist.

Die rein mathematische Betrachtung von Problemstellung reicht in vielen Fäl-

len dem Urheber des Problems nicht mehr aus. Viel mehr sind Industrie und

Technik an praktisch nutzbaren Ergebnissen für die Anwendung in Informatik,

Ingenieurwesen und Alltagsproblemen interessiert.

Neben der Umsetzungen von mathematischen Verfahren soll der Umgang mit

unixoiden Betriebssystemen (in diesem Fall Linux) erlernt werden. Diese bilden

die hauptsächlich eingesetzte Klasse von Betriebssystemen auf den großen und

sehr großen Installationen, wie Compute-Clustern inmodernen Rechenzentren.

Neben den Betriebssystem-Spezifika werden auch Hilfsmittel vorgestellt, die

den Arbeitsablauf im Umfeld des wissenschaftlichen Rechnens erleichtern.

English This lecture aims at the practical implementation of methods and al-

gortihms in numerical mathematics. Its main purpose is to convey the knowl-

edge and strategies necessary to transfer and efficiently implement theoretical

ideas into computer programs for practical application. We will focus on the C

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

v

 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

vi Contents

programming language since this is one of the most comonly used languages,

which is especially invaluable in the environment of embedded systems.

The purely mathematical consideration of problem settings often is no longer

sufficient. Today partners from industry and technology are interested in prac-

tically usable results for applications in computer and engineering sciences.

Along with the practical implementation of mathematical methods the usage of

unixoidal operating systems (in our case Linux) is to be learned. Those operat-

ing systems form the most important class of operating systems used on large

compute clusters in modern high performance computing centers. Besides op-

erating system specifics we also present a couple of tools that help simplifying

work in a scientific computing environment.

Layout and Style

We have put some effort into creating a unique reading experience that visually

supports the reader in identifying contributions to the content. Examples are

typeset inside light gray background boxes to find them easily in the document.

They follow a chapter-wise numbering scheme, that is also used for Theorem-

like environments (i.e. definitions, theorems, lemmas, corollaries and remarks).

These environments are all displayed as framed boxes where definitions are

marked by a -symbol. Theorems, corollaries and lemmas can be identified

by the -symbol and remarks show a . Equation numbers follow their own

chapter-wise scheme.

Commands, program variables and alike are displayed in typewriter style
throughout the document. When an appropriate portion of code is presented,

we use color coding (of the background color) to identify the type of code that

is displayed. We distinguish the following:

C sources

Fortran sources

Shell scripts (especially BASH)

Makefiles

Acknowledgments

We would like to thank a couple of people that helped us in preparing this

manuscript. Some of them had major contributions. First of all Peter Ben-

ner provided the German basis for Chapter 4, which we slightly modified with

Contents vii

material from the seminal book on “Stability and Accuracy of Numerical Algo-

rithms” by Nicholas J. Higham. We are also deeply indebted to our student Ri-

cardo Leese for typesetting large parts of Chapters 6– 8 during the course given

in winter term 2012/2013. Furthermore many thanks go to Petar Milnarić for

carefully reading through the manuscript in winter term 2016/2017. His sug-

gestions have improved the content, as well as the layout of the material. Also

we thank all other students of the course for participation in the discussions

during the lecture that helped increase the quality of the presentation a lot.

viii Contents

. . . the Linux philosophy is ‘laugh in the face of danger’. Oops. Wrong

one. ‘Do it yourself’. That’s it.

LINUS TORWALDS

CHAPTER1

Linux and the Commandline

Contents

1.1 A short History of an Accidental Revolution 2

1.2 The Linux Shell and Basic Commands for Handling Files . . 4

1.3 Getting Help . 15

1.4 Manipulation of Simple Commands 15

1.5 Script File Basics . 17

1.6 Simple Automatic File Manipulation 18

1.7 Remote Computing on Encrypted Connections 23

1.8 Screen an Online/Offline Terminal 24

1.9 The Toolchain . 27

Bibliography . 28

This first chapter is dedicated to an introduction to the Linux operating sys-

tem and the command line. We focus on the command line operation of the

system, since on many compute servers, especially in high performance com-

puting centers, this is the only way to access the system. Furthermore, once we

understand how to perform certain tasks on the command line, it is then a lot

easier to write job scripts for submission of so called batch jobs to job schedul-

ing systems used on distributed compute resources like clusters and grids.

We focus on Linux here although most Unix-like operating systems should at

least behave very similar. Especially for the ones based on the GNU (“GNU’s not

Unix”) project everything should be more or less exactly the same. The GNU

1

2 Chapter 1. Linux and the Commandline

project was founded in 1983 long before the first Linux kernel came to life. A

major contribution of the inventor Richard Stallman was the first version of the

GNU Public License (GPL) that today is inseparably connected with the Linux

operating system.

1.1 A short History of an Accidental Revolution

As a matter of fact the much later the first Linux system was developed for ex-

actly the purpose we are pursuing here, namely a terminal emulator for access-

ing the universities Unix (in the special case Minix) based compute facilities. At

some point the author realised that he had “accidentally” written an operating

system kernel. The first version of Linux was announced by its inventor Linus

Torvalds in the following news posting in a usenet news group
1
for the Minix OS

that he was trying to access on August 26, 1991:

“Hello everybody out there using minix -
I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since april, and is starting to
get ready. I’d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the file-system (due to practical
reasons) among other things).
I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies
that I’ll get something practical within a few months, and I’d like to know what fea-
tures most people would want. Any suggestions are welcome, but I won’t promise I’ll
implement them :-)

Linus (torv...@kruuna.helsinki.fi)
PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT protable
(uses 386 task switching etc), and it probably never will support anything other than
AT-harddisks, as that’s all I have :-(. ”
After this the (r)evolution has been fast as the following timeline (taken from

Wikipedia
2
) shows:

1983 Richard Stallman creates the GNU project with the goal of creating a free

operating system.

1989 Richard Stallman writes the first version of the GNU General Public Li-

cense.

1https://groups.google.com/forum/?fromgroups=#!msg/comp.os.
minix/dlNtH7RRrGA/SwRavCzVE7gJ

2http://en.wikipedia.org/wiki/History_of_Linux

https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
http://en.wikipedia.org/wiki/History_of_Linux

1.1. A short History of an Accidental Revolution 3

1991 The Linux kernel is publicly announced by the 21 year old Finnish student

Linus Benedict Torvalds.

1992 The Linux kernel is relicensed under the GNU GPL. The first so called

“Linux distributions” are created.

1993 Over 100 developers work on the Linux kernel. With their assistance the

kernel is adapted to the GNU environment, which creates a large spec-

trum of application types for Linux. The oldest currently existing Linux

distribution, Slackware, is released for the first time. Later in the same

year, the Debian project is established. Today it is the largest community

distribution.

1994 In March Torvalds judges all components of the kernel to be fully ma-

tured: he releases version 1.0 of Linux. The XFree86 project contributes a

graphic user interface (GUI). In this year the companies Red Hat and SUSE

publish version 1.0 of their Linux distributions.

1995 Linux is ported to the DEC Alpha and to the Sun SPARC. Over the following

years it is ported to an ever greater number of platforms.

1996 Version 2.0 of the Linux kernel is released. The kernel can now serve

several processors at the same time, and thereby becomes a serious al-

ternative for many companies.

1998 Many major companies such as IBM, Compaq and Oracle announce their

support for Linux. In addition a group of programmers begins developing

the graphic user interface KDE.

1999 A group of developers begin work on the graphic environment GNOME,

which should become a free replacement for KDE, which depended on

the then proprietary Qt toolkit. During the year IBM announces an exten-

sive project for the support of Linux.

2004 The XFree86 team splits up and joins with the existing X Window stan-

dards body to form the X.Org Foundation, which results in a substantially

faster development of the X Window Server for Linux.

2005 The project openSUSE begins a free distribution fromNovell’s community.

Also the project OpenOffice.org introduces version 2.0 that now supports

OASIS OpenDocument standards in October.

2006 Oracle releases its own distribution of Red Hat. Novell and Microsoft an-

nounce a cooperation for a better interoperability.

2007 Dell starts distributing laptops with Ubuntu pre-installed in them.

2011 Version 3.0 of the Linux kernel is released.

4 Chapter 1. Linux and the Commandline

2012 The aggregate Linux server market revenue exceeds that of the rest of

the Unix market.

2013 Google’s Linux-based Android claims 75% of the smartphonemarket share,

in terms of the number of phones shipped.

2014 Ubuntu claims 22,000,000 users.

At first Linus Torvalds intended to name his operating system Freax, a portman-

teau of the words “freak”, “free”, and “x” (for Unix). As of today the times when

Linux was an operating system only for freaks are over. Several modern Linux

distributions exist that are nowadays as easy to use and install as the main con-

sumer market competitors MS Windows and MacOS.

1.2 The Linux Shell and Basic Commands for Handling

Files

The shell is the Linux command interpreter. It serves as the basic interface

to the operating system. In fact there is not only one shell but a couple of

implementations like bash, csh, tcsh, ksh, zsh. We base our presentation
on the bash shell. Most of the ideas directly transfer to the other ones although
the commands and syntax can differ slightly. Before diving into the usage of the

bash and basic tools for managing files and data, we call the attention to the

list of special characters that play important roles and cannot easily be used in

command, file, or directory names, reported in the following table.

* serves as a placeholder for arbitrarily many characters

? a placeholder for a single character

/ directory separator

z escape character for quoting special characters and to mark line-

breaks

˜ abbreviation for your home directory

| the pipe operator: connects two simple commands to a new one by

redirecting the output of the one on the left to the other one on the

right. || represents a logic OR.

ă fetches the input for a command (on the left) from a file or device

(on the right)

ą redirects the output of a command (on the left) to a file or device

(on the right)

2ą same as above for the error output only, can be used to redirect the

standard error messages to standard output so it is recognized by

theą and | as well via 2>&1

1.2. The Linux Shell and Basic Commands for Handling Files 5

1ą same as above for the standard output without the errors

ąą asą but appends the output instead of overwriting the file

$ used in command substitution and for referring to shell and envi-

ronment variables

& a single & after a command name sends the execution to the back-
ground. Double && stand for the logic AND.

‘ accent grave is used for command substitution

’ single quotes removes the special meaning of all special characters

enclosed by them.

" double quotes act the same as single quotes with the exception of

the $,‘,z (and sometimes !) characters keeping their special proper-
ties.

blank the simple blank is used to separate words and thus needs to be

escaped when, e.g., a file name contains it.

comment character; everything following this character on the

same line will be dropped

Basic Directory Commands The basic arrangement of filesystems differs sig-

nifficantly from, e.g., a MSWindowsmachine. In contrast toMSWindows, where

all physical discs get their own drive letter and start a local directory at the vol-

umes root, in Unix-like environments the filesystem is arranged in one global

directory tree and all physical drives are placed in a certin structure under a

common root called /. The specific structure of this tree differs between the

types of Unixes and even among Linux distributions it has been varying a lot.

Over the recent years huge efforts have been undertaken to unify the struc-

ture. The Linux Standard Base (LSB) is the largest and most important initiated

by the Linux Foundation. It is not only defining a common directory structure

but tries to unify large parts of the distribution to increase the cross distribution

compatibility.

There are many commands used to work with or manipulate files and directo-

ries. We will only report on a selection of commonly used ones here. Before

we get to the list of command however we introduce some special directories.

˜was mentioned in the table above already. It stands for your home directory,
i.e., the directory holding your personal files and the one directory in which you

usually end up directly after logging in to the system. Every directory contains

two special entries “.” representing the current directory and “..” abbreviating
the directory one level above in the directory tree. The first one enables us to

refer to commands in the current directory in case it is not in our default search

path and the other enables the use of relative path constructs for referring to

files.

6 Chapter 1. Linux and the Commandline

pwd short for print working directory, and printing the name of the directory
you are currently working in is exactly what it does.

cd change directory, switches the current working directory to the directory
given as the argument. If no argument is given cd takes you home, i.e.,
switches to your users home directory.

mkdir creates a new directory in the current working directory

rmdir removes the directories specified as arguments if they are empty.

touch creates an empty file or sets the access date of the file to the current
time and date if it exists

rm removes files. It can also be used to remove directories with the -r (recur-
sive) option. This is especially useful when rmdir does not work since
the directory is not empty. The -f (force) option can be used to remove
even protected files.

ls lists all files in the directory specified. If none is specified the current work-
ing directory is used. If the argument is a file or a list of files only those

files are listed. Usefull options are -l for a full listing including access
rights and ownership information, -a for a listing including also hidden
files. The -h option in combination with the two previous ones makes file
sizes human readable, i.e., displayed asmultiples of kB, MB, GB, TB, where

all of these are representing powers of 1024. If a 1000 based presentation

is desired -si needs to be used instead.

cp takes two or more arguments and copies the n-1 first arguments to the
last. If more than 2 arguments are given the last one must be a directory.

Absolute and relative paths are allowed.

mv Same as above but moves the files, i.e., the originals are removed after the
copy has successfully finished.

ln links files to new names. By default a hardlink is created. Then the new
name serves as a new entry in the file system associated to the same data

and the data is only removed if all hardlinks are removed. When usedwith

the -s option a softlink is created that only points to the original. When

the original data is removed the link becomes orphaned.

find find is a powerful search tool that can hardly be fully described in a few
words. We refer to the man and info pages for details. A feature often
overlooked in the man page are the operators. Note that, e.g., ! or -not
allow to negate the following search expression.

locate Another search tool that uses a pregenerated database to accelerate
the searches. The database may be restricted to parts of the filesystem

only, or even not exist. Also it is frequently updated but may be outdated

1.2. The Linux Shell and Basic Commands for Handling Files 7

when the actual search is performed. However, for directories that do

not change very frequently this is a good alternative since it is usually a

lot faster than find.

File Permissions and Storage Amounts We have seen before that the ls
-l command helps us learn about the permissions of files. Here we explain
these permissions in detail and show how they can be changed. The command

executed in the home directory storing the files of the standard user scuser
on the virtual machine found on the lectures homepage give the following result

Example 1.1:

total 32
drwxr-xr-x 2 scuser scuser 4096 Sep 27 12:20 Desktop
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Documents
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Downloads
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Music
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Pictures
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Public
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Templates
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Videos

The same command issued on the Desktop folder gives:

Example 1.2:

-rw------- 1 scuser scuser 12680 Aug 30 08:59 chromium-\
Õ browser.desktop

-rw------- 1 scuser scuser 4953 Sep 27 12:18 \
Õ lxterminalA6O6KW.desktop

-rw------- 1 scuser scuser 4953 Aug 27 16:32 lxterminal.\
Õ desktop

-rw------- 1 scuser scuser 5813 Sep 27 12:20 pcmanfm.\
Õ desktop

In both cases the output contains the same important groups information. The

drwxr-xr-x, -rw---- show the file type and permissions. Here the d in the
first set shows that the corresponding line relates to a directory. The - marks
a normal file. Another commonly found symbol is l for symbolic links. There
are many more that are described in the info pages (see also Section 1.3).
The following three groups of three characters describe the file permissions

of the owner (first three), the related group (second three) and everyone else

(remaining three). Here the r stands for the possibility to read a file, or directory
and the w stands for write access. The x on a file makes that file executable,
i.e., interpreted as a program. For a directory the flag stands for the ability to

8 Chapter 1. Linux and the Commandline

change into the directory. If a flag is unset, i.e., the access is not granted it

is replaced by a - in the corresponding position. The scuser scuser part
represents the owner (first) and the related user group (second) for the file. In

the examples above the user scuser has read and write access on all objects
and for the directories is also allowed to change into them. The group scuser,
however, is only allowed to read and change into the directories, but can not

read or manipulate the files in the Desktop directory.

To determine whether a certain user group permission set applies to your user

you may use one of the two commands id or groups. The second one simply
prints all group names the current user is in. The first one in addition prints the

numeric ids that are used by the system to represent the user, its primary and

all the other groups.

In case the group a file is related to needs to be changed, this can be done using

the chgrp command. The command takes two or more arguments. The first
argument needs to be the new group for which the association should be per-

formed. After this a list of elements (files, directories, links) follows that should

be associated to the new group. Several optional command line switches exist

that influence the way, for example links are treated. Alternatively the chown
(change ownership) command may be used. This can also be used to change

the owning user. For the latter task normally superuser privileges are required.

The calling sequence is mainly the same. The only difference is that instead of a

group owner and group are given in the form owner:group. Here both owner
and group are optional, but the syntax needs to be :group if only the group is
to be changed.

The standard Unix file permissions can be changed by the chmod command.
The standard format to perform simple changes is for example

chmod u+w file1
chmod g+rw file2
chmod o-wx file3

to grant the user write permission to file1, the group read and write permis-
sion on file file2 and remove the write and execute permission from file3
for the rest of the users (o for others). These changes are performed relative

to the existing file permissions. Sometimes it is however easier to perform ab-

solute changes. To this end read, write and execute flags have corresponding

numerical values. Read permission counts 4, write permission 2 and execute

permission 1. All combinations of read, write and execution permissions can

then be formed as sums of those values. That means 7 represents rwx, 6 stands

for rw-, 5 for r-x and 3 is -wx. This way changing the file permissions to rwxrw-

rw- for file from an arbitrary prior setting can be done via

chmod 755 file

1.2. The Linux Shell and Basic Commands for Handling Files 9

On the Andrews filesystem (AFS) which is also used at theMagdeburg University

file permissions are stored on a per directory basis. Also the above command

is useless there. The corresponding command for checking and setting file per-

missions there is called fs and the command for group handling is pts. Their
in depth explanation would exceed the space limitations here and we refer to

the man pages or web based AFS quick reference
3
for getting started.

Often the disk space per user is limited by the operating system. To check the

amount of space on a Unix file system that a user is currently using and is al-

lowed to use at maximum can be found via the quota command. On the lec-
tures virtual machine the disk space is the only limit for the space. The quota
command is therefore not even installed.

The more important limit to the disk usage is obviously given by the capacity of

the physical drives available in the machine or the servers our network filesys-

tems are residing on. We can get an overview of those filesystems currently

used (mounted) on our machine by typing df, which on the virtual machine
gives

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 9804120 2256688 7049412 25% /
udev 246672 4 246668 1% /dev
tmpfs 101576 748 100828 1% /run
none 5120 0 5120 0% /run/lock
none 253936 0 253936 0% /run/shm

This tells us that we are currently using 25% of the maximum capacity of our

main disk mounted at the file system root /. The other entries are used by the
operating system and not related to physical drives.

Once we have determined we are consuming a certain percentage of our al-

lowed or possible space it may get important to find out where all the space

is going, i.e., which files are using it. The du command can be employed to
find this out. Started in a certain directory the command recursively descends

into all directories below that point in the filesystem tree and checks and re-

ports their disk usage in bytes. At the end it provides a grand total. As for the

ls command a -h flag exists to make the output a bit more user readable.
The -max-depth= command line parameter can be used to limit the descend
depth for which the disk usage is reported. Still themaximumdepth is searched

but only the selected ones are reported in detail.

Influencing the Working Environment The shell uses variables to store in-

formation about your working environment. Variables are elements referenced

with a $ sign and usually written in all capital letters. One can find out which

variables are currently set using the command env. If one knows the name of

3http://www.cs.cmu.edu/~help/afs/afs_quickref.html

http://www.cs.cmu.edu/~help/afs/afs_quickref.html

10 Chapter 1. Linux and the Commandline

the variable beforehand the content can be printed out using the echo com-
mand. Some important environment variables are

$HOME containing the path to the users home directory,

$USER the user name of the user (also found in $LOGNAME, or $USERNAME),

$PATH a : separated list of directories that are used to search for executable
programs

$HOSTNAME the name of the computer the shell is running on.

echo $HOME

Other important variables used by the GNU compilers and linkers will be intro-

duced in Chapter 2. Environment variables can be set by simply assigning a

value to them at the command line. For example

PATH=$PATH:$HOME/bin

appends the bin directory in the users home directory to the current exe-
cutable search path. If one intends to have this setting inherited by processes

started from the shell the same has to be done as

export PATH=$PATH:$HOME/bin

Also if we set variables in a script file and we want them to persist after the

execution we have to use the export statement.

Two examples of such script files are the files .profile and .bashrc. Both
these files are executed upon login to a new bash shell. They can thus contain

settings that should always be active. For example if the above bin directory
should always be contained in the search path, we would simply add the export

line to one of the files. In this case this should preferably be .bashrc since
the .profile will also be read by other shells which in some cases do not
understand export but use a command called setenv instead.

The configuration files can also be used to define command abbreviations. For

example one would often call the command ls with the -l and -h parame-
ters and probably want to have it a little colorful to distinguish between files

and directories more easily, as well as see at the first glimpse what files are

executable. Adding the simple line

alias ll=’ls -lh --color=’auto’ --group-directories-first’

defines a shortcut ll that does all this automatically.

Viewing Files The simplest file viewer is probably the cat command it takes
the contents of the argument files, concatenates them, and displays the result

at the standard output. It will not stop printing until the end of the last file is

1.2. The Linux Shell and Basic Commands for Handling Files 11

reached. Since this is not very useful for reading the content of longer files, cat
is usually used in combination with other command or for redirecting the result

to a new file (see also Section 1.4).

Two slightly more usable viewers are head and tail which by default display
the ten first and last lines in the argument file. Both take the -n parameter that
is used to change the number of lines displayed. tail is often used in combi-
nation with the watch command that periodically executes a certain command
to watch the status of log files. For example

watch -n 60 tail -n 50 mylog.txt

displays the final 50 lines of the files mylog.txt every 60 seconds.

A fairly helpful file viewer is the less command. It uses the full height of the
terminal window to display the leading part of the file. It then lets you scroll

through the files content with the cursor keys, jump to the beginning or the end

using the ăpos1ą and ăendą keys, or search through the files content with {

followed by the search expression. One can then navigate through the matches

using the ăną (for next) and ăpą (for previous) keys. The view can be exited

by simply pressing theăqą key.

When one has two versions of the same file, e.g., subsequent iterations of the

same source code, it is usually not easy to find the differences by simply com-

paring the content in two neighboring less views. To help simplify this task
diff is the tool of choice. There are many command line switches that help
to configure how the comparison is performed and how the result is displayed.

By default the two files are compared and only differing lines with a little bit of

context around them are displayed. There also exist several graphical user in-

terfaces that help you compare and merge files even more easy. xxdiff and
kdiff3 are just two of those.

Compressing Files The common compression formats zip and rar most
people know in the MS Windows world are available on Unix-like platforms as

well. For example

zip -r folder.zip folder

takes the directory folder and its entire content and creates a compressed
archive folder.zip. After that

unzip folder.zip

can be used to unpack the directory somewhere else again.

The same task can be performed with rar using

rar a -r folder.rar folder

12 Chapter 1. Linux and the Commandline

for the archiving and

unrar x folder.rar

for the extraction. If the extraction should be done flat, i.e., all files should go

to the current directory ignoring the directory structure of the archive this can

be achieved by

unrar e folder.rar

Alternatives found on Unixes more classically are gzip, gunzip for compres-
sion and decompression of single files using the Lempel-Ziv coding. If gzip is
supplied with multiple files they will be compressed separately however. Every

compressed files gets an additional suffix .gz to show the compression. Sim-
ilarly bzip2 and bunzip2 are used to compress single files using Burrows-
Wheeler block sorting text compression algorithm, and Huffman coding, which

usually leads to better compression rates but takes more time to complete. The

compressor adds a .bz2 suffix. Both gunzip and bunzip2 remove the ad-
ditional suffixes again after decompression.

If many files are to be compressed in a single file, they can be bound together in

a tape archive using the tar command. Again returning to our example above
we would perform the task by

tar -cf folder.tar folder

where -c tells the command to create the archive and the -f is used to specify
the resulting file name. We can combine this directly with the two compression

formats above using

tar -czf folder.tar.gz folder

or

tar -czf folder.tgz folder

to create a gzip compressed tape archive, or

tar -cjf folder.tar.bz2 folder

to do the same using bzip2 compression. The corresponding decompression
is then done by

tar -cf folder.tar
tar -czf folder.tgz
tar -czf folder.tar.gz
tar -cjf folder.tar.bz2

respectively.

Since the file extensions(suffixes) do not mean anything to the system in Unix

environments, they can be seen as a reminder for the user. To really see what

1.2. The Linux Shell and Basic Commands for Handling Files 13

type a file has the file command can be used. Again we use an example for
clarification. Running file in the above .tgz file by

file folder.tgz

results in something like

folder.tgz: gzip compressed data, from Unix, last modified\
Õ : Tue Oct 9 21:38:02 2012

Downloading Files An easy way to download files via the command line is

given by the command wget. The virtual appliance for the lectures virtual ma-
chine can be downloaded via

wget http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2016\
Õ _WS_SC/vm/ubuntu-16.04.ova

for example. The tool is, however, much more powerful. It can also be used to

mirror entire websites. For the details we refer to the man page.

Processes and System Usage Once you logout of the system, all your pro-

cesses are usually terminated. Especially in the case of large computing tasks

we would, however, prefer if they would continue running. One tool that helps

avoiding this is the nohup command. It basically tells the operating system not
to terminate a certain job when the user logs out. However the output of the

command needs to be redirected and we cannot easily reattach to the running

process. The GNU screen utility is a better alternative. It will be decribed in
Section 1.8.

Especially for compute jobs that are running for a very long time it can be ad-

vantageous to not block the CPU of the machine they are runing on entirely.

For example when one uses the local machine to start the job and wants to

continue working on it, it is a good idea to manipulate the job such that it will

only use such CPU cycles that are not needed by any other task. This can easily

be done using the program nice.

nice -19 large-computation

starts the program large-computation with nice level 19, i.e., the lowest
possible priority. Any level between 0 (the default for a user process) and 19

can be used. If the program is already running and one decides to lower the

priority this can be done using renice as in

renice -n 19 12345

where 12345 is the process identification number (PID) of the program to be

reniced.

An easy way to find out the PID for an already running task is the pgrep utility

14 Chapter 1. Linux and the Commandline

pgrep large-computation

provided only one instance of the computation program is running.

A good overview of which processes are currently running is given by the top
tool. It produces a full screen view showing the current entries of the operating

systems process table. This is by default sorted by the percentage of CPU usage.

The view is periodically updated and the ordering can be manipulated by the

larger and smaller keys, which move the column of the display used for sorting

to the left or right. The top view can also be used to identify jobs and find

PIDs for renicing. Some tasks like renicing and terminating processes can even

be performed from inside top using certain shortcut keys (found in the man
page). As for less, or man theăqą is used to exit top.

In script files top can obviously not be used. There the ps command is the tool
of choice. The tool has a huge number of switches selecting the processes to

display. For a general view of the users processes

ps ax

can be used. The list is then usually rather long on the other hand. Therefore

the output of ps is often processed further as can be seen in Section 1.4.

If we are not so much interested in the exact processes running on a machine

but only want to know who is currently working on it, we can find this informa-

tion via the command who. It simply prints a list of all active users.

Some tasks need superuser privileges to be able to execute. Systemwide in-

stallation of certain software would be one such example. A convenient way

of performing such tasks is the sudo tool. It starts a command with the same
privileges that the superuser root would have. To be able to do so one needs
to be registered in a list of users allowed to this however. On our lectures virtual

machine the scuser is allowed to perform mainly any tasks using sudo. In a
general environment the permission to do so will, on the other hand, be very

limited.

One thing a user is always allowed to do is the termination of tasks. If this is

not done from within the task, it can be forced from the outside by the kill
command. For the above task that we reniced already we can use

kill -QUIT 12345

to tell it to safely terminate. If for some reason it does not do so, kill knows
a couple of other signals it can send to the process. The KILL signal is the most

drastic of those and should be used only if all others fail.

1.3. Getting Help 15

1.3 Getting Help

The two most important local resources for documentation of linux commands

are the man and info systems. Both simply take the command name as their
argument and display documentation information in a small command line

browser view. The man documentation page can be navigated and searched
through just like the less view described above. In an info page additionally
there may be cross references in the form of hyperlinks to further details and

related commands.

If one does not remember the command name but knows the purpose, then

apropos can help finding the command. Called with a keyword as the argu-
ment apropos searches the short descriptions at the beginnings of all man
pages for the keyword and displays a list of all commands where it finds appro-

priate matches.

1.4 Manipulation of Simple Commands

In many situations especially in script files one is interested in passing the re-

sults of certain operations directly into the next operation. The pipe operator |
in the linux shell can be used to do this.

program1 | program2

can be used whenever program1 writes its output to the standard output and
program2 reads its input from the standard input. Unfortunately this is not
always the case. For example if we want to remove all PDF files from the current

directory and all its subdirectories, we can use find to generate a list of all
those files. Now we would like to use rm to remove them. rm, however, takes it
arguments directly from the commandline and only uses the standard input if

we force it to use the interactivemode asking for permission to delete every file.

The task can be completed anyway using the xargs utility, which takes a list
from standard input and splits it into a list of arguments to another command.

So all in all we want to do

find . -name ’*.pdf’| xargs rm

or if the number of files is very large we can force xargs to pass the files to rm
one after the other

find . -name ’*.pdf’| xargs -n 1 rm

The parameter -n here takes the number of simultaneously passed arguments.
There are two more important parameters. The maximum number of parallel

executions can be set with -P and -d is used to specify the delimiter used for
the spliting of the list if it should not be a single space.

16 Chapter 1. Linux and the Commandline

We have seen another example of such a contruction before since pgrep can
be made up the same way

pgrep = ps ax | grep [x]xx | awk ’{ print $1; }’

The grep and awk utilities will be described in the following section.

In other situations it is necessary to store the output of a certain command as

a text file or read the input from it. The redirection operators ą and ă can be

used to do this. Again we use some examples to clarify this. To simply write the

output of a command that would appear on the screen to a file output.txt
we use

program > output.txt

To preserve the current content of the file we need to call

program >> output.txt

to tell the system to append the new information to the end of output.txt.
Otherwise the file is replaced. Non existing files are created prior to writing to

them.

If at a later point another program that usually reads inputs from user interac-

tion needs this output as its input we can read it by

other_program < output.txt

We can also do both, i.e., read from a file input and write to another file
output

program <input >output

There are two special variants of the output operator that allow to separate

between standard outputs and error messages.

program 1>output 2>errors

will create a file output containing the standard messages of the program and
another file errors where all the error messages are stored.

We can also directly reuse the output of a command to make up new strings

or commands by command substitution. This is performed if a simple com-

mand is enclosed by one of the two types of command substitution characters.

For example the date command can be used to return the current time and
date. If we want to directly use it in the output of a script we can use the echo
command to print a message containing the current time and date:

echo Yeah, today is ‘date‘, the term is almost over!
echo Yeah, today is $(date), the term is almost over!

both will give an output similar to

1.5. Script File Basics 17

Yeah, today is Thu Oct 16 14:45:32 CEST 2014, the term is \
Õ almost over!

One big problem using the pipe and the redirect operators is that one can not

see the output that is redirected. This might, however, be useful in some cases.

The problem can be solved by the tee command, which reads data from the
standard input and writes to the standard output and a file simultaneously.

Consider the case where you want to list all files in the current directory and

store the result in a file:

ls > file

If we also want to have the output on the screen as well we can use:

ls | tee file

tee can be used to to create copies of the data processed by a sequence of
pipes:

ls | tee output_of_ls | grep "[Hh]ello.c"

Per default tee overwrites the given file. If it should append the output to a
given file use:

... | tee -a outputfile

1.5 Script File Basics

In large computing centers the devices are usually not directly accessible but

the computation tasks have to be submitted to a job scheduling system. There

one has to provide a job script along with the executables that is used to run

the computation with the desired parameters. Such job scripts are simple text

files of a certain structure that we are explaining in this section. Such script

files can also be helpful on the local desktop computer to automatize certain

actions that one has to perform on a regular basis. The following is a minimal

hello world bash script that already contains all the important ingredients.

#!/bin/bash
echo "Hello World! "

Saving this as a file hellow.sh and making that file executable, we can simply
run

hellow.sh

to get the response

Hello World!

18 Chapter 1. Linux and the Commandline

The file suffix .sh here is only used for our convenience. That means it is only
used to make it easier for the user to identify it as a shell script. The system

itself identifies which interpreter (in our case the bash shell) needs to be exe-

cuted to run the remainder of the file by the special statement #!/bin/bash
on the first line. The #! here tells the system that the following should be read
as the interpreter. It is necessary to use the full path from the filesystem root

to make sure the interpreter is found upon execution of the script. Similarly we

can specify that the interpreter should be awk (described in the next session)
by using #!/usr/bin/awk or the python language #!/usr/bin/python
on the first line and filling the remainder with something written in the corre-

sponding programming language.

Remark 1.3: Note the blank after the ! in the above example. This is

mandatory since otherwise bash may use the ! to initiate a history sub-
stitution unless it is followed by a blank, newline, carriage return or (. The
behavior is expained in the Event Designators section of the man page.

Inside the script files bash can use several control structures like loops and
conditional. Their explanation would however exceed the scope of our presen-

tation and we refer to the man page for details.

1.6 Simple Automatic File Manipulation

One of the key ingredients for automatic treatment of files are regular expres-

sions. They are for example used to extract certain useful information from

log files, or replace expressions in source code when name changes need to be

performed in large software projects. They are also the main tool for successful

usage of the grep and sed utilities described later in this section.

Regular Expressions Regular expressions are strings that can be used to es-

tablish complex search and replace operations on other strings. A regular ex-

pression consists of a combination of special and basic characters that are used

to match the sought after substring in the other string. There is a number of

special characters /, (,), *, ., |, +, ?, [,], ˆ, $, z,t,u. The following table explains
them in detail. Note that sed and grep process files line by line. Thus line ans
string are used synonymously in the following.

. matches any single charater except linebreaks

ˆ matches the beginning of the string/line

$ matches the end of the string/line

[list] any one character from list. Here list can be a single character, a

number of characters, or a character range given with -

1.6. Simple Automatic File Manipulation 19

[̂ list] any one character that is NOT in list.

() guarantees preceedence of the enclosed expression. (optional)

(re) matches the expression re

re1|re2 matches either the expression re1 or re2

re? matches at most one appearance of re. Note that in sed you
need to either write z? or use the -r commandline switch when
using this.

re+ matches one or more subsequent appearances of re

re* matches none or arbitrarily many subsequent appearances of re

retn,mu matches at least n and at most m subsequent appearances of re.

Both n and m can be omitted either with or without the comma.

Then nmeans exactly nmatches. n, stands for at least nmatches

and ,m for at most m matches.

(re1)(re2) matches re1 followed by re2–in search and replace operations

the corresponding matches can be referred to by \1 and \2

z escapes, i.e., removes the special meaning of the following spe-

cial character.

The next table contains some enlightening examples. More examples and an in-

sight to the magic that can be performed using those expressions can be found

on the sed homepage4

a?b matches a string of one or two characters eventually starting with a

but necessarily ending on b

F̂rom matches a line/string beginning with From

$̂ matches an empty line/string

X̂*YZ matches any line/string starting with arbitrarily many X characters

followed by YZ

linux matches the string linux

[a-z]+ matches any string consisting of at least one but also more lower

case letters

[̂̂ aA] any line/string that does not start with an a or A.

Some scripting languages have more powerful regular expressions than others.

It is always best to check the documentation about the details. The above men-

tioned should be the smallest intersection of all extended regular expression

sets. Note the following remark from the grepmanual page:

“In basic regular expressions the meta-characters ?, +, t, |, (, and) lose their special
meaning; instead use the backslashed versions z?, z+, zt, z|, z(, and z).”

4http://sed.sourceforge.net/

http://sed.sourceforge.net/

20 Chapter 1. Linux and the Commandline

The Swiss Army Knifes for Scripting Gurus Although we refer to scripting

gurus in the section title the following tools are powerful helpers in scientific

computing for everyone as well. They can be used to easily scan large log-files

for the important data. For example in a large computing task wemay have cre-

ated a file containing all kinds of status information of our code/algorithm. For

the corresponding publication we might, on the other hand, only be interested

in the execution times of the single steps. The tools presented in this section

can then be employed to find and print those times in the proper form required

for further processing. All three of them are so extremely mighty that our pre-

sentation can only scratch the surface of their possible applications. There are

many online tutorials introducing them from different points of view.

grep is basically used for printing lines in a number of input files matching
a given pattern. That pattern can be a simple keyword but also an arbi-

trarily complicated regular expression. The easiest way to use it in the

introductory example would be

grep Time logfile

If you are not sure whether Time was written with capital T you can use

grep -i Time logfile

which switches of case sensitivity, or

grep [tT]ime logfile

as an example for a simple regular expression. In the case you do not

remember which file in your large software project contains the defini-

tion of a certain function you can have grep search a complete directory
recursively

grep -r function-name *

returning all lines containing function-name preceded by the corre-
sponding file name. You can also negate the output of grep by the switch
-v to suppress all lines that match the pattern.

sed the Stream Editor is a basic text editor that in contrast to the usual text ed-
itors (like vi, emacs, nano, . . .) is not interactive but uses certain com-
mand strings to manipulate the text file streamed into it automatically

without user interaction. It is especially useful when, e.g., a variable or

function (or any other identifier) in a large software project is supposed to

be renamed. Consider the name of variable called complicatedname
is to be replaced by simplename for better readability of the code in a
large C project.

The search and replace string insed takes the forms/foo/bar/. In this
form the incoming stream is searched line by line and every first match

1.6. Simple Automatic File Manipulation 21

of the regular expression foo is replaced by bar. If we expect more than
one possible matches we should however use s/foo/bar/g to replace
all of them. In case we only want every third appearance in a row to

be replaced the string becomes s/foo/bar/3. So getting back to our
example C project the call for the main file might be

sed -i ’s/complicatedname/simplename/g’ main.c

To complete the picture we can use find to search for all .c and .h files
(see also Chapter 2) and execute the above line for every single one of

them.

find . -name ’*.[ch]’ -exec sed -i ’s/complicatedname\
Õ /simplename/g’ {};

The -i switch in both versions is used to perform the manipulations in
place, i.e., replacing the original file by the modified result. We can advise

sed to create backup copies with a user defined suffix by simply specify-
ing the suffix directly after the -i parameter as in

sed -i.orig ’s/foo/bar/4’ filename.txt

which copies filename.txt to filename.txt.orig prior to the
manipulation. Here the 4 advises sed to replace only the forth match
by bar.

sed can behave like a couple of tools we already learned about earlier.
For example to print the first 10 lines of file like

head file

we can use

sed 10q file

as well. Also we can make sed emulate grep by using a simple search
string instead of the replace string.

grep foo file

can be written as

sed -n ’/foo/p’ file

in sed and grep -v is performed by replacing p with !p above.

We can also employ sed to imitate the behavior of the tool basename
that can be used to truncate filenames by cutting of the extension. Calling

basename /usr/include/stdio.h .h

produces the output

22 Chapter 1. Linux and the Commandline

stdio

The same can be done by

ls /usr/include/stdio.h |
sed -r ’s/^(.*\/)*([^\/]*)\.h/\2/g’

which requires the -r flag for extended regular expressions in order to
grab the second match using \2.

Often sed is employed in conjunction with the other tools presented in
this section to perform pre or post processing for those. This is for ex-

ample nicely seen in the pgrep example in Section 1.4. There instead of
using the file name argument sed reads the input from a pipe. So the
last example above could as well be written as

cat file | sed -n ’/foo/p’

The sed-one-liners list
5
gives a first impression of the real power this small

tool has. We refer to the various web tutorial for earning deeper knowl-

edge. For local information confer the info pages rather than the manual

pages, since they are by far more detailed and structured.

awk The AWK utility is an interpreted programming language typically used
as a data extraction and reporting tool. Its name is derived from the

family names of its inventors – Alfred Aho, Peter Weinberger, and Brian

Kernighan. The current specifications can be found in the IEEE 1003.1-

2008
6
standard. It is invoked using

awk ’awk-statements’ filename

to analyze a file. It can also read its input from a pipe:

... | awk ’statements’

Instead of specifying the awk statements directly on the command line
an awk script can be used. To this end the -f scriptfile switch is
appended to the call.

awk reads the input, processes it row by row and splits it into columns.
The values of the columns are accessed using $columnnumber inside an
awk-statement. For example the first column is accessed by $1. The
pseudo column $0 represents the complete row. The separation into
columns is performed based on white spaces by default. We will se later

how this behavior can be changed.

5http://sed.sourceforge.net/sed1line.txt
6http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.

html

http://sed.sourceforge.net/sed1line.txt
 http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
 http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html

1.7. Remote Computing on Encrypted Connections 23

An awk-statement has the following format:

Condition { Action }

Multiple statements are used writing them one after another. The condi-

tion selects a data set on which the action is applied to. A condition can

be Expression Operator Expression where Expression is a
column identifier, a numeric value or a string enclosed by double quotes.

The Operator is one of ==, !=, <, >,. . .

Another condition type is Expression Operator /RegEx/. This se-
lects a data sets with respect to a regular expression. The Operator
can be ~ if the regular expression should match or !~ if it should not
match. Two special conditions exists: BEGIN is executed before the first
row is processed and END is evaluated after the last row is processed. The
print command is the only action we need. For complex ones we refer
to the IEEE Standard or literature.

Consider the following file containing some measured data

1 0.02 0.43
2 0.03 1.03
3 0.55 0.30

If we want to extract only the second column we invoke awk as

cat file | awk ’{ print $2; }’

All rows where the third column is larger than one are returned by

cat file | awk ’$3>1.0 { print $0; }’

If the column separator is not a space or a tabulator it can be redefined

with FS="Separator" inside the begin action. If we consider the same
data file as above but with | characters to separate the values it changes
to

cat file | awk ’BEGIN{FS="|";} $3>1.0 { print $0;}’

1.7 Remote Computing on Encrypted Connections

We have used the job execution on a possibly far away compute server in a high

performance computing center as a motivating example in the above, but we

have never explained how this is done. We are catching up on this here. Classi-

caly two commands have been used to log into a remote machine. These have

been rlogin and rsh. Both names suggest what they were doing. Their main
purpose was to simply open a remote terminal and start a shell on the remote

machine. Both laked certain security features like encrypted communication.

24 Chapter 1. Linux and the Commandline

Therefore they have been replaced by a modern version of rsh called ssh (for
secure shell). The new ssh tool features higher security for user logins and
encrypted data transfer between the local and remote host. It is used as in

ssh username@remote.machine.somewhere

If your local machine supports it (e.g. done by our virtual machine) you can use

ssh -X username@remote.machine.somewhere

to even redirect graphical user interfaces to the local machine. Note that the

latter does only make sense if the two host are connected via a rather fast net-

work connection, because it usually generates high traffic on the connection.

There is also a command for copying files to or from the remote machine that

comes along with ssh. The secure copy (scp) features the same securitymech-
anisms as ssh itself and works very similar to the basic cp command. Obvi-
ously you have to add user and host information to the calling sequence. This

is demonstrated in the next example

scp localfilename user@remote.host.somewhere:\
Õ remotefilename

scp user@remote.host.somewhere:remotefilename \
Õ localfilename

The local file name is specified relative to the current working directory or abso-

lute (i.e., relative to the file system root). The remote files by default end up in

the remote users home directory. Therefore all remote file names are specified

relative to the home directory or absolute. The scp command can also be used
to copy entire directories. Then the source file name is replaced by the direc-

tory name and scp -r is used instead of plain scp to indicate the recursive
operation.

1.8 Screen an Online/Offline Terminal

We have dicussed the nohup utility in a previous section. There we pointed out
the disadvantages of the utility. Here we recommend an alternative approach

pursued by the GNU screen project that the projects web page
7
describes as

follows:

“Screen is a full-screen window manager that multiplexes a physical terminal be-
tween several processes, typically interactive shells. Each virtual terminal provides
the functions of the DEC VT100 terminal and, in addition, several control functions
from the ANSI X3.64 (ISO 6429) and ISO 2022 standards (e.g., insert/delete line and
support for multiple character sets). There is a scrollback history buffer for each
virtual terminal and a copy-and-paste mechanism that allows the user to move text

7http://www.gnu.org/software/screen/screen.html

http://www.gnu.org/software/screen/screen.html

1.8. Screen an Online/Offline Terminal 25

regions between windows. When screen is called, it creates a single window with a
shell in it (or the specified command) and then gets out of your way so that you can
use the program as you normally would. Then, at any time, you can create new (full-
screen) windows with other programs in them (including more shells), kill the current
window, view a list of the active windows, turn output logging on and off, copy text
between windows, view the scrollback history, switch between windows, etc. All win-
dows run their programs completely independent of each other. Programs continue
to run when their window is currently not visible and even when the whole screen
session is detached from the users terminal.”
The main strength of screen for our purposes is summarized in the final sen-

tence. It gives the ability to detach the users terminal from the screen session,

i.e., the shell in which the computation is running. At any later time and even

from a completely different terminal and location the user can then reattach to

the screen session and continue working as if he/she had never left the screen.

Basic Usage Open a terminal and just type

screen

A welcome message appears. Now press the space-key and you are in a stan-

dard terminal. You can now start your favourite process, e.g.,

top

and detach the screen session by typing

<ctrl>+a d

You should get a

[detached]

message. You can now close the terminal and come back to your session any-

time later by saying

screen -r

in a terminal.

Multiple Windows Screen allows you to use several windows in which you

can run seperate processes. To open a new window, just type

<ctrl>+a c

To switch between several windows, you can either use

<ctrl>+a n

to go to the next or

26 Chapter 1. Linux and the Commandline

<ctrl>+a p

to go to the previous window. Alternatively, you can also say

<ctrl>+a 2

to go to the second window.

Which Screen Processes / Sessions Are Currently Running? To get an overview

about screen sessions we have running on a certain machine we just type

screen -list

and we will get a list of the form

There are screens on:
30714.pts-5.<host> (Detached)
30769.pts-5.<host> (Attached)

2 Sockets in /var/run/uscreens/S-<user>.

whereăhostą is the name of your computer andăuserą is our user name.

Terminating Screen Type

exit

and you will get back to the terminal from which you started.

Screen and SSH Probably the most useful feature of screen is that you can

use it to start processes remotely, then log out of the remote computer and log

back in (even using a different computer) and continue the session. This is use-

ful for long MATLAB computations that do not need to be monitored. Consider

the following example.

We log in to a remote server via SSH.

ssh user@remote.pc.somewhere

We then start, e.g., MATLAB
®
without the JVM and without display:

matlab -nodisplay

This has to be done because you can not log out of the remotemachine without

killing your processes if they use graphical display. We then start our MATLAB

computation

start_long_matlab_computation

and detach the screen session:

1.9. The Toolchain 27

<ctrl>+a d

We can now close the SSH-connection and after logging back in to the remote

machine, we can pick up the MATLAB session by saying

screen -r

Other Features Screen can also be used in a multiuser-mode which, e.g.,

allows one user to act as a teacher for some other user who can sit at a different

computer. Screen also offers Copy&Paste and Regions. We however refer to the

screen documentation for details here.

1.9 The Toolchain

The toolchain is as wrapper expression for a set of tool that is used in program-

ming tasks. It usually consists of

• a tool for automation of the build process,

• a compiler suite containing compiler for a set of programming languages,

• tools for generation andmanipulation of binaries, libraries and assembler

codes,

• a debugger helping the user in evaluating wrong code and fixing it,

• a build system that simplifies the usage of external dependencies, e.g., by

automatic search for libraries and header files.

In the special case of the GNU toolchain developed by the GNU project the list

reads like this:

• GNU make,

• GCC (GNU Compiler Collection),

• GNU binutils and GNU assembler,

• GDB (GNU Debugger),

• GNU autotools.

We present more detailed descriptions of the single tools or proper alterna-

tives in Chapter 2, wherever they are needed in the process of working with a C

program.

28 Chapter 1. Linux and the Commandline

Bibliography

[1] J. BAMBENEK AND A. KLUS, grep Pocket Reference, O’Reilly Media, 1st ed., 2009.
[2] D. J. BARRETT, Linux Pocket Guide, O’Reilly Media, 2nd ed., March 2012.
[3] A. ROBBINS, sed and awk Pocket Reference, O’Reilly Media, 2nd ed., June 2002.
[4] A. ROBBINS, bash Pocket Reference, O’Reilly Media, 1st ed., April 2010.
[5] T. STUBBLEBINE, Regular Expression Pocket Reference, O’Reilly Media, 2nd ed.,
July 2007.

It is practically impossible to teach good programming to students

that have had a prior exposure to BASIC: as potential programmers

they are mentally mutilated beyond hope of regeneration.

How do we tell truths that might hurt?
EDSGER WYBE DIJKSTRA

CHAPTER2

Concise Introduction to the C Programming Language and

the GNU Toolchain

Contents

2.1 The Programming Environment 30

2.2 C Statements, Types and Operators 34

2.3 Control Structures . 39

2.4 Complex Data Types and Arrays 44

2.5 Functions . 51

2.6 An Introduction to the Standard Library 53

2.6.1 stdio.h and stdlib.h 53

2.6.2 math.h and complex.h 56

2.6.3 string.h . 58

2.7 File Input and Output . 59

2.8 The Preprocessor and Header Files 60

2.9 Makefiles . 63

2.10 Writing Own Libraries . 66

2.11 Interfacing Fortran . 68

2.12 Automatic Generation of Documentations Using DOXYGEN 70

Bibliography . 71

One of the main goals of the lecture is to understand how mathematical algo-

rithms are translated into a high-level programming language. This includes an

overview how efficient implementations basically work. We chose C for many

reasons instead of other high-level languages like C++, Java, or Fortran:

29

30 Chapter 2. Introduction to C and the GNU Toolchain

• C is easy to learn. It has only about 30 keywords.

• C has been one of the most often used programming language for a long

period of time
1
. Even thirty years old programs work today.

• C is standardized by ISO in ISO/IEC 9899 (see [5, 7, 9]).

• C works on embedded systems, as well as, on the largest super comput-

ers.

• C can be combined with nearly all other popular programming languages.

Even scripting languages or assembler code can be embedded.

• A large variety of libraries exists: GUI-programming, networking, mathe-

matical algorithms.

The first version of C was developed by Ken Thompson, Dennis Ritchie and

Brian W. Kernighan in the early 1970s for developing their UNIX operating sys-

tem. Since then the concepts and the syntax of C have influenced many pro-

gramming languages. In 1978 the K&R book [10] appeared. This book defines

the first quasi standard of the C syntax. Caused by the popularity and its strong

connection to UNIX many vendors have created their own subsets of C with

different extensions. This became a major problem for exchanging code and

lead to the standardization of C by an ANSI committee, founded in 1983. The

committee released the first standard in 1989. This standard directly became

an ISO standard in 1990 [5]. The standard was revised and extended in 1995,

1999 [7] and 2011 [9]. Currently only the C99 standard is well supported in a

broad range of compilers. The C11 standard has however been announced to

be implemented in the majority of upcoming compilers.

C does not restrict the programmer to a fixed programming style. This allows

nearly unreadable code which works correctly. Although with IOCCC
2
there is

a contest focusing on the exploitation of this freedom, one of the aims of the

present text is to also arouse the awareness of the curse that hides within this

freedom.

In the remainder of our presentation we assume that a Unix-like operating sys-

tem (such as Linux, *BSD or MacOS X) with the GNU Compiler Collection (Ver-

sion 4.2 or later) is used.

2.1 The Programming Environment

Before we can run our first self-written program we have to understand how

to process a human readable source code to an executable program. A C pro-

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

2http://www.ioccc.org/

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.ioccc.org/

2.1. The Programming Environment 31

gram consists of at least one text file with extension .c. This is created with a
normal text editor like vim, emacs, kate, gedit, . . . or an integrated development

environment (IDE) like kdevelop, eclipse,. . . . Word processors like MS Word, Li-

breOffice, OpenOffice are not suitable for this job.
Four steps are necessary to transform the human readable source code to an

executable program:

1. The Preprocessor searches the source code for special directives begin-

ning with #. These directives can include other libraries, dynamically in-
clude and exclude code, or modify the program using a complex pattern

matching search and replace mechanism. The output of this phase stays

human readable but the code is filled with additional statements and data

from other files.

2. The Compiler is the main tool. It checks whether the source code is

syntactically correct. Afterwards the preprocessed source is translated

into assembler code. An optimization phase may speed up the code and

adapt it to the features of the CPU. The assembler output is still human

readable and it expresses the same instruction as the C source on amuch

lower abstraction level.

3. The Assembler turns the assembler output into machine code. This can

theoretically be executed by the CPU, but missing external libraries pre-

vent this. The output of the step are object files. An archived collection of
object files is used as static library. See Section 2.10.

4. The Linker finally combines the object files and the libraries to an ex-

ecutable program. It checks if all necessary functions and symbols are

found in the object files and the specified libraries.

These four steps are usually performed by single compiler call. The compiler

performs all steps and creates the executable directly from the source code.

The GNU Compiler collection provides one command for all steps. The gcc
command invokes preprocessor, compiler, assembler and linker. Sometimes it

is necessary to invoke the linker separately with ld or gcc.

The C compiler is invoked in the shell:

gcc <options> -o outputfilename input1.c ... <libraries>

This compiles all given input files to one executable. If the output filename is

omitted the compiler uses a.out. The behavior of the compiler is influenced
by a variety of compiler options. Some important ones are:

Binary code optimization:

-Os Optimize the code to reduce the size of the binary.

32 Chapter 2. Introduction to C and the GNU Toolchain

-O1 Turn on basic optimizations. The compiler tries to re-

duce code size and execution time, without performing

any optimizations that take a great deal of compilation

time.

-O2 Optimize even more. GCC performs nearly all optimiza-

tions that do not involve a space-speed trade-off. As

compared to -O1, this option increases both compila-

tion time and the performance.

-O3 Aggressive optimization. It tries to unroll loops con-

structs and inlines small functions. It can cause unex-

pected effects in the program. The output is usually

larger then using -O2.
-march=native Automatically determines the code generation options

to optimally exploit your local CPU features. Code may

not be executable on other machines.

Debugging:

-g Include the debug symbols in the output. This is neces-

sary for tools like gdb, ddd or valgrind.
-pg Include the profiling information for the GNU profiler.

Execution in gprof then produces the desired infor-
mation.

Floating Point Arithmetics related:

-ffast-math Turns off the IEEE754 floating point arithmetics. This

option is dangerous.

-ffloat-store Floating point operations store the results to the mem-

ory instead of keeping them in high accuracy CPU regis-

ters.

-mfpmath=sse
-msse2

Use the SSE2 registers for floating point opera-

tions instead of the classical x86/x87 floating point

unit. Only available on x86 and x86_64 plaforms.-

mfpmath=sse default on x86_64.
-mavx
-mavx2

as above but for the more recent AVX and AVX2 regis-

ters.

Warnings and C Standards:

-Wall The compiler displays all warnings about malformed

code.

-std=XXX Defines the C standard to use. Normally explicit usage

is not necessary. possible values: c89, c99 or c11.

2.1. The Programming Environment 33

Finding libraries and header files:

-Ipath Set an addtional search path for the include direc-
tive. This can be used multiple times.

-Lpath Set an additional search path for the linker.

-lNAME Link a specified library to the program. The lib prefix
is automatically added to the library.

Compilation of own libraries:

-c Compile the source code to object files without linking

it. The default output name is inputname.o.
-fPIC Generate position independent code. This flag influ-

ence the assembler code production to use relative ad-

dresses. It is necessary for libraries.

Code Preprocessing and basic shared memory parallelism:

-DNAME=VALUE Defines a preprocessor variable NAME and sets it to
VALUE

-fopenmp The OpenMP support is enabled.

-pthread The PThread support is enabled.

If a program consists of many source files or they need different compiler op-

tions it is more convenient to create the single object files first:
gcc -c input1.c
gcc -c input2.c
...

Afterwards the object files are linked with libraries to the final executable:
gcc -o output input1.o input2.o ... <options>

External libraries are added using the -l option. The standard C library and
system dependent ones are added automatically. A library named libNAME
is linked using-lNAME. The linker adds the lib prefix automatically. The li-
braries must be specified in the order they depend on each other (rightmost

libraries are the most independent). Cyclic dependencies are solved by adding

the libraries more then once to the linker invocation.

Example 2.1: A program depends on libone, libtwo and libthree, where
libtwo depends on libone. The resulting compiler call is:

gcc -o output input.c -ltwo -lone -lthree.

Libraries are existing in two types. The classic approach of combining single

object files in a reusable library is to glue them together in a static library (usu-

34 Chapter 2. Introduction to C and the GNU Toolchain

ally ending on .a). Upon linking, all of the object contained in the library are
added to the program executable. This usually results in fairly large binary com-

mands. The more modern approach is to use so called shared object libraries

(usually ending on .so) or also dynamic link libraries. These are kept external
and library symbols and commands are included only upon execution of the

program. The dynamic loader loads all external libraries when a program is ex-

ecuted. It searches for them in the standard paths of the operating system. If a

library does not reside in these directories the search path can be extended by

setting the LD_LIBRARY_PATH environment variable.

Example 2.2: A program uses a library in a non standard location. It is compiled

and linked using

gcc -o output input.c -L/path/to/the/library -lthelib

and executed with adding the path to LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/path/to/the/library:$\
Õ LD_LIBRARY_PATH

./output

Many tools exists to support the programmer during development and debug-

ging. The basic ones are:

gdb The GNU Debugger is a command line tool that helps executing a program

step by step, and enables to look into variable values at runtime, or view

the machine code. It allows a deep analysis of what is going on in the

program. Available at http://www.gnu.org/software/gdb/

ddd The Data Display Debugger is a graphical user interface for gdb. Avail-
able at http://www.gnu.org/software/ddd/

valgrind Is a suite of debugging tools which analyze the memory access, check

formemory leaks, create call graphs,. . . Its graphical front end is call valkyrie.
Available at http://www.valgrind.org

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are

found in the current search paths and shows which ones will be used

upon execution of the program.

make An automatic build utility. Details can be found in Section 2.9.

2.2 C Statements, Types and Operators

The basic structure of a C program looks like

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/ddd/
http://www.valgrind.org

2.2. C Statements, Types and Operators 35

#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 2.4)
...
// function definitions (see Section 2.5)
...
int main (int argc, char **argv) {

// Here comes the code.
return 0;

}

The include statements above are called preprocessor statements (see Sec-
tion 2.8). They include so-called header files containing information about ex-
ternal libraries or functions and variables in the current source files. stdio.h
and stdlib.h are two header files from the standard C library. They provide
basic input and output, access to files and other basic actions. They are neces-

sary for essentially every program.

main() is the function that is called when a program starts. All statements
are executed in the order in which they appear. The return 0; statements
exits the main() function and returns a status code to the operating system.
The 0 as a general convention means that a program terminated successfully.

All other values are treated as errors.

Comments. Lines beginning with “//” are comments. The compiler ignores
them but they should be used to help human readers to understand the code.

Comments can also be used to prevent the compiler from including certain

parts of the code. Possible comment structures are:

// A single line comment

/* Another single line comment */

/* This
is
a multi-line comment */

#ifdef GRAPHICS
Some code fragment

#endif /*GRAPHICS*/

Here the last one is a pre-processor based comment. So it is not a comment in

the original sense. On the other hand, they allow to exclude large portions of

code based on Macro definitions. Here GRAPHICS is a pre-processor macro
that could, e.g., be used to enable certain graphical output only when themacro

36 Chapter 2. Introduction to C and the GNU Toolchain

is defined. This is a common way to exclude graphical interfaces from compila-

tion for compute servers that do not supply the corresponding libraries. More

details regarding this can be found in Section 2.8

Statements and Blocks. A statement in C can be one of the four kinds:
• variable declaration

data-type varname;

• function call

dosomething();

• assignment

x = 3;

• control structure (see also Section 2.3).

All statements are case sensitive and must end with a semicolon. Line breaks

are ignored by the C compiler. This allows more than one statement per line.

Statements are grouped to code blocks using { and }:

{ // begin of the code block
Statement1;
Statement2;
...

} // End of the code block

Basic Data Types and Variable Declaration. A variable needs to be declared

prior to its first usage. The declaration consist of a data-type followed by a

comma separated list of variable names. A valid variable name begins with

a alphabetic character, only contains “_” as special character and is not used

for another variable or function in the context. Variables need to be declared

at the beginning of a block or a function following the C89 standard. The C99

standard allows this everywhere. Nevertheless for better readability it is recom-

mended to follow C89. A variable only exists inside the {}-parentheses where it

is declared. Variables are not initialized with a default value. Common built-in

data-types are:

2.2. C Statements, Types and Operators 37

int Stores one signed integer value. Normally, this is 4 byte

large, that means it can store one 32-bit number.

long Stores one large signed integer value. This must have

at least the size of an int variable but it can be larger.
On a 64-bit architecture this is normally 8 byte.

unsigned int Stores an integer without a sign, that means only posi-

tive but larger numbers.

unsigned long Stores a long without a sign, that means only positive
but larger numbers.

char Stores one character from the ASCII table. Internally, it

is a one-byte integer value and holds values from -127

to 128.

size_t An unsigned integer value which is large enough to

store the size of the largest theoretically possible mem-

ory object. Its size depends on the hardware of the

platform used.

float A single precision floating point number, 4 Bytes.

double A double precision floating point number, 8 Bytes.

void Non specified type for function with no return value or

generic pointers.

There was no boolean data-type in C until the C99 standard. Boolean values

are therefore expressed as integers where zero means false and all other values
are evaluated as true. The definitions of variables of basic data types can also
contain initial assignments.

Example 2.3:

int x = 1, y;

The above definition declares two integers x and y and initializes x with the

value 1. The character type char is assigned using single quotes:

char c = ’A’;

The single quotes implicitly convert the given character in to the corresponding

ASCII value. We introduce strings in Section 2.4.

Operators. The basic arithmetic operations `, ´, ˚, and { are known to C.

The modulo operator % exists only for integers. If both operands are integers

then the operations expression is evaluated in integer arithmetic. The division

discards the fractional part in this case. The compiler pays attention to the

arithmetic priority rules. Parentheses influence the evaluation order.

38 Chapter 2. Introduction to C and the GNU Toolchain

Example 2.4:

int x,y,z,r; // Declares x,y,z, and r to be integers
x = 4; // Sets x to 4
y = 3; // Sets y to 3
z = x / y; // Integer Division of x and y
r = x % r; // Modulo, the remainder of the division

If the left side of an assignment is the same as the first operand of a binary

operation this can be abbreviated as in:

x += y; // same as x = x + y;

This is possible with all binary operators. The ++ and - operators increment or
decrement a variable by one. They are used as pre- or postfix to a variable. The

prefix increments the variable before its value is used. The postfix does it the

other way around.

Example 2.5:

int x = 1, y;
x++; // x = 2;
y = ++x; // y = 3; x = 3;
y = x++; // y = 3; x = 4;

Bitwise operators are available in C too:

x & y Perform a bit-wise and operation.
x | y Perform a bit-wise or operation.
x ˆ y Perform a bit-wise xor operation.
˜x Perform a bit-wise not operation.
x << y Bit-Shift on x. Move y bits to the left.
x >> y Bit-Shift on x. Move y bits to the right.

A typecast is used to convert one data-type into another one. It is performed by
putting the new data-type in parentheses in front of a variable.

int y; double x;
x = (double) y; // converts y from int to double

Besides dealing with variables one usually needs input and output operations,

e.g. for printing computation results to the screen, or reading user inputs from

the keyboard. The standard C library provides printf and scanf for this
purpose. The syntax of printf is

int printf("Format String", list of variables,...);

2.3. Control Structures 39

The first argument is the string printed to the screen. Variables are embedded

to this string using placeholders. The placeholders are replaced in the order

of the occurrence with the variable from the list of variables. The placeholders

need to be chosen in correspondence to the data-types of the variables. Place-

holder start with % followed by a type specifier (see Table 2.2). A new line is

created with the “\ n” escape sequence. The “\ t” (tabular) is used for alignment

of the output.

Example 2.6:

int x = 1;
double y = 1.8;
printf("x = %d and y = %g\n", x, y);

prints:

x=1 and y=1.8

The scanf function reads variable values from the standard input (usually the
keyboard, or redirected outputs from other programs). It works analogous to

printf. The syntax is

int scanf("format string", variables for the placeholders);

where the format string is similar to printf. scanf tries to match the inputs
with the placeholders and stores them to the variables in the order of their

appearance. Because the variables are modified by scanf, they need to be
prefixed with the address-of operator &. Details about & are given in Section 2.4
and 2.5. The return value is the number of variables read during the function

call.

Example 2.7: To read one integer and one floating point number from the

standard input and print them on standard output one needs to do the follow-

ing:

int x;
double y
scanf("%d %lg", &x, &y);
printf("You typed %d and %g\n", x, y);

2.3 Control Structures

The program flow is controlled with statements of two categories. The first ones

are conditionals, the second ones are loops.

40 Chapter 2. Introduction to C and the GNU Toolchain

Conditionals. C has two conditional statements: if and switch. The if-
statement realizes an alternative. The simplest one is:

if (condition) {
Statements evaluated if the condition is true;

}

The condition is an expression which is evaluated to be false, i.e., equal to 0 as
integer, or true, i.e., not equal to 0 as integer. Comparison operators exist for
all numerical data-types, such as int or double:

< smaller than

<= smaller than or equal to

== equal to

!= not equal to, same as ~= in MATLAB
>= greater than or equal to

> greater than

Boolean operators combine different conditions:

&& boolean and

|| boolean or

! boolean negation, prefix operator

Remark 2.8: Conditions are evaluated from left to right. The evaluation is

stopped if the results is obvious. The &&-operator cancels the evaluation
as soon as the first expression evaluates false. The ||-operator cancels
the evaluation when the first expression evaluates true.

Remark 2.9: The assignment operator = is true for every non zero right
side.

if (x = 5) {
// executed independently of x

}

Some compilers are able to detect such errors (the authors intention in

the example would most likely have been to check whether x equals 5 via

x==5) and print a corresponding warning.

The if statement can be extended to an if-else construct. This full alterna-
tive is:

if (condition) {
Statements evaluated if the condition is true;

} else {
Statements evaluated if the condition is false;

2.3. Control Structures 41

}

If more than two cases are necessary this extends to:

if (condition1) {
Statements evaluated if the condition1 is true;

} else if (condition2) {
Statements evaluated if the condition2 is true;

} else {
Statements evaluated if the condition1 and 2 are false;

}

This concept works for more than two conditions analogously.

A conditional assignment

if (condition) {
a = value1;

} else {
a = value2;

}

can be reduced with the help of the ?-operator to:

a = (condition)? value1:value2;

This is the only ternary operator in C.

The discrete decision statement in C is switch. The syntax is

switch(variable){
case const_1:

Statements if variable==const_1;
break;

case const_2:
Statements if variable==const_2;
break;

default:
Statements if none of the other cases matched.

}

The appropriate block is executed according to the variable compared to the

constant expressions in the case-statement. The break-statement ensures
that the statements in the following cases will be ignored. If there is no break-
statement the program runs trough all other following cases until a break
statement is detected. This is used to merge different cases easily:

switch(variable){
case const_1:
case const_2:

Statements if variable==const_1 or variable==const_2;
break;

42 Chapter 2. Introduction to C and the GNU Toolchain

default:
....

}

The default-statement defines a special case. It is executed if none of the
other case-statements matched the value of the variable. switch only works
on discrete data. Interval conditions like x>4 && x<4.5 require an if-else
construction.

Loops. C provides three different loop constructions: The for, the while,
and the do-while-loop. A loop repeats a group of statements until certain
conditions are met. The easiest one is the while-loop. It repeats a block as
long a condition is true. The syntax is

while (condition) {
Statements executed as long the condition is true;

}

The condition is tested every time the loop is entered. If it is false at the be-

ginning the while-loop is not executed. The condition works exactly as in the
if-statements.

A slight modification of the while-loop is the do-while-loop. It repeats a
block as long a condition holds true but the block is guaranteed to be executed

at least one time and the condition is tested upon exiting the code block. The

syntax is:

do {
Statements executed as long as the condition is true.
} while (condition);

The semicolon at the end of the statement is untypical but mandatory.

The most general loop statement in C is the for-loop. It is mostly used for
enumerations but it can emulate every other loop construction. The syntax is:

for (initialization; condition; action) {
Statements inside the loop;

}

The initialization is executed once before the body of the loop is entered for the
first time. It is used to initialize variables (most commonly the loop counter).

The loop is continued as long as the conditions stays true. The action-statement
is executed at the end of every loop. This is mostly an increment or decrement

statement. A for-loop is equivalent to a while-loop of the form:

initialization;
while (condition) {

Statements inside the loop;

2.3. Control Structures 43

action;
}

Each of the three parts inside the for-definition can be made up of multiple
expressions separated by commas. They are evaluated from left to right and

represent the value of the last expression.

Example 2.10: Output all square numbers from 1 to 10:

int i;
for (i = 1 ; i <= 10; i++) {

printf(" %d * %d = %d\n", i, i, i*i);
}

Loops can be influenced via the break- and the continue-statement. The
break-statement is an emergency exit inside a loop. It exits the loop immedi-
ately and stops its repetition neglecting the condition. The program continues

in the first statement after the loop.

while (condition) {
Statements;
if (special condition) {

break; //Exits the loop regardless of the while-
condition

}
}
// Control jumps here on the break

The continue-statement causes the control to jump to the end of the code
block defining the loop immediately skipping the remaining statements. If the

condition allows it the next iteration is then started. If a continue-statement
is called inside a for-loop it still evaluates the action statements.
while (condition) {

Statements;
if (special condition) {

continue;
}
Statements;
// Control jumps here on the continue;

}

Remark 2.11: Control structures can be nested inside each other as often

as desired.

44 Chapter 2. Introduction to C and the GNU Toolchain

Remark 2.12: If a control structure only executes one statement, the sur-

rounding brackets {} defining the code block can be omitted.

2.4 Complex Data Types and Arrays

Simple scalar values or characters are not sufficient for the applications. This

section extends the basic data types by structures, arrays, strings and pointers.

For enumeration, type definition and unions we refer to the literature [12, 13, 7].

Structures. Data-structures are collections of different variables within a com-

mon context. They are defined using the struct-statement:

struct NameOfTheStructure {
data-type1 variable1;
data-type2 variable2;
...
};

We replace the data-type of a variable by struct NameOfTheStructure
to declare a variable to be a data-structure.

struct NameOfTheStructure variable;

The .-operator provides access to the components of a structure:

variable.member = ...;
x = variable.member;

Example 2.13:We define a structure representing a point in R3
and let P “

p0, 1,´1q P R3
of this type:

struct point3d {
double x, y, z;
};
struct point3d P;
P.x = 0.0;
P.y = 1.0;
P.z = -1.0;

The normal assignment operator copies a structure to another one. However

the comparison operator == does not work this way. If we want to compare
two structures we need to compare all components separately.

2.4. Complex Data Types and Arrays 45

Arrays. Arrays provide a multi-dimensional storage for data of the same data-

type. The data is accessed using a zero-based indexing scheme in each dimen-

sion. A one-dimensional array is declared using:

data-type name[NumberOfElements];

The bracket []-operator provides the access to the elements:

x[0] = y; // Assignment of the first element
h = x[i-1]; // Access to the i-th element

The array-elements are indexed from 0 to NumberOfElements´1.

Remark 2.14: The access to an array is not checked for violation of the

array bounds. Neither the compiler, nor the runtime environment can

detect violations. Accessing elements that lie outside the declared region

can crash your program, or manipulate other data of your program unin-

tentionally. The typical errormessage in the first case is aSegmentation
Fault resulting from the attempt to access a memory segment that is
not belonging to your program, which is detected by the memory man-

agement facilities of the operating system.

Example 2.15:We declare a vector a P R4
:

double a[4];

It consists of four values a[0], a[1], a[2] and a[3].

The same scheme allows to declare n-dimensional arrays. A two-dimensional
array can be declared using 2 brackets, a three-dimensional with three brackets

and so on. The array data is arranged with the elements of the right most index

next to each other in the memory. E.g. the element x[i][j] comes right
before x[i][j+1].

Remark 2.16: This is a difference to Fortran where the data is arranged

the with regard to left-most index.

Every data-type can be made up to an array. Arrays of structures are possible

and arrays can be used as members of structures.

Example 2.17:We declare an array of 10 Points in R3
:

struct point3d {
double x,y,z;
};

46 Chapter 2. Introduction to C and the GNU Toolchain

struct point3d points[10];
points[0].x = 10.0; // Set the x value of the first

point.
points[9].z = -1.0; // Set the z value of the last

point.

Strings. Strings are a special case of arrays. Per definition a string is only an

array of characters. Since a string does not necessarily have to be as long as

the surrounding array storing it, C uses a special technique to determine the

end of the string. The end of a string is marked adding a 0-byte (ASCII: NIL).

Every string operation stops reading when it reaches the 0-byte. Caused by this

a string of n characters requires a character array of n`1 elements. In contrast
to single char constants a string is assigned using double quotes. The double

quote operators automatically terminate the string by the trailing 0-byte.

Example 2.18: The string “Hello!” is stored in an array of 10 characters:

char string[10] = "Hello!";

This will be stored as

Index: 0 1 2 3 4 5 6 7 8 9

Value: ’H’ ’e’ ’l’ ’l’ ’o’ ’!’ 0 * * *

in memory. * are undetermined values that are left over from earlier usage of

the memory segment.

String manipulation functions are presented in Section 2.6.3.

Pointers. Pointers are the most powerful concept of C and at the same time

themost difficult for beginners using the language. A pointer is a variable which

contains a memory address instead of a normal value. It is a reference to a

memory segment where the actual data is located. The following metaphor

explains this in a more natural way:

Imagine the memory as a big long street with houses on it. Each

variable in a program is a house on this street. Each household can

hold a number of people (which is the value of the variable). The

address of the house is the memory location of the data. Now a

pointer is a variable which contains such an address.

A pointer is declared like a normal variable with an additional * in front of the

variable name:

data_type *a_pointer_to_data_type;

2.4. Complex Data Types and Arrays 47

A pointer needs to be assigned to a valid memory location. The operating sys-

tem takes care of this. An illegal access will kill the program just like in Re-

mark 2.14. The address-of operator &, which was already mentioned in Sec-
tion 2.2 for the scanf-statement, returns the address of a variable. In the case
of an integer this looks like:

int var_x; //declares an int variable
int *ptr_x; //declares a pointer to a int variables
var_x = 2; //Sets the value of var_x
ptr_x = &var_x; //Assigns the pointer to the location of

var_x

ptr_x contains the memory address of var_x. The dereferencing operator

* is the counterpart to the &-operator. It allows to access the data inside the
given address. Continuing the previous example

*ptr_x = 12;

will overwrite the value in the memory location stored in ptr_x with 12. That
means var_x is now 12. Unused pointers should be set to NULL which rep-
resents 0 in the pointer context. This allows checks if a pointer is used, or not.

The void * pointer is the generic pointer which can be type cast to any other
pointer.

From the basic data type point of view pointers are not very useful. However,

there is a close relation between pointers and arrays in the C language. This is

best explained by following code:

int field[10];
int *ptr;
ptr = &field[0];

Then the pointer refers the first element of the array. Now we can access

field by ptr:

int x = ptr[3];
ptr[4] = 4711;

In this way a pointer is simply an alternative representation of an array without

a previously known size. A pointer to a single value can be considered as a

pointer to an array of one element. The array-style access is, however, not valid

for void * pointers.

Remark 2.19: Note that in expressions as ptr[3] above the brackets
represent a dereferencing operation for the element chosen by the en-

closed index and thus no additional * is needed

48 Chapter 2. Introduction to C and the GNU Toolchain

A pointer to a structure is used similarly. Dereferencing the pointer is done

using the *-operator and the access to the components is done using the .-
operator:

struct point3d p;
struct point3d *sptr;
sptr = &p;
(*sptr).x = 0.0;

This type of notation (*sptr).x looks a bit confusing and complicated. The
C syntax therefore has an equivalent representation as in:

sptr->x = 0.0;

Pointers can also be cascaded. That means, constructs like int **ptr; are

valid. Following the above example this contains a pointer to a pointer to an

int. Dereferencing one time give the pointer to an int and double derefer-
encing gives the integer. This corresponds to a two-dimensional array. Analo-

gously three or more * can be used to implement higher dimensonal dynamic

arrays. Note that to really exploit the dynamic features of pointers one needs

to employ the malloc() and free() functions (introduced below) from the
standard library (both in stdlib.h) described in Section 2.6.1.

Pointers are also necessary if a function should be able to modify an argument

passed to it. The scanf-example in Section 2.2 showed this already. The Sec-
tion 2.5 describes this technique in more detail.

Some arithmetic operations can be applied to pointers too. We however con-

sider this a dangerous technique for accessing elements in the memory that

should only be used by experts where it is unavoidable. For details see one of

the numerous tutorials on the Internet.

Type Definitions. Type definitions are one way to create abbreviations for ex-

isting data types in C. They are used to get short version of structure definitions

or to create meaningful abbreviations for existing types. The syntax of a type

definition is

typedef original type name aliasname;

The aliasname is used afterwards instead the original type like any other data

type in a variable declaration or function declaration. The newly defined type

is compatible to its original type and the compiler performs all type casts au-

tomatically. Additionally the compiler throws an error if an aliasname is used

twice in a namespace.

Example 2.20: An unsigned index type for an array can be defined using

2.4. Complex Data Types and Arrays 49

typedef unsigned int indextype;

Example 2.21: A structure definition can be abbreviated using

typedef struct {
datatype component1;
datatype component2;

} structname;

and then instantiated via

structname variable1, variable2;

Furthermore, type definitions can be used to hide pointers. In this case the type

definition is done using:

typedef original type * pointer_type;

Then a pointer to the original type can be defined using the pointer_type
which adding the * in the variable definition.

Remark 2.22: If the defined type already contains a pointer like

typedef int* pointer_to_int;

the variable definition

pointer_to_int *x;

makes x to be a double pointer.

Memory Management. Until now every pointer needed to have a prede-

clared variable to refer to. In many practical examples it is, however, not possi-

ble to know a priori how much space will be consumed by the data. The stan-

dard C library provides a set of functions to allocate memory dynamically.

Since the size of data-typesmay vary on different hardware platforms themem-

ory allocation needs to be done relative to their sizes. The sizeof(type)-
operator returns the size of a data-type in bytes. It can be applied to basic data

types as well as structures.

Example 2.23: Print the size of the double and the struct point3d type:

printf("sizeof (double) = %lu\n",sizeof(double));
printf("sizeof (struct point3d) = %lu\n",

50 Chapter 2. Introduction to C and the GNU Toolchain

sizeof(struct point3d));

The malloc function allocates contiguous memory blocks of arbitrary size3:

void *malloc(size_t size);

This requests amemory location of size bytes and returns the start address. If
the allocation fails it returns NULL. malloc does not care about the data-type.
The returned void* pointer needs to be transformed to the desired data-type
using a type cast.

double *x;
x = (double *) malloc(sizeof(double));

If a memory location is no longer used it should be made available again. The

free-function deallocates the memory referred to by a pointer:

void free (void *ptr);

Example 2.24: Allocate an array with 100 double entries, sum them up, and
free the array:

double *array; // declare the pointers
// Allocate 100*sizeof(double) bytes memory
array = (double *) malloc(sizeof(double)*100);
// sum them up
double sum = 0;
for (i = 0; i < 100; i++) {

sum += array[i]; }
free(array); // free the memory

If an allocated memory location is too small or too large it can be resized using

the realloc-function:

void *realloc(void *oldptr, size_t newsize);

It takes the old pointer and the new size of the array and returns the pointer to

the resized array. The data in the part that is kept remains untouched. If the

old pointer is the special NULL value, realloc behaves exactly like malloc.
Statically allocated arrays, such where the size is known before the program is

compiled, can not be resized.

A few other memory allocation operations exists. For example calloc and
mmap are two of these.

3
Only restricted by the availability of memory.

2.5. Functions 51

Remark 2.25: valgrind is an excellent tool to detect errors with wrong
access to pointers or wrong usage of the memory management function.

2.5 Functions

Nearly all programming languages have a construct to separate a package of

code blocks. This is necessary to get a well-arranged reusable code avoiding

copy and paste orgies. The main-function is the starting function of every pro-
gram. It is called automatically when a program is executed. Statements like

printf and scanf are functions, too. Some important standard functions
are introduced in Section 2.6.

Functions are called using their name followed by a list of arguments in paren-

theses. If the return-value is needed it is used like a variable in an expression

or a function in a mathematical context.

Example 2.26: Check if scanf has read two integers correctly:

int i1, i2, r;
r = scanf("%d %d", &i1, &i2);
if (r != 2) {
printf("scanf did not read 2 integers successfully.\n");
}

A function consists of two parts. The header defines the input/output argu-

ments and the return type. The second part is the body where the function is

implemented. This gives the following layout:

return-type function-name(argument-list) {
// Local declarations
Statements;
Statements;
return return-value;

}

Thereturn-type can be any simple data-type, including structures and point-
ers. If the function does not have a return valuevoid is used as thereturn-type.
Obviously, the return-value must be compatible with the return-type.
The naming conventions for variables also apply to functions. The argument

list is a comma-separated list of the format data-type variable which
defines the arguments for the function. The function header without the body

is called signature of a function. The compiler checks if the calling sequence is
compatible with its signature, i.e., the number of arguments is correct and the

data-types can be type cast correctly.

52 Chapter 2. Introduction to C and the GNU Toolchain

Example 2.27: Define a function named “sqr” operating on a double precision
number and returning the square of the argument:

double sqr(double x) {
double a;
a = x * x;
return a;

}

The signature of this function is double sqr(double x);

Normally the arguments are copied to the function when it is called. The func-

tion works on a copy of the data not modifying the original. This behavior is

called Call by Value. If a function has to change a given argument at its origi-
nal location the arguments needs to be a pointer to the variable. We call this

behaviour Call by Reference because only a reference to a variable is passed. A
function can return more than one value or complex data types using this tech-

nique. The scanf-function again serves an example for this. Another popular
example is the swap-function:

Example 2.28:We define a function which takes two integer values as argu-

ments and swaps their values. The straight forward solution would be:

void swap (int a, int b) {
int tmp;
tmp = a;
a = b;
b = tmp;
}
// in main()
int x = 4;
int y = 5;
swap(x, y);

This looks correct but the swap-function only exchanges a copy of x and y. The
correct solution would be:

void (int *a, int *b) {
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
// in main()
int x = 4;
int y = 5;
swap(&x, &y);

2.6. An Introduction to the Standard Library 53

In this case a and b are used as a reference to x and y. Exchanging the values
in the memory locations where a and b point to will change the values of x
and y immediately.

Example 2.29: The main-function of a C program is a special case of a function
that takes two arguments, the first int argc argument contains the num-
ber of command line arguments passed to the program including the program

name itself. The second argument char **argv is an array of strings. Each
string contains one command line argument. The element argv[0] contains
the name of the program.

Remark 2.30: Arrays are always passed to a function Call by Reference be-
cause they are equivalent to pointers. There is no way to pass an array

using Call by Value except of creating a copy of the array beforemanipulat-
ing it inside the function. By default modification are directly performed

in the original array.

2.6 An Introduction to the Standard Library

The ISO C Standard [5, 7, 9] defines a standard library to provide basic functions

on every platform and allow portable programming. It consists of about 20

different header files and around 200 function for input/output, basic math,

string manipulation andmemory management. This sections gives an overview

about some important predefined functions. The functions are presented using

their signature and a short description.

The POSIX C Library [6] is an important extension to the standard C library which

provides more operating system dependent operations on Unix-like operating

system. It contains functions for networking, inter process communication,

threading and many more. Due to space limitations it can however not be in-

cluded in this presentation. Starting with the C11 standard, threading has also

become part of the standard C library.

2.6.1 stdio.h and stdlib.h

These two headers files provide the basic functionality of the C library. They pro-

vide input/output operations, control statements and memory management.

The file-io operations are demonstrated in Section 2.7 again.

The input/output functions introduced later in this section contain format strings
determining what is to be read or printed. These format strings contain for-

54 Chapter 2. Introduction to C and the GNU Toolchain

d integers of the type int
ld integers of the type long
u integers of the type unsigned int
g float pointing numbers of the type float or double
e float pointing number in [-]d.ddde+dd notation

c a single character of type char

s strings (see Section 2.4)

% the % sign.

Table 2.2: Format specifiers

mat specifiers for the representation of the variables contents. Some important
specifiers are given in Table 2.2.

The full format specification has the form

%[flags][width][.precision][l]type

The [l]type part is what is shown in Table 2.2. The bracketed specifiers are
optional. They can be used to further influence the output representation. The

width parameter for example determines the length in the corresponding out-
put string. For floating point numbers precision determines the number of
digits in width that is used for the decimals.

Example 2.31:

double pi=3.14159265;
printf("pi=%8.6g\n",pi);

prints:

pi=3.141593
Note that the decimal dot is consuming one of the 8 digits.

The other placeholders and modifiers are described in the man page of the

printf function, see:

man 3 printf

or [13, 12] in detail.

The following is a list of the most important functions contained in stdio.h
and stdlib.h.

int printf(const char *formatstring, arguments...);
int fprintf(FILE *f, const char *formatstring, arguments

...);
int sprintf(char *buf, const char *formatstring, arguments

...);

2.6. An Introduction to the Standard Library 55

The printf-function writes a text to the standard output. The fprintf-
function is the equivalent for files, whereas sprintf stores the result in the
output string buf. The format string is explained above and mentioned in Sec-
tion 2.2. The return-value is the number of characters written.

int scanf(const char *formatstring, argument...);
int fscanf(FILE *f, const char *formatstring, argument...);
int sscanf(const char *string, const char *formatstring,

argument...);

The scanf-function reads a formatted input from the standard input. This
is the keyboard in most cases. The arguments are pointers to the variables

where the values read from the input are stored. The fscanf-function is the
equivalent to read data from a file and sscanf reads from another string. The
functions return the number of values read. fscanf stops reading when either
the end of a line, or the end of the file is reached. sscanf terminates upon
reaching the 0-byte.

FILE *fopen(char *filename, char *mode);

The fopen-function opens the file specified by the filename and returns
a pointer to the file stream. The mode argument is a string determining the
access to the file: fopen returns NULL in case of an error.

Mode Meaning Remarks

“r” open for reading Only possible if the file exists

otherwise NULL is returned.

“w” create a file for writing If the file already exists the con-

tent is destroyed.

“a” append data to a file If the file already exists, the new

data is appended to the end. If

it does not exist the behavior is

like “w”.

r+ / w+ / a+ open/create file for

read and write access.

basic behavior is as above

t text mode Only valid in combination with

the above. Produces human

readable output files. This is

the default if neither t nor b is

given.

b binary mode Only valid in combination with

the above. Produces machine

readable output. Usually gives

smaller output files.

56 Chapter 2. Introduction to C and the GNU Toolchain

int fclose(FILE *stream);

The fclose-function closes a given file stream. Any buffered data is written to
the file. The stream is no longer associated with the file.

int feof(FILE *stream);

The feof-function returns true if the given file stream reached the end of the
file otherwise false is returned.

void perror(const char *s);

The perror-function displays the most recent error from the C library. The
string s may contain an explanatory message that is printed before the actual
error message.

void *malloc(size_t size);
void *realloc(void *ptr, size_t new_size);
void free(void *ptr);

The memory management functions explained in Section 2.4.

void abort();
void exit(int exit_code);

The abort-function terminates a program immediately without any clean up.
The exit-function terminates a program immediately with clean up. It is the
same as return in the main function but can be called anywhere in the code.

int atoi(char *s):
double atof(char *s);

Theatoi-function converts a string to an integer if possible. Theatof-function
does the same with a floating point number.

2.6.2 math.h and complex.h

These two header files provide commonmathematical functions and constants.

If a program uses at least one of them it needs to be linked against the math

part of the standard C library. This is done using the “-lm” linker flag when the

compiler/linker is invoked (see also Section 2.1). All of the following functions

take double arguments and produce double return values.

fabs(x) absolute value of x
exp(x) returns ex

exp2(x) returns 2x

log(x) returns lnx

log10(x) returns log10 x

2.6. An Introduction to the Standard Library 57

log2(x) returns log2 x

sqrt(x) returns
?
x

hypot(x,y) returns

a

x2 ` y2

pow(x,y) returns xy

sin(x) returns sinx

cos(x) returns cosx

tan(x) returns tanx

asin(x) returns sin´1 x

acos(x) returns cos´1 x

atan(x) returns tan´1 x

The C99 standard [7] introduces the new data types float complex and
double complex for handling complex numbers. These data types are de-
fined in the header file complex.h, along with the imaginary unit as I and the
following functions for double precision complex arguments and return values:

creal(x) real part of x
cimag(x) imaginary part of x
carg(x) computes the phase angle of a complex number

cabs(x) computes the magnitude of a complex number

conj(x) returns x̄

cexp(x) returns ex

clog(x) returns lnx

csqrt(x) returns
?
x

cpow(x,y) returns xy

csin(x) returns sinx

ccos(x) returns cosx

ctan(x) returns tanx

casin(x) returns sin´1 x

cacos(x) returns cos´1 x

catan(x) returns tan´1 x

The list of mathematical functions presented here is not complete. More can

be found in the man pages or the C standard [7]. For nearly all double precision

functions there exists a corresponding single precision function with an f as
suffix. For example the single precision square root is computed by sqrtf(x).

Some predefined constants are:

58 Chapter 2. Introduction to C and the GNU Toolchain

M_PI π “ 3.14159265358979323846

M_PI_2 π
2 “ 1.57079632679489661923

M_E e “ 2.7182818284590452354

M_SQRT2
?

2 “ 1.41421356237309504880

2.6.3 string.h

The string.h-header file contains various functions to manipulate and work
with strings. The important ones are:

size_t strlen(char *s);

The strlen-function returns the length of the string not including the termi-
nating 0 character.

char *strcpy(char *dest, char *src);

The strcpy-function copies a string from src to dest and returns the dest
pointer again. dest needs to be a preallocated string with a length of at least
strlen(src)+1 elements. The destination string is not 0-terminated if the
source string does not contain the 0-byte within the length of the destination

string. The behavior in case the destination is to short is unspecified and may

depend on the actual implementation of the compiler.

char *strcat(char *dest, char *src);

The strcat-function appends the string from src to dest and returns the
dest pointer again. dest needs to be a preallocated string with at leaststrlen(src)+strlen(dest)+1
elements.

int *strcmp(char *lhs, char *rhs);

The strcmp-function compares two strings lexicographically. It returns a neg-
ative value if lhsărhs, a positive value if lhsąrhs and 0 if they are equal.

Additional Memory Manipulation Functions in string.h In addition to

the string operations, string.h defines a variety of memory related actions
like:

void *memcpy(void *dest, void *src, size_t n);

The memcpy-function copies n bytes from src to dest and returns the dest
pointer again. dest needs to be a preallocated with n bytes. src and dest
must not overlap each other. memmove does the same but allows overlapping.
It is slower than memcpy.

2.7. File Input and Output 59

void *memset(void *dest, int ch, size_t count);

The memset-function converts the value ch to an unsigned char and
copies it into each of the first count characters of the location referred by
dest.

2.7 File Input and Output

The basic functions for file-io have already been mentioned in Section 2.6. In

this section we present some examples for their usage. Theymostly behave like

their corresponding standard-io ones.

fopen opens a specified file in the desired mode. To avoid undefined behavior
we have to check if NULL was returned.

Example 2.32:We create file “test.txt” for writing:

FILE *fp;
fp = fopen("test.txt","w");
if (fp == NULL) {

perror("can not open test.txt for writing.");
return -1;

}

If we want to read data from a file we have to use "r" instead.

The access modes "w" and "a" open files for writing. fprintf is used like
printf on this file:

int x = 10;
double y = 145.1;
fprintf(fp, "x = %d , y = %lg\n", x, y);

The access mode “r” allows fscanf to read data from it. It works like scanf
but reads a line from a file and tries to assign the values like specified in the

format string. If the feof()-function evaluates to true, no more data can read
from the file.

Example 2.33:We consider a human-readable file with the following layout:

x1 y1
x2 y2
...

The code-snippet to read all values and print them to the screen will be:

FILE *fp;

60 Chapter 2. Introduction to C and the GNU Toolchain

double x, y;
fp = fopen("test.txt","r");
if (fp == NULL) {

perror("can not open test.txt for reading.");
return -1;

}
while (!feof(fp)){

fscanf("%lg %lg", &x, &y);
printf("x= %g \t y=%g\n",x,y);

}

After reading or writing to a file it needs to be closed by fclose(fp).

The fprintf and fscanf functions are only useful for human readable files.
For individual access to binaries we refer to fread, fwrite and other func-
tions from stdio.h.

2.8 The Preprocessor and Header Files

Before a C compiler translates the source code into the machine code the in-

put is processed by the preprocessor. It performs search-replace operations

and includes other files into the current source code. All preprocessor state-

ments begin with a # and end with a newline. The most frequently used one is
#include. It includes other files into the current source code. Other common
statements are #define and #ifdef.

#include As we have seen above already, #include is used to include
other files into the current source code. These are mostly header files of li-

braries which contain function-headers, data-structures or constants. A C header

file has the extension .h. The entire content of the included file is temporar-
ily copied to the position of the include-statement in the source file. Two
different variants of #include are possible:

#include <header.h>

searches the system include path
4
first and then it uses the additional ones

given by the -I option on the command line. This is used to include standard

headers and other external libraries. The second one is

#include "header.h"

which searches in the current directory first. This one is used for local, in-

project, include files. It is also possible to include other .c-files. This can, how-

4
usually /usr/include and /usr/local/include

2.8. The Preprocessor and Header Files 61

ever, cause conflicts.

#define is used in three ways. The first one is to set up symbolic replace-

ments in the source. This is used to define constants for example.

Example 2.34: The preprocessor statements:

#define PI 3.14519
#define SQRT2 sqrt(2)

will replace any occurrence of PI with 3.14159 and of SQRT2 with sqrt(2)
in the current source file.

The second way is to define parameter-depended replacements, so called pre-
processor macros. They depend on at least one parameter and perform all re-
placements with respect to the given parameters. The parameters in the macro

are filled up with the expressions from where the macro is used. The parame-

ter list is appended directly to the macro-name without any white-space. The

parameters should be enclosed in parentheses when they are used. The whole

macro should be enclosed with parentheses again to avoid errors after the re-

placement.

Example 2.35: The following macro will give the absolute value of the parame-

ter:

#define ABS(X) (((X)>0)?(X):(-(X)))

This replaces y=ABS(z+1); with:

y = (((z+1)>0)?(z+1):(-(z+1)));

If X is not enclosed with parentheses this is evaluated to:

y = ((z+1>0)?z+1:-z+1));

This is not the desired behavior because the minus in the second part is only

applied to z and not to the whole expression as it was intended.

The third way to use thedefine-directive is as boolean variables for the#ifdef-
statement. It evaluates to true when the define exists. The preprocessor vari-

ables can be set using the-D command line option of the compiler.

Remark 2.36: The preprocessor acts stupid on replacements of all ap-

pearances of define statements. It does not check whether or not the
result actually is valid C code. The programmer has to make sure that the

define statements are extended to correct C code.

62 Chapter 2. Introduction to C and the GNU Toolchain

#ifdef The ifdef-directive, a short form of #if defined, allows condi-
tional compiling of the source code. It works like the if-else construct in a
normal program but is evaluated by the preprocessor at compile time:

#ifdef PREPROCESSOR_DEFINE
// Code compilied if PREPROCESSOR_DEFINE exitsts
#else
// Code compiled otherwise
#endif

The #else-part can be left out. The code in the unused case is temporarily
removed from the source code during the preprocessing. This technique is use

to handle different environment situations in one source file.

Example 2.37: In order to debug a program easily somebody defined a INFO-
macro which prints the given parameter to the screen. In the final version of

the program this is not necessary. However removing all outputs in the code

may be unwanted to be able to insert them again for debugging purpose:

#ifdef DEBUG
#define INFO(X) printf(X)
#else
#define INFO(X)
#endif

If DEBUG is defined the INFO-macro is expanded to a printf-statement oth-
erwise it is replaced with nothing.

The #ifndef statements is the opposite of #ifdef. It simply negates the
condition of the #ifdef statement.

Header-Files. If a C program is split into several source files, the header file

tells the compiler which functions, data-structures and constants exist in other

source files. This is necessary because the compiler can only check the func-

tion headers and the calling sequence in the current file. Header files can also

be used to share data structures and variables. It is similar to a normal source

file but consists only of definitions without any implementation. A cyclic in-

clusion should be avoided using the preprocessor commands #define and
#ifndef. The following example shows how a function can be moved to an
external file and how the header looks like:

Example 2.38: exfct.c implements the function something:

#include <math.h> // for sqrt
#include "exfct.h" // Ensure that the function header

// fits to the one from exfct.h
double something(double x, double y, double z){

2.9. Makefiles 63

return sqrt(x*x+y*y+z+z*z);
}

The header file exfct.h only contains the function header (its signature) and
a preprocessor trick ensuring that it can not be included twice in one file:

#ifndef EXFCT_H
#define EXFCT_H
double something(double x, double y, double z);
#endif

The main program can now include the header and knows how the function

something is called correctly.

Splitting a large program into different source files makes the whole project well

arranged and easily maintainable. The different files should have a meaningful

name.

A software project consisting of many source files can be compiled adding all

.c-file to the compiler call. This works but is not the best way when searching
for compilation errors. A better and faster way is to define an makefile which

automates the build. The next Section 2.9 shows how this basically works.

2.9 Makefiles

Make is a utility that automates the build process for executable programs and
libraries from source code. It is controlled by a text file called Makefile which
contains the build instructions. It can deal with dependencies between different

source code files and compiles only files that have been modified since the last

build. There exists different versions of make such as GNU Make, BSD Make
and Microsoft’s nmake.

A makefile works as a simple dependency tree. It compiles the files that are

outdated in the order they depend on each other. The makefile consists of so

called targets, which may depend on each other. A target is defined by a rule:

targetname: dependencies
command1
command2
...

The indentation before the commands must be <tab> characters; not spaces! The
targetname should be equal to or closely related to the output file generated
by the commands. dependencies is a space separated list of other targets
that need to be compiled prior to the target or names of files which need to

64 Chapter 2. Introduction to C and the GNU Toolchain

exist. A target is only built if it is older than at least one of its dependencies.

There can be more than one target in a single makefile.

Example 2.39: Consider a small software project consisting of main.c,
file1.c and file1.h. A makefile to create the final program prog looks
like:

prog: main.c file1.c file1.h
gcc -c main.c
gcc -c file1.c
gcc -o prog main.o file1.o

In the case that the makefile is named Makefile or makefile the make
process may be invoked executing

make targetname

If the makefile has another name use:

make -f makefilename targetname

If no targetname is specified, the first one found in the makefile is used.

In order to be more flexible we can introduce variables. Mostly they contain the

list of source files, object files or compiler and linker options. A variable is set

by

VARNAME=VALUE

A variable is accessed with $(VARNAME). To change the extension of all files
listed in a variable the substitute command is used. The syntax is

NEWVAR = ${OLDVAR:.old=.new}

This replaces the extension of every file ending with .old in OLDVAR to .new
and stores the list to NEWVAR. This is normally used to create a list of object files
form the list of source files. Additionally, one can define conditional variables.

In this case the value is only set if the variable does not already exist. This

is helpful if the user should be able to set options when he invokes make. A
conditional variable is set by

VAR?=FOO

If make is called without any argument then VAR will contain “FOO”, if make is
called like

make VAR=BAR

the variable VAR contains “BAR”.

2.9. Makefiles 65

Because it takes too long to define a rule for every input file, suffix rules are

used. They create a target for every file matching the rule. They apply to files

that match the suffix and have not been processed by a separate target before.

.SUFFIXES: .in .out

.in.out:
command1
command2
...

These rules create a target for every file ending on .in to transform it into the
same filename with the extension .out. This is used to compile source code
from file.c to an object file file.o. Two placeholders exist referring to the
input and the output filenames. The input file is referred to using $< and the
output file using $@.

Finally we define a clean up target. The target clean removes all object files
or intermediate outputs. Because this target does not produce an output file

or does not depend on a file called clean it needs to be declared as .PHONY
target.

Example 2.40:We consider again Example 2.39. Inserting variables, suffix rules

and the extension replacement we can turn it into a more generic one:

SRC=main.c file1.c
OUTPUT=prog
CC=gcc
CFLAGS= -O2
OBJECTS=${SRC:.c=.o}

$(OUTPUT): $(OBJECTS)
$(CC) -o $(OUTPUT) $(CFLAGS) $(OBJECTS)

.SUFFIXES: .c .o

.c.o:
$(CC) -c -o $@ $(CFLAGS) $<

clean:
rm -f $(OBJECTS)

.PHONY: clean

There exist many other techniques to extend the make file such as automatic

dependency creation using the GCC compiler, pattern rules as a generalization

of the suffix rules, include statements, if directives and many more. See [11]

for details. Other tools like CMake
5
or the GNU Autotools

6
provide high level

scripting languages to create complex makefiles automatically.

5http://www.cmake.org
6http://en.wikipedia.org/wiki/GNU_build_system

http://www.cmake.org
http://en.wikipedia.org/wiki/GNU_build_system

66 Chapter 2. Introduction to C and the GNU Toolchain

2.10 Writing Own Libraries

Libraries are collections of precompiled functions and predefined data struc-

tures and constants together with the header files, containing the function head-

ers and the data structures. In contrast to a normal C program a library does

not provide a main function. The standard C library is an example for a library
which was already used in the previous sections.

Two different types of libraries exists. The first ones are the static libraries and

the other ones are the dynamic or shared ones. Both of them have advantages

and disadvantages. The static ones are easy to create but need more space

on the mass storage and cause problems with cyclic dependencies between

libraries. On the other hand, the dynamic libraries are a bit more complicated

to create but take less space on themass storage and can be exchangedwithout

recompiling the program. Many programs can refer to a single shared library

and use it independent of the specific version or implementation.

Static Libraries Static libraries are collections of object files combined in a

specially structured archive. This archive is a classical UNIX ar-file containing
all .o-files of the library and a search index. The source code only needs to be
compiled to object code using the -c compiler option. Afterwards, all object files

are combined to a .a-file:

ar crs libNAME.a *.o

The c options creates an archive, the r option replaces existing files inside the
archive, if it already exists and the s options adds an object index. This index
speeds up the linking procedure. For completeness we mention that running

ar with the s option is completely equivalent to using the command ranlib
for the index generation.

A static library is linked to a program by adding the .a-file to the compiler call:

gcc -o program main.c libname.a

All functions referenced in main.c are copied from libname.a to the final
program. If more than one static library is used the compiler resolves the sym-

bols from left to right. That means if two or more libraries depend on each

other they have to be added in their order of dependence. If there is a cyclic

dependency the files need to be added multiple times.

Remark 2.41: If a static library is used in conjunction with a dynamic one

or on a 64-bit architecture like x86_64 all source files must be compiled

with the -fPIC flag.

2.10. Writing Own Libraries 67

Example 2.42:We consider the minimal external function from Example 2.38.

The following steps create a static library and link it against a program.

gcc -c -fPIC exfct.c
ar crs libexfct.a *.o
gcc -o prgm main.c libexfct.a

Dynamic/Shared Libraries Dynamic or shared libraries are nearly the same

as normal programs. The only difference is the missing main function. When
they are linked to a program a cross reference is placed in the program indicat-

ing in which dynamic library the functions actually resides. The dynamic loader

reads this cross references on execution and loads the necessary libraries into

the same address space as the program. If the program now calls an external

function it executes the code loaded from the libraries.

The dynamic linker searches for the dynamic libraries only in standard system

paths. Typically, these are /lib, /usr/lib/ and /usr/local/lib/. If a
library does not exist in these standard paths, the LD_LIBRARY_PATH environ-

ment variable can be used to set additional search paths. An alternative way

is to add additional search paths to the program during the linking phase. The

addition of -Wl,-rpath=PATH to the compiler call allows this.

Dynamic libraries can be replaced without relinking program as long as they use

a compatible binary interface. If at least one function head, i.e. the functions

signature, changes or a data structure in a header file changes, the program

needs to be recompiled and relinked.

Dynamic libraries are created using the compiler and the linker. The source

code needs to be compiled with the -fPIC compiler flag. Additionally, the
-shared option advises the compiler and the linker to create a shared library
instead of a normal executable. The output file name for a shared library must

follow the libNAME.so naming convention.

Example 2.43:We consider the minimal external function from Example 2.38

again. The following steps create a dynamical library and link it against a pro-

gram.

gcc -shared -fPIC -o libexfct.so exfct.c
gcc -o prgm -L. -lexfct main.c

If the additional search path should be integrated in the binary add

-Wl,-rpath=. to the second compiler call. The libexfct.so can be mod-
ified without relinking it to the output program as long as the function signature

does not change.

68 Chapter 2. Introduction to C and the GNU Toolchain

2.11 Interfacing Fortran

Many mathematical libraries, especially numerical linear algebra ones, have

been written in Fortran. Fortran is the oldest high-level programming language

which is still in use. It is currently specified in ISO/IEC 1539-1:2010 [8]. The

newer versions of Fortran provide an interface to C
7
, but this is not supported

by all compilers and many Fortran codes rely on old standards. Due to this,

the old fashioned way of interfacing Fortran is presented by an example in this

section.

Fortran code can be compiled using the gfortran command. This invokes
the Fortran compiler of the GNU Compiler Collection. It takes nearly the same

command line arguments as the C compiler. Fortran files typically use .f, .f90
or .f95 as extensions.

The DAXPY
8
operation taken from the Basic Linear Algebra Subroutine library

(BLAS)
9
, which we introduce in Section 6.4.1, is used as an example to explain

how a Fortran subroutine is called from C. The DAXPY operation computes

y “ y ` αx

for two vectors x, y P Rn and a scalar α P R. The Fortran function header is
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

DOUBLE PRECISION DA
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(*),DY(*)

First of all, we have to translate the Fortran data-types to the corresponding C

types. Because Fortran passes values to a function using Call by Reference, all
arguments will be pointers no matter if they are scalar values or vectors. The

data-types of the arguments translate to:

Fortran type C type

INTEGER int
REAL float
REAL*8 double
DOUBLE PRECISION double
COMPLEX float complex
COMPLEX*16 double complex
DOUBLE COMPLEX double complex

The second step is to translate the function name. Different compilers use dif-

ferent conventions for this. As long as only the GNU Compiler Collection is used

the rules are:

7http://de.wikibooks.org/wiki/Fortran:_Fortran_und_C
8http://www.netlib.org/blas/daxpy.f
9http://www.netlib.org/blas

http://de.wikibooks.org/wiki/Fortran:_Fortran_und_C
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas

2.11. Interfacing Fortran 69

• The function name is translated to lower case.

• A trailing underscore “_” is added to the function name.

• If the function name contains an underscore, a second underscore is

added.

A Fortran subroutine is like a C function with a void return-type. If it is a func-
tion instead of a subroutine the return-type needs to be translated according

to the list above, as well. The return-type is then not a pointer.

Applying these rules to the DAXPY subroutine gives:

void daxpy_(int *N, double *DA, double *DX,
int *INCX, double *DY, int *INCY);

This function header is necessary in every C source code which uses the Fortran

routine. It can also be moved to a header file.

The following code computes

y “

ˆ

1
2

˙

, y “ y ` 2 ¨

ˆ

4
3

˙

using the DAXPY subroutine:

#include <stdio.h>
#include <stdlib.h>
void daxpy_(int *N, double *DA, double *DX,

int *INCX, double *DY, int *INCY);
int main(int argc, char *argv) {

double x[2] = {4 ,3};
double y[2] = {1 ,2};
double alpha = 2.0;
int n = 2, incx = 1, incy = 1;
daxpy_(&n, &alpha, x, &incx, y, &incy);
printf("y = [%g, %g]\n", y[0], y[1]);
return 0;

}

The program is compiled calling:

gfortran -c daxpy.f
gcc -c main.c
gcc -o prgm main.o daxpy.o -lm -lgfortran

The math (-lm) and the Fortran runtime library (-lgfortran) need to be
added to the program.

Interfacing other Fortran subroutines works analogously.

70 Chapter 2. Introduction to C and the GNU Toolchain

2.12 Automatic Generation of Documentations Using DOXY-

GEN

Documenting code and writing a manual for a software project can be even

more time consuming than the real programming job. doxygen is a documen-
tation generator tool which allows the programmer to write the documentation

directly inside the source code. It extracts the documentation from specially

structured comments and outputs it to HTML files, a LATEX document, an RTF

document or man pages. A large variety of programming languages such as C,

C++, Java, Fortran or Python are supported.

Modified multi line comments are mostly used for doxygen in a C source.
Instead of /* they have to start with /**. Depending on the programming
language other comments must be used. These comments are interpreted by

doxygen. When a doxygen-comment stands directly in front of a function, a
structure definition or a similar construct, it refers to this object. The documen-

tation is improved with special statements inside the comment. The basic ones

are:

@brief Set the brief documentation of the object.

@param Document a parameter of a function.

@return Document the return value of a function.

@author Set the author of a function.

@version Set the version of an object.

@see Create a cross reference to an other function, struct,. . .

Alternatively, the commands can start with a \ instead of the @ character. All
lines not beginning with a doxygen-command are extracted as normal docu-
mentation text. Normal C comments are not recognized by doxygen.

Additionally, HTML tags or LATEX-style formulas can be used in the documen-

tation. A LATEX formula is enclosed by \ f$ or \ f[and \ f] in order to
create an in-line or a separated formula. If the outputs are HTML files the LATEX-

formulas are rendered and included as images. On the other hand, if the out-

put is a LATEX document the basic HTML tags are converted to the corresponding

LATEX-commands.

Example 2.44:Wewant to document the sqr function from Example 2.27. This
is done adding a doxygen comment block right before the function header
begins:

/**
\brief Squares a given double value.
\param x Input value.
\return the square of the input value x.

Bibliography 71

The sqr function returns the square \f$ x^2 \f$ of a
given number x. <i>The intermediate result is stored
in an internal variable.</i>

*/
double sqr(double x) {

/* This is not for doxygen. */
double a;
a = x * x;
return a;

}

Beside the special comments inside the source code doxygen is controlled by
a so called Doxyfile. This specifies the source directory, the output format
and other in- and output related options. A template of this file is generated

using:

doxygen -g config_filename

The newly generated file is well documented and easily customizable using a

text editor. The documentation of a software project is created by simply calling

doxygen config_filename

If doxygen is invoked without any configuration file it searches for a file name
Doxyfile in the current directory.

More information about doxygen and how to use it inside a software project
are available in [4]. A good starting point for beginning readers is [3].

Bibliography

[1] Wikibook: C. http://de.wikibooks.org/wiki/
C-Programmierung.

[2] Wikibook: Fortran, http://de.wikibooks.org/wiki/Fortran.
[3] Doxygen: Getting started, http://www.doxygen.org/manual/

starting.html.

[4] Doxygen: Website, http://www.doxygen.org/.
[5] ISO, ISO/IEC 9899:1990: Programming languages — C, International Orga-
nization for Standardization, Geneva, Switzerland, 1990, http://www.
iso.ch/cate/d17782.html.

[6] ISO, ISO/IEC 9945-1:1996: Information technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface

http://de.wikibooks.org/wiki/C-Programmierung
http://de.wikibooks.org/wiki/C-Programmierung
http://de.wikibooks.org/wiki/Fortran
http://www.doxygen.org/manual/starting.html
http://www.doxygen.org/manual/starting.html
http://www.doxygen.org/
http://www.iso.ch/cate/d17782.html
http://www.iso.ch/cate/d17782.html

72 Chapter 2. Introduction to C and the GNU Toolchain

(API) [C Language], International Organization for Standardization, Geneva,
Switzerland, 1996, http://www.iso.ch/cate/d24426.html.

[7] ISO, ISO/IEC 9899:1999: Programming Languages — C, International Orga-
nization for Standardization, Geneva, Switzerland, Dec. 1999, http://
www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf.

[8] ISO, ISO/IEC 1539-1:2010 Information technology — Programming languages
— Fortran — Part 1: Base language, International Organization for Stan-
dardization, Geneva, Switzerland, June 2010, ftp://ftp.nag.co.uk/
sc22wg5/N1801-N1850/N1830.pdf.

[9] ISO, ISO/IEC 9899:2011: Programming Languages — C, International Orga-
nization for Standardization, Geneva, Switzerland, Dec. 2011, http://
www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf.

[10] B. KERNIGHAN AND D. RITCHIE, The C Programming Language, Prentice-
Hall Software Series, Prentice Hall, 1988, http://books.google.de/
books?id=161QAAAAMAAJ.

[11] R. MECKLENBURG, Managing Projects with GNU Make, O’Reilley Media,
3rd ed., 2004.

[12] C. K. ULRICH KAISER, C/C++ Das umfassende Lehrbuch, Gallileo Computing,
2005.

[13] J. WOLF, C von A bis Z, Gallileo Computing, 2009, http://openbook.
galileocomputing.de/c_von_a_bis_z/.

[14] J. WOLF, Linux-UNIX-Programmierung, Gallileo Computing, 3rd ed.,

2009, http://openbook.galileocomputing.de/linux_unix_
programmierung/. 2nd Edition available as OpenBook.

http://www.iso.ch/cate/d24426.html
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://books.google.de/books?id=161QAAAAMAAJ
http://books.google.de/books?id=161QAAAAMAAJ
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/linux_unix_programmierung/
http://openbook.galileocomputing.de/linux_unix_programmierung/

Walking on water and developing software from a specification are

easy if both are frozen.

EDWARD V BERARD

CHAPTER3

Revision Control

Contents

3.1 Types of Revision Control Systems 74

3.1.1 Local Revision Control 74

3.1.2 Central Revision Control 75

3.1.3 Distributed Revision Control 75

3.2 Collaborative Work on Projects 76

3.2.1 Conflicts . 76

3.2.2 Branches . 76

3.2.3 Tags . 76

3.3 Revision Control meets Social Networking 77

3.3.1 Issues . 77

3.3.2 Pull Request / Merge Request 77

3.3.3 Forks . 78

3.3.4 A generic workflow 78

Revision Control, also known as Version Control or Source Control is a task that is
becoming more and more important also in Scientific Computing. It describes

the process of monitoring changes in sets of information. The sets of informa-

tion are usually documents, source codes, large web repositories or alike. The

set of all information (usually files) under revision control makes a repository, a
set of changes to a single or multiple pieces of information (files) constitute a

revision of the repository, and in the case of software a set of revisions defines
a new version. For general information the terms revision and version are often

73

74 Chapter 3. Revision Control

used synonymously. The revisions get assigned a unique name that may be an

identification number or a human readable text. The main purposes of revision

control can be summarized as the following items:

1. Logging of changes: at any later stage of development of the information

it is clear which change has been added by whom and when this hap-

pened.

2. Recovery of earlier states of the single pieces of information: accidental

or erroneous changes can be identified and rolled back.

3. Archiving: It is possible to get back to each state of the set of information,

e.g. to make computational results reproducible.

4. Coordination of joint work on the information by several collaborators.

5. Parallel development of multiple branches of the information with the

possibility to merge single branches back to a main development stream.

In order to achieve this functionality the systems follow either of the two strate-

gies

Lock Modify Write The rather restrictive pessimistic revision control strategy is
also called Lock Modify Unlock. It grants single authors exclusive access to
the item and thus avoids conflicts.

Copy Modify Merge This is the optimistic revision control strategy. It allows joint
access to the items for several authors. Thus it can not avoid conflicts but

will provide facilities to automatically merge easy conflicts and support

the authors in resolving more complicated ones. In the case of files on

a computer, binary data is often difficult for this kind of approach since

there the merge step is usually not possible without additional tools.

3.1 Types of Revision Control Systems

The existing tools for revision control, of computer files, can be categorized in

three large groups. These groups will be introduced in the following subsections

3.1.1 Local Revision Control

As the name suggests this version is completely local. Usually only single files

are under revision control and the version information is stored locally. Of-

ten one can find the version information directly inside the file in the form of

comments at the beginning or end of the file. Prominent implementations of

local revision control are the classic Source Code Control System (SCCS) or the

more well known Revision Control System (RCS)
1
. Both systems have classically

1http://www.gnu.org/software/rcs/

http://www.gnu.org/software/rcs/

3.1. Types of Revision Control Systems 75

been employed on Unix-like systems for revision control of single source code

files. Local revision control is also implemented in modern office applications

like Microsoft Word or OpenOffice/LibreOffice Writer to track changes of ones

collaborators.

3.1.2 Central Revision Control

This type of revision control is different from the previous in that it stores the

version information in a central (possibly remote/online repository). Users con-

nect in a client server way to this central resource. The actual local copy of the

files the user is then manipulating is usually called working copy. The basic con-
cept of central revision control goes back to the open source project Concurrent

Versions System (CVS)
2
and has been made even more popular by the Subver-

sion (SVN)
3
system. The working copy usually contains information about a

single version. This version is either the one the central repository was in while

the local copy was created, or the one it had when the local version was last

synchronized to it. This version is usually called HEAD revision. Local changes
can usually only be determined with respect to this HEAD revision. These are

the changes that are merged into the central repository when the local changes

are submitted. This procedure is generally called commit.
3.1.3 Distributed Revision Control

The major disadvantage of central revision control systems, that use an online

server for storing the central repository, is the requirement for an active net-

work connection for determining version information and changes during re-

visions other than the HEAD revision. Distributed revision control systems are

a way to overcome this drawback. They feature local repositories in which the

entire version history is stored. Local working copies are synchronized against

these local repositories. The local repositories are then synchronized to either

the repositories of collaborators or central repositories in online resources.

The local repositories feature a very quick access and allow for fine grained

versionmanagement and logging of changes. Therefore, usually the distributed

revision control systems often have much more powerful merge facilities.

Important distributed revision control systems in the open source world are

Git
4
which has among other authors been developed by Linus Torvalds, Bazaar

5

that is mainly developed by Canonical Ltd. (who are the driving force behind

Ubuntu and distributions derived from it.), and Mercurial
6
.

2http://www.nongnu.org/cvs/
3http://subversion.apache.org/
4http://git-scm.com/
5http://bazaar-vcs.org/
6http://mercurial.selenic.com/

http://www.nongnu.org/cvs/
http://subversion.apache.org/
http://git-scm.com/
http://bazaar-vcs.org/
http://mercurial.selenic.com/

76 Chapter 3. Revision Control

3.2 Collaborative Work on Projects

Especially the central and distributed revision control systems are very attrac-

tive for collaborative work on entire projects. While for local revision control all

collaborators require access to the same file or need to exchange it, the latest

version of an entire project is always accessible for all coworkers in a central

repository or independent local repositories. This allows for a highly increased

flexibility in editing the files.

3.2.1 Conflicts

When editing different files of the same project, or a common file in disjoint

positions, usually these systems can automatically merge the changes of sev-

eral authors into a single repository. In case of changes in common locations

of single files, these systems offer conflict management facilities that support

users in resolving the conflicts possibly generated by editing the same locations

in the file.

3.2.2 Branches

A common way to avoid conflicts is the technique of branching. The main de-
velopment line of a project is often called trunk, ormaster. Just like the trunk of
a natural tree this version is the fundamental part of the project. A branch is

then splitting off of this main version as an exact copy of the trunk. Then, it can

be used to develop, e.g., a certain feature without harming the main develop-

ment. In contrast to the biological tree, the branches do in general return to the

trunk after a while, e.g., when the feature is ready to enter the main develop-

ment stream. In the case of central revision control, these branches are usually

linear sequences of revisions. For distributed systems with enhanced merging

capabilities, the branches are often even branched further, such that the entire

object becomes a directed acyclic graph of revisions.

3.2.3 Tags

Especially when developing software, certain revisions aremore important than

others, e.g. because they are used as release versions. It is then important to

create so called tags, i.e., named revisions to have an easy means to reproduce
this exact state of the repository. The way tagging is implemented, or being

used is differing among the systems, but it is always possible in one way or

another.

3.3. Revision Control meets Social Networking 77

3.3 Revision Control meets Social Networking

Some of themost prominent providers of Revision Control services for the open

source community are GitHub
7
, BitBucket

8
, and GitLab

9
. Today also many sci-

entifi codes are hosted on, e.g. GitHub. In contrast to the others, GitLab also

offers their software for personal use in an open source version with limited

features.

All off the above have one thing in common. They do not only provide plain

revision control features, but add social networking type functionality to their

systems. This, for example, allows users to monitor the changes of projects,

including those that they are not participating in themselves, and check the

activity of other users, such as their fellow developers.

3.3.1 Issues

The expression Issue is used as a collective term for
bug: A bug report means a report about faulty or erroneous code. It can be as

specific as a code snippet for a suggested correction, or as vague as “this

unexpected behavior was observed”.

feature: No software will ever fully satisfy its users. As a consequence users

will come upwith lists of additional funcitonality the software could/should

feature in future releases. They are collected as feature request issues.

suggestion: Similar to the above but mixing the two for things that are not

exactly wrong but rather can be done, e.g. more optimal or efficient.

3.3.2 Pull Request / Merge Request

In the course of collaborative work on a joint software project, usually some

developers are more priviledged than others. The so called maintainers or core
developers are handling themaster branch of the software, while their fellow de-
velopers create bug fixes or new features in their own branches. Whenever they

are finished, the standard developers can not merge their changes back to the

master branch themselves. In order to notify the maintainers about the ir work

being ready to get merged, they post pull requests (also called merge requests
in some systems). Usually the git systems allow the maintainers to easily re-
view the pull request in the online system. This feature usually shows them

all the changes made to the code base such that they can easily and quickly

decide whether or not to take the changes into the master, or maybe request

additional changes to maintain project consistency or the like.

7https://github.com
8https://bitbucket.org
9https://gitlab.com

https://github.com
https://bitbucket.org
https://gitlab.com

78 Chapter 3. Revision Control

3.3.3 Forks

In case a one wants to contribute to a project one is not yet part of, the easi-

est way to get involved is to just grab a copy of the project. This can be done

using a fork. Acting similar to a branch, the fork is created as ones own project
still maintaining the connection to the original project. Then obviously one can

work freely on the own copy. Once the work is finished, again a pull request

to the original projects maintainers can make the changes flow into the original

project and get oneself involved.

A second scenario where forks are important is the situation, where one wants

to pick up the work of another project that has been discontinued. In that

case the fork enables new maintainers to continue the work on a project that

has been orphaned by its original developers. This is a common situation in

academia when people finish their theses and leave academia to industry, while

at a later point in time other people at possibly other academic institutions want

to continue their research.

3.3.4 A generic workflow

While the git system in general gives you maximal power with no actual pre-
scription on how to use and distribute this power, a certain workflow is com-

monly observed on the above mentioned platforms. The workflow consists of

the following few steps and usually maintains project and branch integrity, thus

avoiding conflicts and problems.

1. someone opens an issue

2. a maintainer assigns the issue to a developer

3. the developer creates a new project branch connected to the issue

4. the developer changes the code to close the issue

5. once finished, the developer files a pull request

6. the maintainers review and merge the pull request, and close the issue.

Computations of a numerical nature, esp. those that make extensive use of floating

point numbers. The only thing Fortrash is good for. This term is in widespread

informal use outside hackerdom and even in mainstream slang, but has additional

hackish connotations: namely, that the computations are mindless and involve

massive use of brute force. This is not always evil, esp. if it involves ray tracing or

fractals or some other use that makes pretty pictures, esp. if such pictures can be

used as screen backgrounds.

definition of number crunching
THE NEW HACKER’S DICTIONARY

CHAPTER4

Error Analysis and Machine Numbers

Contents

4.1 Machine Numbers . 80

4.2 Rounding Errors and Error Propagation 83

4.2.1 Rounding Rules 83

4.2.2 Computer Arithmetic 87

4.2.3 Error Propagation 88

4.2.4 The IEEE Standard 754 92

4.3 Error Analysis . 95

4.3.1 Conditioning/Condition Number 96

4.3.2 Stability . 96

4.3.3 Forward Error Analysis 97

4.3.4 Backward Error Analysis 98

4.3.5 Perturbation Analysis 101

Bibliography . 105

We have seen in the preface, that the numerical solution of mathematical tasks

produces different kinds of errors. In order to be able to judge the correct-

ness of our results and avoid or bound the errors resulting from finite precision

representations, we investigate and analyze the machine numbers used for cal-

culation on modern computers.

79

80 Chapter 4. Error Analysis and Machine Numbers

4.1 Machine Numbers

For calculations on, e.g., a computer, a cell phone, or a pocket calculator, real

or complex numbers need to be stored in the finite memory of the device, i.e.,

with only finitely many digits of accuracy. For simple numbers like 1.0 or 0.5 it is

easy to imagine that this is somehow possible, however, for π, which is known
to have infinitely many digits, we obviously need to truncate somewhere and

thus introduce a certain representation error.

There exist a number of known representations for storing real numbers. All of

them are based on the following theorem.

Theorem4.1 (p–adic expansion): For x P R, p P Nzt1u there exist uniquely
determined j P t0, 1u, ` P Z and @k P Z with k ď ` unique γk P
t0, . . . , p´ 1u, such that

x “ p´1qj
ÿ̀

k“´8

γkp
k, (4.1)

where γ` ‰ 0 for x ‰ 0, j “ ` “ 0 for x “ 0, and γk ă p´ 1 for infinitely
many k ď `.

Proof. See, e.g., [2].
In Theorem 4.1 especially the expression “γk ă p ´ 1 for infinitely many k”
means that, e.g., for p “ 10 the number 3.9 is represented as 4.0. Moreover,
note that all summands in (4.1) are positive, so for x “ 0 all γk need to be zero
and the condition j “ ` “ 0 only makes the representation unique.

The p–adic representation of a number given in a different number system can
be expressed using the following representation:

pxqp :“ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . ,

where the digits following the “.” are called the mantissa.

decimal system In our all day life we are usually using the decimal system, i.e.,
the representation for p “ 10.

x “ ˘
ÿ̀

k“´8

γk ¨ 10k “ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . “ pxq10

with digits γk P t0, . . . , 9u and base p “ 10.

The important number systems for computer arithmetic systems are:

4.1. Machine Numbers 81

binary system p “ 2, γk P t0, 1u.
As an example the decimal number x “ 1123 is translated into the binary
system as follows:

1123 “ 1024` 99 “ 210 ` 64` 35

“ 210 ` 26 ` 32` 3 “ 210 ` 26 ` 25 ` 21 ` 20,

i.e., p1123q2 “ 10001100011.

For the decimal number
1
10 , on the other hand, we have

ˆ

1

10

˙

2

“ 0.00011.

To see this we exploit p10q2 “ 1010 and perform the division manually in
the binary system:

1:1010 = 0.000110011...
.
.
.
.

10000
-1010

1100
-1010

10000
.
.
.

So
1
10 can not be written in a finite number of digits in the mantissa. Note

that this does not contradict the conditions of Theorem 4.1, since we still

have γk “ 0 for infinitely many k.

hexadecimal system p “ 16, γk P t0, 1, . . . , 15u.
The usual representation uses A “ 10, B “ 11, . . . , F “ 15, and there-
fore the standard digits are t0, 1, . . . , 9, A,B, . . . , F u.

For example for the hexadecimal number x “ A1E it holds

pA1Eq10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation of a decimal number into the hexadecimal system is espe-

cially easy if we already know its binary representation. There the binary

82 Chapter 4. Error Analysis and Machine Numbers

digits can be clustered into groups of four digits for which the hexadeci-

mal representation is computed, as in

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Representation (4.1) is equivalent to

x “

#

p´1qj
ÿ̀

k“´8

γkp
k´`´1

+

looooooooooooooomooooooooooooooon

“:s

¨p``1 “:

#

p´1qj
8
ÿ

i“1

αi
pi

+

loooooooomoooooooon

“:a

pb, (4.2)

where αi :“ γ`´i`1, i “ 1, . . . and b :“ l ` 1. In (4.1) we have γ` ­“ 0 and thus
we immediately get

1
p ď |s| ă 1.

Definition 4.2: The representation of any x P R as in (4.2) is called nor-
malized floating point representation of x with respect to p. Here

a :“ p´1qj
8
ÿ

i“1

αi
pi

where αi P t0, 1, . . . , p´ 1u (4.3)

is called the significand and
b :“ p´1qs

m
ÿ

i“1

βip
m´i, for s P t0, 1u, βi P t0, 1, . . . , p´ 1u (4.4)

the exponent.
This floating point representation is called normalized since α1 ‰ 0.

In contrast to the representation above, on a computer we can only store finitely

many digits in the significand. In case αi “ 0 for all i ą t P N, x can be encoded
by saving j, s (for determining the signs of significand and exponent) and the
digits in the p-adic representation of significand and exponent. This motivates
the schematic representation

j α1 . . . αt s β1 . . . βm

Thus we require 1` t` 1`mmemory positions.

Example 4.3: For p “ 10 the normalized floating point representation of the
real number 35 657.23 is given as

0.3565723 ¨ 105 “

ˆ

3

101
`

5

102
`

6

103
`

5

104
`

7

105
`

2

106
`

3

107

˙

¨ 105,

encoded as

4.2. Rounding Errors and Error Propagation 83

0 3 5 6 5 7 2 3 0 5

j α1 α2 α3 α4 α5 α6 α7 s β1
.

In this example t “ 7 andm “ 1.

This now allows to define the representation of real numbers in sets of com-

puter representable numbers.

Definition 4.4: For p P Nzt1u, emin, emax P Z, t P N we denote the set of
normalized floating point numbers of length t with respect to the base p and
range of exponents temin, emin ` 1, . . . , emaxu Ă Z by

Mpp, t, emin, emaxq :“ t ˘0.α1α2 . . . αt ¨ p
b |αi P t0, . . . , p´ 1u, α1 ‰ 0,

emin ď b ď emaxu Y t0u .

x PMpp, t, emin, emaxq is called computer number ormachine number.

Example 4.5: The elements inMp2, 3,´1, 4q are shown in the following number
ray

´15 ´10 ´5 5 10 15

Note that machine numbers are not equally distributed.

4.2 Rounding Errors and Error Propagation

Real numbers need to be represented as machine numbers on a computer.

They can not always be represented exactly due to the fact that the significand

of a machine number has only t digits of accuracy, as we have for example seen
in the translation of 0.1 to binary representation. In cases where these t digits
are not sufficient, we need to either truncate the representation or round to the

closest machine number. Doing this we introduce rounding errors.
4.2.1 Rounding Rules

The rounding function
γ : RÑMpp, t, emin, emaxq

for x P Z :“ r´xmax,´xmins Y t0u Y rxmin, xmaxs is determined by

γpxq “ arg min
x̃PMpp,t,emin,emaxq

|x´ x̃|, (4.5)

84 Chapter 4. Error Analysis and Machine Numbers

where

xmin :“ min t|x| | x PMpp, t, emin, emaxqzt0uu ,

xmax :“ max t|x| | x PMpp, t, emin, emaxqu .

Let x “ ˘
8
ř

i“1

αi

pi
¨ pb P Z with α1 ‰ 0. Then we have

γpxq “

$

’

’

&

’

’

%

˘
t
ř

i“1

αi

pi
¨ pb, αt`1 ă

p
2 ,

˘

ˆ

t
ř

i“1

αi

pi
` 1

pt

˙

¨ pb, αt`1 ą
p
2 .

The special case of αt`1 “
p
2 is not uniquely determined via (4.5). There, we

have the, e.g., following options:

Round up: Handle γpxq as if αt`1 ą
p
2 .

“Round-to-even”: Rounds towards the closest machine number with an αt
that is even.

For example for p “ 2, t “ 3:

γp0.1001q “ 0.100 (round down)

γp0.1011q “ 0.110 (round up)

The advantage as compared to rounding up is a (statistically) more equal

distribution of rounding errors (they are partially negating each other).

Positive effects have among others been observed in astro-physical long

term computations as, e.g., in the investigation of the “Big Bang” theory.

Overflows and Underflows It still remains to specify γpxq for x R Z. Here we
have to distinguish two cases:

|x| ă xmin: This case is called underflow. There are two ways to deal with this
exception. On the one hand, we can round towards the closest valid ma-

chine number:

γpxq “

"

0 or rather

signpxqxmin

On the other hand, one can use the so called gradual underflow. There
we use representable but non-normalized floating point numbers, i.e.,

floating point numbers allowing α1 “ 0 to circumvent the underflow. The
smallest number representable in this way is 0. 0 . . . 01

loomoon

t

¨pemin . In this case

the same rounding rules as for x P Z are used.

4.2. Rounding Errors and Error Propagation 85

|x| ą xmax: This case is called overflow. Here we have the two variants
γpxq “

"

signpxqxmax

signpxq ¨ 8.

The latter of which is used in the IEEE 754 standard for floating point

arithmetic (see also p. 92ff.).

After having defined a proper rounding function we have to ask ourselves how

large the rounding errors can actually get. Here and in the following, for an

exact quantity x and its machine number approximation x̃, we distinguish the
absolute error

}x´ x̃}

and the relative error
}x´ x̃}

}x}
.

Therein } . } for a scalar entity in general means the absolute value, whereas
otherwise it stands for a suitable norm.

For the rounding errors inMpp, t, emin, emaxq we have the following important

results:

Lemma 4.6: The absolute rounding error fulfills

|γpxq ´ x| ď
p´t

2
¨ pb @x P Z.

Proof. Let x :“ ˘
8
ř

i“1

αi

pi
pb and define

y1 :“ signpxq
t
ÿ

i“1

αi
pi

pb (round down)

y2 :“ signpxq

˜

t
ÿ

i“1

αi
pi
`

1

pt

¸

pb (round up)

Then apparently we have γpxq P ty1, y2u and

x P

#

ry1, y2s, x ą 0,

ry2, y1s, x ă 0.

Let a1 ă a2 P ty1, y2u, since |x´ aj | ď
1
2 |a2 ´ a1| “

1
2 |y2 ´ y1| either for j “ 1

or for j “ 2 if x P ra1, a2s, we find

|γpxq ´ x| ď
1

2
|y2 ´ y1| “

1

2

pb

pt
.

86 Chapter 4. Error Analysis and Machine Numbers

Lemma 4.7: The relative rounding error fulfills

|γpxq ´ x|

|x|
ă

1

2
p1´t @x P Zzt0u.

Proof. The significand a of x fulfills |a| ě 1
p . Thus we have |x| ě

1
p ¨ p

b
. From

Lemma 4.6 we, therefore, find

|γpxq ´ x|

|x|
ď

1

pb´1

1

2
pb´t “

1

2
p1´t.

From |x| ą 1
pp
b
we have strict inequality unless x “ ˘1

p ¨ p
b
. In the latter case,

however, x PMpp, t, emin, emaxq and so γpxq “ x, i.e., |γpxq´x|
|x| “ 0.

Definition 4.8: The quantity u :“ 1
2p

1´t
is called “unit round off”.

The unit round off describes the relative error that can result from rounding

operations. It should not be mistaken for themachine epsilon eps.

eps :“ mint|x̃´ 1| | x̃ PMpp, t, emin, emaxq, x̃ ą 1u “ p1´t “ 2u,

determines the distance of 1 to the next larger machine number.

Remark 4.9: To be able to talk about the accuracy of an approximate

quantity we have to estimate the relative error.

For example

x “ 25.317, x̃ “ 25.313 (i.e., x̃ has 4 correct digits)

ùñ
|x´ x̃|

|x|
“

0.004

25.317
« 0.16 ¨ 10´3.

It is an easy argumentation to find that the number of correct digits coin-

cides with the negative exponent of the relative error p˘1q.

The absolute error does not carry any information about the accuracy!

For example for y “ 0.001, ỹ “ 0.002: |y ´ ỹ| “ 10´3
is rather small, but

ỹ has no correct digit as we can see from the relative error

|y ´ ỹ|

|y|
“ 1.

4.2. Rounding Errors and Error Propagation 87

Remark 4.10: In C99 a set of commands and settings for influencing the

computation with floating point numbers have been added to the C stan-

dard
a
. Especially the behavior of the rounding function γp.q can be influ-

enced using the functions

int fegetround(void);
int fesetround(int round);

Available rounding models, i.e. values for the round argument, are

• FE_DOWNWARD,

• FE_UPWARD,

• FE_TONEAREST (default),

• FE_TOWARDZERO.
a
see, e.g., http://openbook.galileocomputing.de/c_von_a_bis_z/

030_c_anhang_b_005.htm for a list

4.2.2 Computer Arithmetic

We have introduced the relative and absolute rounding errors in the previ-

ous section and proved basic results regarding their sizes in Lemma 4.6 and

Lemma 4.7. How do these rounding errors evolve under elementary arithmetic

operations`,´, ¨, {? This question is investigated in the following.

As a direct consequence of Lemma 4.7 it follows

γpxq “ xp1` εq, |ε| ď u @x P Z.

This is the error resulting from simply storing the number in the computers

memory. For example for p “ 2 we have seen before that p0.1q2 “ 0.00011. In
normalized representation this is 0.110011 ¨2´3

. Now rounding to six digits (i.e.

t “ 6) we get

pγp0.1qq2 “ 0.110011 ¨ 2´3,

whichmeans that in decimal representation we have γp0.1q “ 51
512 which equals

the decimal fraction 0.099609375.

Computers are only equipped with a so called pseudo arithmetic, since we can
not expect in general that the result of x4y for 4 P t`,´, ¨, {u and machine
numbers x, y P Mpp, t, emin, emaxq will also be a number inMpp, t, emin, emaxq.

This becomes obvious in the following example.

http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm
http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm

88 Chapter 4. Error Analysis and Machine Numbers

Example 4.11: Both x “ 0.12 and y “ 0.34 are from the set of machine num-
bersMp10, 2, emin, emaxq, but for their product we easily see

x ¨ y “ 0.0408 “ 0.408 ¨ 10´1,

which requires a 3 digit mantissa and thus is not inMp10, 2, emin, emaxq.

To put the result into Mp10, 2, emin, emaxq we thus need to round. Denoting

the result of a floating point operation, i.e., the result of a calculation x4y in a
system of machine numbers by xo y one usually determines the result as in

xo y “ γpx4yq, 4 P t`,´, ¨, {u. (4.6)

That means the operation is performed exact first and rounded to a valid ma-

chine number afterwards. Doing this we achieve the

StandardModel of the Floating Point Arithmetic: For all floating point num-

bers x, y P Mpp, t, emin, emaxq and any arithmetic operation4 P t`,´, ¨, {u it
holds:

xo y “ px4yqp1` δq, for a |δ| ď u. (4.7)

In the following we will always assume the validity of (4.7) and that the same

also holds for
?
x, i.e., γp

?
xq “

?
xp1` δq for a δ P R with |δ| ď u.

Remark 4.12: Note that the standard model is not valid on all computers

or electronic devices. However, on devices fulfilling the IEEE 754 standard,

which are for example most modern CPUs, it is true.

For the realization of the standard model the storage of the intermediate re-

sults (before rounding) requires three extra digits in the significand. This can be

implemented in various manners in the computational units of the CPU. More

details regarding this issue can be found in [3].

4.2.3 Error Propagation

The main question we are treating next is how the errors we found in the

above are propagating through a more complex computation. Since the stan-

dard model for the floating point arithmetic (4.7) only holds for machine num-

bers, for an arbitrary calculation for an elementary operation x4y already up
to three errors play a role. Often in a computation a single elementary opera-

tion is not enough to get the result. Thus the rounding errors accumulate in the
course of the computation.

4.2. Rounding Errors and Error Propagation 89

Let us first treat addition and subtraction. Note that we can safely ignore the

case where either of the involved numbers is 0. Then the final error reduces to
the representation error for the other number, i.e., it is bounded by u.

Addition: Let x, y P Rzt0u, signpxq “ signpyq and

x̃ :“ γpxq “ xp1` δxq, |δx| ď u,

ỹ :“ γpyq “ yp1` δyq, |δy| ď u.

Then we have

x̃‘ ỹ “ px̃` ỹqp1` δx`yq pwhere |δx`y| ď uq

“ pxp1` δxq ` yp1` δyqqp1` δx`yq

“ ppx` yq ` pxδx ` yδyqqp1` δx`yq

and

|x̃‘ ỹ ´ px` yq| “|px` yqδx`y ` pxδx ` yδyqp1` δx`yq|

ď|x` y|u` p|x| ¨ u` |y| ¨ uqp1` uq

signpxq“signpyq
“ |x` y|u` |x` y|up1` uq

“|x` y|p2u` u2q.

Thus we find

|px̃‘ ỹq ´ px` yq|

|x` y|
ď 2u` u2.

The relative error is (up to a negligible higher order term u2
) at most twice as

large as the relative representation errors of the summands x and y. Accord-
ingly, very many additions may lead to a noticeable accumulated error.

Subtraction: Corresponds to the addition of x, y as above, but with signpxq ­“
signpyq. Instead of adding two numbers with different signs here we treat the
subtraction of two numbers with a common sign.

Let x, y, or x̃, ỹ as above respectively. Without loss of generality we assume
x ‰ y. Since we assume validity of (4.7) we have

x̃a ỹ “px̃´ ỹqp1` δx´yq pwhere |δx´y| ď uq

“ppx´ yq ` pxδx ´ yδyqqp1` δx´yq

90 Chapter 4. Error Analysis and Machine Numbers

It follows

|px̃a ỹq ´ px´ yq| “ |px´ yqδx´y ` pxδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` pxδx ´ yδx ` yδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` px´ yqδx ` ypδx ´ δyq

` px´ yqδxδx´y ` ypδx ´ δyqδx´y|

ď 2|x´ y| ¨ u` 2|y|u` |x´ y| ¨ u2 ` 2|y|u2

and

|px̃a ỹq ´ px´ yq|

|x´ y|
ď

ˆ

2|y|

|x´ y|
` 2

˙

u`

ˆ

2|y|

|x´ y|
` 1

˙

u2.

Thus for x « y we have to expect an especially large relative error. This effect
is called cancellation.
To avoid cancellation it is necessary to try and rewrite the expression in a way

that avoids the subtraction of two almost equal numbers.

Example 4.13: Let

p “ 10, t “ 10, x “ 1.2 ¨ 10´5 “ 0.12 ¨ 10´4

and

y “ fpxq “
1´ cospxq

x2
.

The evaluation of f in x gives

cospxq “ 0.9999999999|2800 ¨ 100 “: c « 1
ùñ c̃ :“ γpcq “ 0.9999999999
ùñ ỹ “ p1a c̃q m pxd xq “ 10´10 m p0.144 ¨ 10´9q “ 0.6944444444.

The correct result rounded to ten digits of accuracy, however, is

γpfpxqq “ 0.4999997300.

The reason for the wrong result is the cancellation in the evaluation of 1a c̃. The
result here has only one correct digit. The information about all the other digits

got lost (was canceled) while rounding c. Then the subtraction is performed
exact, but the error 1a c̃ is amplified by a factor of 1010

. The second to tenth

digits in the intermediate result are not carrying any information about correct

values.

1a c̃ “ 0.1000000000 ¨ 10´9

Ò information about these values is lost

4.2. Rounding Errors and Error Propagation 91

Using the alternative formulation

fpxq “ 1
2

´

sinpx
2
q

x
2

¯2
,

which uses the identity cosx “ 1´ 2 sin2
`

x
2

˘

, one gets the much better result

ỹ “ 0.5.

Multiplication: We are now investigating the multiplication, of x, y, x̃, ỹ as
above, in a similar manner. Note that here the sign does not play a role, and

the case of either x, or y being 0 is even easier, since then the result is 0, too,
and thus exact. With a |δx¨y| ď u we have

x̃d ỹ “ x̃ỹp1` δx¨yq “ xp1` δxqyp1` δyqp1` δx¨yq

“ xyp1` δxqp1` δyqp1` δx¨yq “ xy ` xypδx ` δy ` δx¨yq `Opu2q.

So it immediately follows

|x̃d ỹ ´ x ¨ y|

|x ¨ y|
ď 3u`Opu2q.

We thus find that the multiplication behaves similar to the addition. The case of

an actual division is again following analogously. Note that it should be avoided

to divide by a very small value, since this might amplify rounding errors accu-

mulated and present in the enumerator analogous to the cancellation in Exam-

ple 4.13. However, in contrast to the case of cancellation in the subtraction,

here only the absolute error is affected, but not the relative.

The most important difference of computer arithmetic as compared to exact

arithmetic is the following:

Computer arithmetic is neither associative nor distributive.

That means in general we have

pxo yq o z ‰ xo py o zq

xd py ‘ zq ‰ pxd yq ‘ pxd zq, etc.

Example 4.14: Given Mp10, 5, emin, emaxq and a “ 4.2832, b “ 4.2821, c “
5.7632, we want to evaluate the expression d :“ pa ´ bq ¨ c. In exact calcu-
lation we find:

d “ p0.0011q ¨ 5.7632 “ 0.00633952 ùñ γpdq “ 0.63395 ¨ 10´2.

92 Chapter 4. Error Analysis and Machine Numbers

The relative error is

|d´ γpdq|

|d|
« 0.3 ¨ 10´6.

In pseudo arithmetic usingMp10, 5, emin, emaxq we have two options:

(i) paa bq d c “ p0.11 ¨ 10´2q d p0.57632 ¨ 101q “ 0.63395 ¨ 10´2 “ γpdq,
which gives the correct rounded result.

(ii) pad cq a pbd cq “: ea f “: g

e “ ad c “ γp0.24684932824 ¨ 102q “ 0.24685 ¨ 102

f “ bd c “ γp0.2467859872 ¨ 102q “ 0.24679 ¨ 102

ùñ g “ ea f “ γp0.00006 ¨ 102q “ 0.6 ¨ 10´2

ùñ
|d´ g|

|d|
« 0.054,

So we do not even get a single correct digit.

The problem in the second approach is the cancellation in the subtraction of

the two almost equal numbers e and f . During their computation we already
performed rounding, which erased the information about the truncated digits.

This information would have had to take the digits 2–5 in g to get to the correct
result.

In conclusion we recognize that to avoid cancellation one needs to carefully

work with the associativity and distributivity.

4.2.4 The IEEE Standard 754

Manufacturers usually standardize the usage of computer arithmetic to make

computation results comparable. To this end, in 1985 the IEEE
1
fixed the stan-

dard 754 that is today used by almost all computer manufacturers.

IEEE 754–1985 The standard prescribes that M should be closed under the

operations `, ´, ¨, {,
?
. That means any of these operations has to lead to a

result inM. Further contributions of the standard are:

• rounding is performed as “round-to-even”.

• the standard model for floating point arithmetic holds, i.e., the result

of an elementary operation is behaving as if the exact result had been

rounded.

1
The Institute of Electrical and Electronics Engineers.

4.2. Rounding Errors and Error Propagation 93

half: (16 bit)
S EEEEE MMMMMMMMMM
0 1 5 6 15

single: (32 bit)
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
0 1 8 9 31

double: (64 bit)
S EEEEEEEEEEE MM
0 1 11 12 63

Figure 4.1: Storage patterns for half, single and double precision vari-
ables.

• overflows result in γpxq “ ˘8.

• underflows are treated using subnormal numbers as described with the

gradual underflow above.

• two data types have been fixed: double (8 byte) and single (4 byte),
both using p “ 2.

• Since α1 “ 1 has to hold due to normalization, it is not stored, which
gives an extra bit for the significand.

• The single data type has the following properties; for double the cor-
responding values in Table 4.2 have to be inserted.

– An exponent E “ 255 is used to encode the elements ˘8 or NaN
(not-a-number) that are necessary to ensure closedness ofM.

– The exponent b of the machine number is derived from E via b “
E ´ 127, which saves another bit for the sign of the exponent.

– E “ 0 is used to encode subnormal numbers.

Summarizing we get the representation

x “ p´1qS ¨ p1.γ2 . . . γ24q ¨ p
E´127.

that slightly differs from Definition 4.4. For the minimal value E “ 1 it
follows

xmin “ 1. 0 . . . 0
loomoon

23

¨21´127 “ 0.1 ¨ 2´125 ùñ emin “ ´125.

Further, we get

emax “ 1` p254´ 127q “ 128.

Some examples for numbers in the system of single numbers are:

94 Chapter 4. Error Analysis and Machine Numbers

Flag Example Result

invalid 0{0, 0 ¨ 8,
?
´1,

8{8, `8` p´8q
NaN (“not a number”)

overflow xmax ˚ xmax
˘8

usually denoted: ˘Inf

division by zero x{0 for x ­“ 0 ˘8

underflow xmin{p
s
, 1 ă s ă t subnormal number

inexact rdpx ˝ yq ­“ x ˝ y correctly rounded result

Table 4.1: IEEE Standard 754, Exception Handling.

0 11111111 00000000000000000000000 = `8

1 11111111 00000000000000000000000 = ´8

0 11111111 00000100000000000000000 = NaN

1 11111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = `1.0 ˚ 2128´127 “ 2

0 10000001 10100000000000000000000 = `1.101 ˚ 2129´127 “ 6.5

1 10000001 10100000000000000000000 = ´1.101 ˚ 2129´127 “ ´6.5

0 00000001 00000000000000000000000 = `1.0 ˚ 21´127 “ 2´126 “ xmin

0 00000000 10000000000000000000000 = `0.1 ˚ 2´126 “ 2´127

0 00000000 00000000000000000000001 = `0.0 . . . 01 ˚ 2´126 “ 2´149

= smallest representable number

0 00000000 00000000000000000000000 = `0

1 00000000 00000000000000000000000 = ´0

0 01111111 00000000000000000000000 = 1.0 ˚ 2127´127 “ 1.0

1 01111111 00000000000000000000000 = ´1.0 ˚ 2127´127 “ ´1.0

• The value of a variable can be tested for NaN since this is the only “num-
ber” for which x ‰ x is true.

• Whenever an incorrect result or a number that is not covered by Defini-

tion 4.4 is encountered this is causing an exception. Then a flag is raised,
which can be checked by the toolchain to create the appropriate warnings

according to Table 4.1.

IEEE 754–2008 The revised edition of the standard serves a multitude of pur-

poses:

• It merges IEEE 754–1985 with IEEE 845 (a standard defining decimal float-

ing point numbers important in finance).

• It reduces the possible implementation alternatives, as well as ambiguous

4.3. Error Analysis 95

formulations.

• It adds two additional p “ 2-based precision levels for half (2 byte) and
quadruple (16 byte) precision.

• It extends min and max for the special cases˘0 and˘8.

• The formerly denormalized numbers for gradual underflow treatment are
now consistently called subnormal numbers.

• Also, a combined multiplication and addition operation called fused mul-

tiply add and performing a Ð a ˘ pb ˆ cq was added to the set of basic
operations fulfilling the standard model for floating point arithmetic.

precision p t emin emax u xmin xmax

half 2 10 ` 1 ´13 16 « 4.88 ¨ 10´4
« 6 ¨ 10´5

« 1 ¨ 105

single 2 23 ` 1 ´125 128 « 5.96 ¨ 10´8
« 1 ¨ 10´38

« 3 ¨ 1038

double 2 52 ` 1 ´1 021 1 024 « 1.11 ¨ 10´16
« 10´308

« 10308

quad 2 112 ` 1 ´16 381 16 384 « 9.63 ¨ 10´35
« 10´4 932

« 104 932

Table 4.2: IEEE standard 754-2008, data types.

4.3 Error Analysis

This section is dedicated to the derivation of a general framework for the ap-

praisal of the quality of numerically generated results of computations. The

computed result can differ from the real result due to a number of errors from

different categories:

data errors The data used in the computations are not known exactly, e.g.,

due to measurement inaccuracies.

rounding errors Errors resulting from the necessity to work with numbers from

Mpp, t, emin, emaxq instead of R and the evaluation of expressions with a
finite significand. The propagation and accumulation of these kinds of

errors was already discussed in the above.

methodological errors Methodological errors depend on different factors. On

the one hand, the accuracy of the model underlying the computation

plays a role. On the other hand, also the solution method applied to solve

or evaluate the model has a crucial contribution to this type of error.

The methodological error in any case strictly depends on the task at hand and

the way it is solved. In the following we will therefore restrict to the impact of

data and rounding errors on the computed result.

To this end, we will mainly employ the two concepts of conditioning (or condition
numbers) and stability.

96 Chapter 4. Error Analysis and Machine Numbers

4.3.1 Conditioning/Condition Number

The concept of conditioning or condition numbers is a property of the mathe-

matical problem only. It is independent of the actual algorithm or method used

for solving the problem. Thus it provides the ability to derive statements about

the maximum possible quality of the numerical results. Consider the following

example. We want to compute the root of a linear affine function, i.e., the in-

tersection with the x-axis. The steeper the function is the better, i.e., the more
accurate, we can derive the x value of the root. This is due to the fact that small
perturbations in the function value for a steep function lead to even smaller

perturbation of the corresponding x value. The problem is said to be well con-
ditioned in this case. On the other hand, if the function is very flat already small
perturbations in the y values lead to large perturbations in the position of the
computed root. This corresponds to a very bad conditioning of the problem.

We thus see that the conditioning may depend on both the problem and the

data.

To put this in more mathematical terms, we consider the problem of evaluating

y “ fpxq, where the function f : D Ñ V maps the data x P D to the result
y P V and y ` ∆y “ fpx ` ∆xq is the result for the perturbed data x ` ∆x.
Then the relative error for optimal result to be expected is bounded as in:

}∆y}

}y}
ď cpf, xq ¨

}∆x}

}x}
,

where cpf, xq is called the condition number for the problem of evaluating fpxq.
4.3.2 Stability

The corresponding property for the algorithm is called stability. Its main pur-
pose is to guarantee that the algorithm at least gives

}∆y}

}y}
Æ cpf, xq ¨

}∆x}

}x}
.

That means we get as close to the optimal result as possible. Such an algo-

rithm is then called numerically stable (We will give a precise definition in Defini-
tion 4.17). A bad algorithmwould give a larger error. It is then called numerically
unstable.
In the following we will use the notation from above:

• x P D are the data for the problem,

• f : D Ñ V is the mathematical problem mapping data to values,

• and y “ fpxq P V is the exact result, whereas

• ŷ is the numerically computed result.

4.3. Error Analysis 97

4.3.3 Forward Error Analysis

The first and obvious question that arises is how far apart y and ŷ are, i.e.,

}y ´ ŷ} “?,
}y ´ ŷ}

}y}
“?

This question is answered by a forward error analysis. Here one proceeds through
the computation step by step analyzing the propagation and accumulation of

rounding errors by means of the methods discussed in Section 4.2. The basic

procedure is best explained using a small example.

Example 4.15: Let the mathematical problem be that of solving the simple

quadratic equation y2 ´ 2ay ` b “ 0, for given a, b P Mpp, t, emin, emaxq. The

two solutions are known to be

y1 “ a´
a

a2 ´ b, and y2 “ a`
a

a2 ´ b.

We concentrate on the computation of y1. Exactly following the solution for-

mula above is giving the below algorithm in exact and finite arithmetic (follow-

ing the standard model for floating point arithmetic):

exact computation numerical realization

1. c :“ a ¨ a ùñ ĉ “ a2p1` δ1q

2. d :“ c´ b ùñ d̂ “ pĉ´ bqp1` δ2q

3. e :“
?
d ùñ ê “

a

d̂p1` δ3q

4. y1 :“ a´ e ùñ ŷ1 “ pa´ êqp1` δ4q

Here we have |δi| ď u, i “ 1, . . . , 4 due to the standard model assumption.

Now inserting all computed quantities we find

ŷ1 “

!

a´
a

pa2p1` δ1q ´ bqp1` δ2qp1` δ3q

)

p1` δ4q

“ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooooooooomooooooooooooooooooooon

“ 1` δ1 ` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε1, |ε1| ď 6u`Opu2q

´b p1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooomooooooooooooooon

1` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε2, |ε2| ď 5u`Opu2q

)
1
2

“ a` aδ4 ´
a

pa2 ´ bq ` pa2ε1 ´ bε2q

“ a` aδ4 ´
a

a2 ´ b´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q `Opu2q

The last step exploits that using a Taylor expansion of gpxq :“
?
x at

x`∆x “ a2 ´ b
loomoon

“:x

` a2ε1 ´ bε2
loooomoooon

“:∆x

,

98 Chapter 4. Error Analysis and Machine Numbers

we get

gpx`∆xq “
?
x`∆x “

?
x`

1

2
?
x

∆x`Opp∆xq2q,

where |∆x| ď 6p|a2| ` |b|qu “ Opuq.

Using this knowledge for the numerical result it follows

ŷ1 “ y1 ´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q ` aδ4 `Opu2q

and thus for the relative error we get

|ŷ1 ´ y1|

|y1|
“

1

|a´
?
a2 ´ b|

¨
1

2
?
a2 ´ b

ˇ

ˇ

ˇ
a2ε1 ´ bε2 ` 2aδ4

a

a2 ´ b
ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

ďa2¨6u` |b|¨5u
loomoon

ă|b|¨6u

`|a|
?
a2´b¨2u

`Opu2q

ď 3
a2 ` |b| ` |a|

?
a2 ´ b

?
a2 ´ b ¨ |a´

?
a2 ´ b|

u`Opu2q

The forward error may be large if the denominator is small. This can happen in

two cases that can both be traced back to cancellation happening in the com-

putation of y1.

piq a2 « b ùñ cancellation in 2. d :“ a2 ´ b,
piiq |b| ! a2 ^ a ą 0 ùñ cancellation in 4. y1 “ a´ e.

This example shows again why cancellation can lead to large errors in the over-

all computation. To avoid this effect we have to use adapted formulas, i.e. im-

prove the numerical method. (See exercises)

4.3.4 Backward Error Analysis

The second and less obvious question that we want to investigate is the follow-

ing. Given the result of the computation ŷ — can we express ŷ as the exact
solution of a mathematical problem for slightly perturbed data? That means:

Does there exist a∆x, such that ŷ “ fpx`∆xq?

Asking this question makes sense, since for inaccurate data x we only know the
correct value up to, e.g., measurement errors. If the analysis for ŷ “ fpx`∆xq
now provides a ∆x that is of the magnitude of the data errors (i.e., measure-
ment inaccuracies), then the computation result is as good as we can expect. An

answer to the above question is derived by a so called backward error analysis.

4.3. Error Analysis 99

D V

x ‚

x`∆x ‚

‚ y

‚ y `∆y

f

f

backward

error
forward

error

numerical

computation

Figure 4.2: Forward/Backward Error Relations in Numerical Computations

Definition 4.16: η :“ inft}∆x}; ŷ “ fpx`∆xqu is the (absolute) backward
error of ŷ, ηrel :“ η{}x} is called the relative backward error, where } . } is
a suitable norm in the set of dataD.

The relation of forward and backward errors is best described by the diagram

in Figure 4.2.

The concepts of forward and backward error now enable us to give a precise

definition of the corresponding notions of numerical stability as introduced in

the beginning of this section.

Definition 4.17: If for any x P D a method for computing y “ fpxq pro-
duces a ŷ “ fpx `∆xq for a small relative backward error ∆x

x , then the

method is said to be (numerically) backward stable. The concrete definition
of small depends on the problem, but might, e.g., mean∆x is of the size
of the unavoidable data errors.

On the other hand, a method is called (numerically) forward stable if it pro-
duces a relative forward error

∆y
y of the samemagnitude that a backward

stable method would.

100 Chapter 4. Error Analysis and Machine Numbers

Remark 4.18: Note that a forward stable method does not necessarily

have to be backward stable to fulfill the definition. Also the definition

is mainly expressing the rule of thumbs that a forward stable algorithm

produces an error that is approximately proportional to the data error

via the condition number. Even if the backward error of the computed

solution is small, this error can be amplified by a factor as large as the

condition number when passing to the forward error.

We always have:

backward stableñ forward stable

The opposite implication does, however, in general not hold.

The verification of backward stability is performed by a backward error analysis.
The backward error analysis treats the computed result ŷ as that of the exact
computation for perturbed data. Afterward the perturbed data and the original

data are compared. The approach is introduced by revisiting the Example 4.15

and performing the analog procedure for the backward analysis.

Example 4.19 (Example 4.15 continued): Consider y1 “ a´
?
a2 ´ b and ŷ1 the

corresponding solution of the quadratic equation for perturbed data a and b

y2 ´ 2pa`∆aqy ` pb`∆bq “ 0

To this end, we require an expression of the form

ŷ1 “ pa`∆aq ´

b

pa`∆aq2 ´ pb`∆bq.

As for the forward error analysis in Example 4.15 we get

ŷ1 “ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2

looooooooooooooomooooooooooooooon

“1`δ1`δ2`2δ3`Opu2q

“:1`ε1, |ε1|ď4u`Opu2q

p1` δ4q
2
´ b p1` δ1qp1` δ3q

2
p1` δ4q

2
looooooooooooooomooooooooooooooon

“:1`ε2, |ε2|ď5u`Opu2q

)
1
2

“ a` aδ4 ´

!

pa` aδ4q
2
´ b p 1` ε2 ´

a2

b
ε1p1` δ4q

2

looooooooooooomooooooooooooon

“1`ε2´
a2

b
ε1`Opu2q

“:1`δb, |δb|ď5u` 4a2

|b|
u`Opu2q

q

)

1
2

“ pa` aδ4q ´

b

pa` aδ4q
2
´ pb` bδbq

4.3. Error Analysis 101

Now defining ∆a :“ aδ4, ∆b :“ bδb we can estimate the relative backward
error as

|ηa|

|a|
ď

|∆a|

|a|
ď |δ4| ď u,

|ηb|

|b|
ď |δb| ď

ˆ

5`
4a2

|b|

˙

looooomooooon

amplification factor

u`Opu2q.

Note that the relative error is the infimum over all possible errors ∆x “

∆ ra, bs. A small backward error, as we would expect it from a numerically
backward stable algorithm, is derived if a2 « |b|. The error may get large in
case a2 " b.

Remark 4.20: The separate consideration of the backward errors in a and
b is called component-wise error analysis. For a norm-wise consideration
one tries to estimate

1

}rab s}2
η.

4.3.5 Perturbation Analysis

Knowing the limitations on the range of small expected errors, we need to find

out next, whether the problematic error amplification is problem immanent or

caused by the specific algorithmic approach we chose for solving the problem.

The question thus is, if we can reformulate the algorithm to avoid the problem.

This question is answered employing a perturbation analysis that is used to

find the condition number of the problem. We will introduce the procedure

following the steps for an abstract (scalar) model example again.

To this end, let

f : D Ñ V, f P C2pDq, y “ fpxq, ŷ “ fpx`∆xq.

The question, that we are going to answer now, is in what sense the perturba-

tion of the data is transported to the result. Geometrically, it is easy to see that

the value of ŷ is deviating from y the more, the larger the slope of the tangent
of f in x, i.e., |f 1pxq| is. In the general case we use the total differential type of
definition of the derivative of f in x to estimate the deviation. That means,

fpx`∆xq “ fpxq ` f 1pxq∆x` op∆xq.

Here, g P op∆xqmeans that lim∆xÑ0
gpxq
∆x “ 0. Then

ŷ ´ y “ fpx`∆xq ´ fpxq

“ fpxq ` f 1pxq∆x` op∆xq ´ fpxq

“ f 1pxq ¨∆x` op∆xq « f 1pxq ¨∆x.

102 Chapter 4. Error Analysis and Machine Numbers

This approximation means that (neglecting an asymptotically vanishing remain-

der term) the factor |f 1pxq| amplifies the data errors in the result ŷ.

This treatment is called asymptotic or local perturbation analysis since it asymp-
totically gets better when successively narrowing in on x and obviously the ap-
proximation is only good in a local neighborhood of x.

Let y ­“ 0 then we have

ŷ ´ y

y
“
f 1pxq∆x

y
` op∆xq

“
f 1pxq ¨ x

fpxq
¨

∆x

x
` op∆xq

and thus

|ŷ ´ y|

|y|
“

ˇ

ˇ

ˇ
f 1pxq ¨ x

ˇ

ˇ

ˇ

|fpxq|
loooomoooon

“:cpf,xq

¨
|∆x|

|x|
` op|∆x|q. (4.8)

Note that in (4.8) we are not applying the triangular inequality, but equality may

hold since op|∆x|q is allowed to be negative.

Definition 4.21: Let f P CpDq, x, x ` ∆x P D and fpx ` ∆xq “ ŷ. The
infimum of all numbers cabspf, xq for which

‖y ´ ŷ‖ ď cabspf, xq ‖∆x‖` op‖∆x‖q

holds, is called (absolute) condition number of f in x.
Analogously, the infimum of all numbers cpf, xq “ crelpf, xq, such that

‖y ´ ŷ‖
‖y‖

ď crelpf, xq
‖∆x‖
‖x‖

` o

ˆ

‖∆x‖
‖x‖

˙

is true, is denoted as (relative) condition number of f in x.
If f is differentiable then in analogy to (4.8)

cabspf, xq “
∥∥f 1pxq∥∥ , cpf, xq “ crelpf, xq “

‖x‖
‖fpxq‖

∥∥f 1pxq∥∥ ,
where f 1 is the Jacobi matrix of f in x and the norms have to be compatible.
That means, ideally, for the Jacobian the operator norm induced by the vector

norm should be used.

Note that in (4.8) equality holds. For an inequality we would only have an upper

bound to the condition number. This would only then become the condition

4.3. Error Analysis 103

number when it can be shown to be a sharp bound, i.e., when we can find at
least one x P D such that equality holds (minimum case), or for every δ ą 0
there exists an x P D, such that for cpf, xq ¨ x´ δ violates the bound (infimum
case).

Example 4.22 (Examples 4.15, 4.19 continued): Let us get back to the example

quadratic equation. Here we have x “
“

a
b

‰

P R2
and

fpa, bq “ a´
a

a2 ´ b, y “ fpa, bq, ŷ “ fpa`∆a, b`∆bq.

Further, let us assume

max

"

|∆a|

|a|
,
|∆b|

|b|

*

ď ε ! 1.

For the evaluation of the Taylor expansion we require the partial derivatives of

f with respect to the data a, b:

Bf

Ba
pa, bq “ 1´

1

2
pa2 ´ bq

´ 1
2 ¨ 2a “ 1´

a
?
a2 ´ b

“

?
a2 ´ b´ a
?
a2 ´ b

“ ´
fpa, bq
?
a2 ´ b

,

Bf

Bb
pa, bq “

1

2
¨

1
?
a2 ´ b

.

Further assuming that a2 ą b ą 0 or b ă 0, such that
?
a2 ´ b P R, we find

ŷ ´ y “ fpa, bq `
Bf

Ba
pa, bq ¨∆a`

Bf

Bb
pa, bq ¨∆b` opεq ´ fpa, bq

“ ´
fpa, bqa
?
a2 ´ b

¨
∆a

a
`

1

2
¨

b
?
a2 ´ b

∆b

b
` opεq

and thus

|ŷ ´ y|

|y|
ď

|a|
?
a2 ´ b

looomooon

“:capf,a,bq

¨
|∆a|

|a|
`

|b|

2
?
a2 ´ b ¨ |a´

?
a2 ´ b|

looooooooooooooomooooooooooooooon

“:cbpf,a,bq

¨
|∆b|

|b|
` opεq(4.9)

ď
1

?
a2 ´ b

ˆ

|a| `
|b|

2|a´
?
a2 ´ b|

˙

¨ ε` opεq. (4.10)

The inequality (4.9) here represents the component-wise perturbation analysis

and (4.10) the norm-wise one. A norm-wise consideration also follows from the

Cauchy-Schwarz-Inequality applied to

ŷ ´ y “ p∇fpa, bqqT
„

∆a
∆b



` opεq,

104 Chapter 4. Error Analysis and Machine Numbers

such that

|ŷ ´ y| ď ‖∇fpa, bq‖ ¨
∥∥∥∥„ ∆a

∆b

∥∥∥∥` opεq.
Here, we are only interested in the (usually more precise) component wise con-

sideration. The two cases of major interest are the ones that we have investi-

gated to lead to large errors in the forward analysis (Example 4.15) and back-

ward analysis (Example 4.19).

case 1: a2 « b For a2 Ñ b it follows capf, a, bq Ñ 8 and also cbpf, a, bq Ñ 8.

The problem thus is ill-conditioned, i.e., we can not expect “good” results.

A large forward error is “unavoidable”. The large forward errors in this

case are therefore caused by the bad conditioning of the problem. This

corresponds to the observation in Example 4.19 that the backward error

is still small in this case.

case 2: a2 " b In this case capf, a, bq « 1. The same can easily be seen for
cbpf, a, bq when considering

b
a2
Ñ 0 ô b Ñ 0 and applying L’Hôpitals

rule. That means, we find that the problem is well conditioned in this

case. Having large forward and backward errors here, therefore, means

that our computation method is unstable.

Since our method for computing y1 in the above examples was performing well

in most cases and only misbehaved in the case where a2 " b, we also call the
method conditionally stable.
We conclude this section with a couple of facts that we should be aware of when

trying to evaluate the quality of numerical computations.

1. cpf, xq in general not only depends on the problem but also on the data
supplied to it. A mathematical problem thus is not generally good or bad,

but it depends on where inD we evaluate it.

2. Condition numbers can be categorized as follows:

cpf, xq « 1 ñ well conditioned.

cpf, xq " 1 ñ ill-conditioned.

cpf, xq ! 1 may be bad as well since we can easily “lose infor-

mation” due to the large possible backward errors.

3. An unstable algorithm can result from the decomposition of a (possi-

bly well conditioned) mathematical problem into a concatenation of sub-

tasks, i.e.,

fpxq “ pgk ˝ gk´1 ˝ . . . ˝ g1qpxq,

where one or more of the gj are ill-conditioned. For example, if the gj are

Bibliography 105

elementary operations and one of them is suffering from cancellation,

then the loss of information resulting from the cancellation may prevail

the remaining computation.

4. The main property of the connection between forward error, backward

error and condition number is sketched by the rough rule:

forward error « condition numberˆ backward error.

This again illustrates the implication

backward stabilityñ forward stable

The following rule of thumb gives a good assessment of the numerically com-
puted results:

good conditioning & stable algorithm ùñ reliable result.

bad conditioning or unstable algorithm ùñ unsure result.

Bibliography

[1] P. DEUFLHARD AND A. HOHMANN, Numerical analysis in modern scientific com-
puting. An introduction., no. 43 in Texts in Applied Mathematics., Springer,
new york ed., 2003.

[2] O. FORSTER, Analysis 1. Differential and integral calculus of one variable. (Analy-
sis 1. Differential- und Integralrechnung einer Veränderlichen.) 10th revised and
expanded ed., Wiesbaden: Vieweg+Teubner, 2011.

[3] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM Publica-
tions, Philadelphia, PA, second ed., 2002.

[4] M. L. OVERTON, Numerical Computing with IEEE Floating Point Arithmetic, SIAM,
Apr. 2001.

106 Chapter 4. Error Analysis and Machine Numbers

640K is more memory than anyone will ever need on a computer.

among the top 5 myths aboutBILL GATES

CHAPTER5

Memory Architecture and Memory Management

Contents

5.1 Virtual Memory Concept 109

5.1.1 Paging . 110

5.1.2 Memory Related Error Signals 110

5.2 Volatile memory . 111

5.2.1 Registers . 111

5.2.2 Cache . 111

5.2.3 Main Memory . 112

5.3 Non-Volatile Storage . 113

5.3.1 Local Storage Media 113

5.3.2 Local Network . 113

5.3.3 Cloud and Remote Network Services 114

5.4 Non Uniform Memory Access 114

5.4.1 Cache Coherence 114

5.4.2 Memory Consistency 114

Bibliography . 115

Several different layers of memory exist in a modern computer environment.

Each of the layers in this hierarchy has a certain relevance in and special prop-

erties for scientific computing tasks. This chapter is dedicated to a brief intro-

duction of the single layers with their most important properties. The presenta-

tion of these properties will help understand the motivation behind the storage

structures and tiled operation strategies introduced in Chapter 6.

107

108 Chapter 5. Memory Architecture and Memory Management

• L3 Cache

• L2 Cache

• L1 Cache

• Registers

• Main Random Access Memory

(RAM)

• Network Storage

• Local Storage

– Tape

– Hard Disk Drive (HDD)

– Solid State Disk (SSD)

• Cloud

fast

medium

slow and

very slow

Figure 5.1: Memory Classes in Scientific Computing

Hardware sided the relevant memory comes mainly in four types

• Static Random Access Memory

(SRAM)

• Dynamic Random Access Memory

(DRAM)

• Flash Electrically Erasable Programmable Read-Only Memory

(Flash-EEPROM)

• Magnetic surfaces

Here, the first two types are so called volatile memory devices which only hold

the information as long as they are supplied with electric power. The other

two are designed to preserve their content during phases where the power is

switched of. Naturally the secure storage of data (with respect to power-off)

comes at a cost. The cost we have to pay is the increased time for especially

write accesses. The magnetic storage types here are the slowest. This is espe-

cially due to the mechanic subsystems involved in the process. On a hard disk

drive the magnetic read write head has to be positioned at the right place prior

to operation. This equivalently has to be done with the tapes in a tape drive.

Both types are, therefore, mainly usable for long term storage of final results.

Hard disks are to some extent also useful during computations, when the main

memory is running short. Special techniques often called cache to disk or dou-
ble buffering are used to store data portions that will not be used for a longer
time in the computation to the local storage and so free up main memory for

intermediate computations.

Nevertheless, in basic operation the static and dynamic random access mem-

ory types are the more important ones. Both are electronic memory devices

5.1. Virtual Memory Concept 109

consisting of integrated circuits (ICs) as basic realizations. Their main differ-

ence is that the SRAM circuits are transistor based and the DRAMs are capaci-

tor based. It is now easy to imagine that SRAMs can switch essentially instan-

taneous, whereas DRAMs have to wait for the capacitors to charge completely

and require periodic refresh signals to prevent the capacitors from discharg-

ing. On the other hand, DRAMs are producible in higher density at lower costs

and have a smaller energy consumption. The main properties are compared in

Table 5.1.

Feature SRAM DRAM

Storage Circuit Base Transistor Capacitor

Speed Same as CPU Slower than CPU

Latency Low High

Density Low High

Power Consumption High Low

Cost High Low

Table 5.1: Comparison of Volatile Memory Types

Due to the low cost the largest part of a modern computers memory, namely

the main memory is made out of DRAM chips. The faster and more expensive

SRAM chips are only used on the part of thememory that is closest to the actual

processing units on the CPU. That means the Cache (see Figure 5.1) is made out

of SRAMs, which is one reason why it is usually very limited.

The main concerns in this chapter will be:

• memory organization (pages, page sizes),

• swapping,

• memory related error signals,

• memory transfer and alignment,

• virtual memory concept.

5.1 Virtual Memory Concept

Definition 5.1 (Virtual memory and memory pages): Virtual memory is
an operating system abstraction layer, that allows to access the various

memory layers as one large device. It usually consists of memory pages,
the smallest accessible units of memory (normallyě 4 kBytes).

110 Chapter 5. Memory Architecture and Memory Management

Virtual memory covers:

• main memory

• cache (via CPU memory management unit (MMU))

• memory mapped files

• SWAP (usually specially structured part of disks)

Data relocation relies on hardware support, mainly implemented in the mem-

ory management unit of the CPU.

Definition 5.2 (swapping and double buffering): Relocation of potentially

unused data to the local storage by the operating system is called swap-
ping. Moving data to the local storagemay cause large overhead in waiting
time. Any technique that moves that data at strategically better times to

avoid swapping is called double buffering.

5.1.1 Paging

• paged virtual memory is the most common implementation.

• page sizeě 4 kBytes

• generally data can be located anywhere in a page.

• some operations expect the data to be located at the start of a memory

page.

Ñ page alignedmemory
Ñ increases memory fragmentation

• page locked memory is a special type of memory that is not allowed to get
swapped

5.1.2 Memory Related Error Signals

The two important memory related signals are:

• SIGSEGV

– segmentation violation or segmentation fault signal

– usually leads to immediate abortions of the process

– caused by accessing memory segments in foreign address spaces.

• SIGBUS

– Bus error signal

5.2. Volatile memory 111

– abortion also immediate

– one common cause: Improper replacement of so-libs during execu-

tion

5.2 Volatile memory

5.2.1 Registers

• very small number

• small (<100 Bytes)

• MMX, SSE, AVX
looooooomooooooon

local vectorization

• we rely on compiler capabilities

5.2.2 Cache

• L1: « 16´ 32 kBytes, split for data and instructions, installed per core

• L2: now« 256 kBytes, installed per core, keeps frequently used data and
instructions of the current core.

• L3: same as L2 for a group of cores making a processor, connects to RAM,

« few MBytes per core.

transfer rates« few GB/s.

Cache is small, high speed memory made out of SRAM.

data lookup:Ñ L1Ñ L2Ñ L3Ñ request data from main memory.

Successful lookup is called Cache Hit, and the data item is transferred to the

registers at maximum speed.

Cache Miss:

• data not available in cache

• needs to be loaded from main memory

• results in amiss penalty (Cache Latency)

Hit ratio: percentage of memory accesses satisfied by the cache (« 80´ 90%).

Miss ratio: 100%´ Hit ratio

Arranged in so called cache lines of 4´ 64 Bytes.

The cache behaviour can be explored using valgrind’s cachegrind compo-
nent.

112 Chapter 5. Memory Architecture and Memory Management

Cache line replacement: e.g.

• LRU — least recently used

• random

Rules of thumb:

cache transfer rate [Bytes/s]“ width (no. bits)ˆ clockrateˆ data per clock / 8

The secret of a fast method is program locality, i.e., as many

operations as possible on data already residing in the caches.

5.2.3 Main Memory

made of DRAM mainly availabe in 3 types

• asynschronous

(FPRAM, EDORAM) (outdated)

• synchronous

(SDRAM, DDRSDRAM, DDR2SDRAM, DDR3SDRAM, DDR4SDRAM)

• Rambus

(RDRAM, XDRDRAM, XDR2DRAM)

Standard PCs today often use DDR4SDRAM.

Memory clock 100–266
2
3 MHz

clock cycle times 3
3
4 -10 ns

I/O bus clock 400–1066
2
3 MHz

Data rate 800–2133
1
3 MT/s

Peak transfer rate 6.4–17.07 GB/s

CAS Latency 10–15 ns

The latest DDR4SDRAM chips feature double the manufacturing density, lower

operation voltage (1.2V compared to 1.5V) and higher operation frequencies

1600–3200MHz.

Columns Address Stroke Latency (CAS Latency): time for waiting between a

request of data and their availability at the memory pins.

Currently available sizes: 256 MB – 2 TB

5.3. Non-Volatile Storage 113

5.3 Non-Volatile Storage

5.3.1 Local Storage Media

Maximum possible transfer rates are bounded by the capabilities of the bus

interface

Type theoretic peak transfer release / introduction

ATA 33/66/100 33/66/100 MB/s

SATA I 150 MB/s “̂ 0.15 GB/s

SATA II 300 MB/s “̂ 0.30 GB/s « 2005

SATA 3.0 600MB/s “̂ 0.60 GB/s 05.2009

SATA 3.2 up to 1969MB/s “̂ 1.97 GB/s 08.2013

SAS 300 MB/s – 22.5 GB/s current developments

Solid State Disk vs. HardDisk Drive Both are connected to the same host/bus

interface.

Feature/Property SSD HDD

Noise + -

Reliabilty, Lifetime - +

Price – +

Capacity - +

Fragmentation + -

mechanical delay + -

practical transfer rates 100–600 MB/s ď 140 MB/s

random access time 0.1 ms 2.9–12 ms

Developments connecting the SSD to the PCIe bus (see SATA 3.2 above) get al-

most 2 GB/s.

Currently available sizes: ď6 TB (HDD).

RAID (Redundant Array of Independent Disks)

• can increase total storage capacity by grouping disks to larger logical vol-

umes

• can increase the performance and data safety by multiply/redundantly

storing the same data.

5.3.2 Local Network

High variance in speeds from 10–100 Mb/s on slow local network to 10–40 Gb/s

on high speed Infiniband server networks. 56/80/100 Gb/s have recently en-

tered the market. Higher speeds are in development.

114 Chapter 5. Memory Architecture and Memory Management

5.3.3 Cloud and Remote Network Services

Usually only useful for storing results for post processing. Involves additional

synchronization.

5.4 Non Uniform Memory Access

The non uniform memory access (NUMA) model is part of Flynn’s taxonomy of

parallel architectures which will be treated in more detail in term 2. The basic

characterization of a NUMA machine is the type of architecture that appears

when several independent processing units have the memory associated lo-

cally to single units. The entire shared memory of all processing units is the

sum of the local memories. Then parts of the memory can only be accessed

indirectly with the help of other processing units and additional latencies are

unavoidable.

Example 5.3: A system is equipped with 2 processors an 32 GB of main mem-

ory, which is separated into two blocks of 16 GB, one for each processor.

The MMUs each organize 16GB locally and need to access the other 16GB via

the other MMU.

A less obvious appearance of this phenomenon is on Multicore processors,

where each core has its own L1 and L2 Cache.

5.4.1 Cache Coherence

Example 5.4: Consider a dual Core systemwith L1/L2 caches for each processor

core. The situation that a memory block is present in both caches and one of

the copies invalidates the other copy due to a write access, can appear.

The problem described in Example 5.4 is called cache coherence problem.

The task of keeping different copies of the data coherent, i.e., consistent with

respect to read access, is introducing additional management work that can

increase read access times.

A system that is investing this extra work is called ccNUMA (for cache coherent

NUMA) machines.

5.4.2 Memory Consistency

Cache Coherence ensures the same view to the global memory through the

local cache for each processing unit.

Bibliography 115

ñ At each point in time each processor performing a read access gets the latest

data.

The corresponding problem for write accesses describes the memory consis-

tency problem.

Bibliography

[1] Auto-vectorization with gcc 4.7. http://locklessinc.com/
articles/vectorize/. accessed November 19, 2012.

[2] Dynamic random-access memory. http://en.wikipedia.org/wiki/
Dynamic_random-access_memory. accessed November 19, 2012.

[3] Flash memory. http://en.wikipedia.org/wiki/Flash_memory.
accessed November 19, 2012.

[4] Paging. http://en.wikipedia.org/wiki/Paging. accessed

November 19, 2012.

[5] Static random-access memory. http://en.wikipedia.org/wiki/
Static_Random_Access_Memory. accessed November 19, 2012.

[6] G. TORRES, How the memory cache works. http:
//www.hardwaresecrets.com/article/
How-The-Memory-Cache-Works/, September 2007.

http://locklessinc.com/articles/vectorize/
http://locklessinc.com/articles/vectorize/
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Static_Random_Access_Memory
http://en.wikipedia.org/wiki/Static_Random_Access_Memory
http://www.hardwaresecrets.com/article/How-The-Memory-Cache-Works/
http://www.hardwaresecrets.com/article/How-The-Memory-Cache-Works/
http://www.hardwaresecrets.com/article/How-The-Memory-Cache-Works/

116 Chapter 5. Memory Architecture and Memory Management

Mathematics is the queen of the sciences.

CARL FRIEDRICH GAUSS

CHAPTER6

Basic Operations, Formats and Matrix-Norms

Contents

6.1 Vector Norms and Inner Products 118

6.2 Linear Operators, Operator and Matrix Norms 120

6.2.1 Spectral Norm and Spectral Radius 125

6.2.2 Condition Number and Singular Values 128

6.2.3 Some Remarks on κ2pAq 129

6.3 Matrix Storage Formats . 131

6.3.1 Dense Matrices 132

6.3.2 Sparse Matrices 135

6.3.3 Complex Matrices 139

6.4 Linear Algebra Software 140

6.4.1 Basic Linear Algebra Subroutines (BLAS) 141

6.4.2 Linear Algebra PACKage (LAPACK) 145

6.4.3 SuiteSparse . 147

6.4.4 ITPACK . 147

6.4.5 Trilinos . 147

6.4.6 Native Packages for other Programming Environ-

ments and Languages 148

Bibliography . 148

117

118 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.1 Vector Norms and Inner Products

Definition 6.1: LetX be a linear space over the field F. A mapping

‖.‖ : X Ñ R,

with

i) ‖x‖ ě 0 @x P X , (positivity)

ii) ‖x‖ “ 0 ðñ x “ 0, (definiteness)

iii) ‖αx‖ “ |α| ‖x‖ @α P F@x P X , (homogeneity)

iv) ‖x` y‖ ď ‖x‖` ‖y‖ @x, y P X , (triangle inequality)

is called norm on X . A linear space together with a norm pX, ‖.‖Xq is
called normed linear space.

Example 6.2: LetX “ Rn, p P N. The functions

‖x‖p :“ p

g

f

f

e

n
ÿ

i“1

|xi|p p P N

‖x‖8 :“ max
i

|xi|

define norms onX .

Definition 6.3: LetX be a linear space over the field F P tR, Cu. An inner
product onX is defined by a sesquilinear form

p., .q : X ˆX Ñ F

with properties

i) px, xq P Rě0 @x P X , (positivity)

ii) px, xq “ 0 ðñ x “ 0, (definiteness)

iii) px, yq “ py, xq @x, y P X , (symmetry)

iv) pαx`βy, zq “ αpx, zq`βpy, zq @x, y, z P X , @α, β P F(linearity)

A linear space with an inner product pX, p., .qq is called a pre-Hilbert space.

6.1. Vector Norms and Inner Products 119

Theorem 6.4: Let pX, p., .qq be a pre-Hilbert space. Then

‖x‖ :“
a

px, xq @x P X

defines a norm inX .

Proof. Homework

Definition 6.5: Two norms ‖x‖a , ‖x‖b on a linear space X are called

equivalent, if and only if any sequence converging with respect to ‖x‖a
also converges with respect to ‖x‖b and vice versa.

Theorem 6.6: ‖.‖a , ‖.‖b on the linear spaceX are equivalent

ô Dα, β ą 0 : α ‖x‖a ď ‖x‖b ď β ‖x‖a @x P X (6.1)

Idea of the proof. “ð”: direct consequence of (6.1) applied to x “ yn ´ y8 for
a sequence pynqnPN Ñ y8 in either ‖.‖a, or ‖.‖b.

“ñ”: Find β P Rą0 with ‖x‖a ă β @x P X with ‖x‖b “ 1 (by contradiction)
then @y P Xzt0u

‖y‖a “
∥∥∥∥‖y‖b y

‖y‖b

∥∥∥∥
a

“ ‖y‖b

∥∥∥∥ y

‖y‖b

∥∥∥∥
a

ď ‖y‖b β

The other half can be proved analogously.

As another direct consequence of equation (6.1) we get

Corollary 6.7: The limits of a sequence with respect to equivalent norms

coincide.

Theorem 6.8: LetX be a finite dimensional linear space over R, or C. All
norms onX are equivalent.

120 Chapter 6. Basic Operations, Formats and Matrix-Norms
Proof. Literature

6.2 Linear Operators, Operator and Matrix Norms

Definition 6.9: Let pX, ‖.‖Xq, pY, ‖.‖Y q normed linear spaces. An opera-
tor A : X Ñ Y is called

i) continuous in x P X , if for all sequences pxnqnPN inX with xn Ñ x
for nÑ8 we have

Axn Ñ Ax for nÑ8

ii) continuous, if A is continuous in all x P X .
iii) linear if it fulfills

Apαx` βyq “ αAx` βAy

iv) bounded if A is linear and DC ě 0, such that

‖Ax‖Y ď C ‖x‖X @x P X

Any C with this property are called upper bound of A.
In Chapter 4 we saw that those norms compatible with a vector norm are of

special importance. The most important among those norms are the induced

operator or matrix norms introduced in the following definition.

Definition 6.10: LetA : X Ñ Y be a linear operator pX, ‖.‖Xq, pY, ‖.‖Y q
normed linear spaces. The operator norm of A is defined as

‖A‖ :“ sup
‖x‖X“1

‖Ax‖Y “ sup
xPXzt0u

‖Ax‖Y
‖x‖X

‖A‖ is also called induced operator norm. In case A is a matrix, one also
speaks of an induced matrix norm.

We have talked about upper bounds to the operator A in the sense of norms
of images and preimages. The operator norm takes a distinguished position

among those bounds.

6.2. Linear Operators, Operator and Matrix Norms 121

Theorem 6.11: ‖A‖ is the smallest upper bound of A and A is bounded
if and only if ‖A‖ ă 8.

Proof. “ñ”: Let A be boundedÑ D8 ą C ě 0 with

‖Ax‖Y ď C @x P X, ‖x‖X “ 1

and

‖A‖ “ sup
‖x‖X“1

‖Ax‖Y ď C ă 8.

Especially ‖A‖ ď C for all upper bounds C.

“ð”: Let A be linear with ‖A‖ ă 8. Now for arbitrary x P Xzt0u we have

‖Ax‖Y “
∥∥∥∥‖x‖X Aˆ

x

‖x‖X

˙∥∥∥∥
Y

“ ‖x‖X

∥∥∥∥Aˆ

x

‖x‖X

˙∥∥∥∥
Y

ď ‖x‖X sup
‖z‖X“1

‖Az‖Y “ ‖x‖X ‖A‖ .

That means A is bounded with upper bound ‖A‖.

Matrices are a special type of linear operator. The linear operators, as part of

the operators from one linear space to another, have some very distinct prop-

erties that we will collect next.

Theorem 6.12: Let pX, ‖.‖Xq and pY, ‖.‖Y q be normed linear spaces, and
A : X Ñ Y a linear operator.

The following are equivalent:

i) A is continuous in x “ 0

ii) A is continuous

iii) A is bounded

Proof. i)ñii): Let x P X , pxnqnPN Ď X with xn Ñ x, nÑ8

ñ Axn
A linear
“ Apxn ´ xq

loooomoooon

‖.‖X
Ñ 0, nÑ8

`Ax
‖.‖Y
Ñ Ax for nÑ8

122 Chapter 6. Basic Operations, Formats and Matrix-Norms

ii)ñiii): We prove this part using a contradiction argument. Assume A contin-
uous, but unbounded. Then there exists pxnqnPN Ď X with ‖xn‖X “ 1
and ‖Axn‖ ě n. Define:

yn :“
xn

‖Axn‖Y
.

Then we immediately get

‖yn‖Y “
∥∥∥∥ xn
‖Axn‖Y

∥∥∥∥
X

“
‖xn‖X
‖Axn‖Y

“
1

‖Axn‖Y
ď

1

n

and thus

yn
‖.‖X
ÝÑ 0 nÑ8.

On the other hand,

‖Ayn‖Y “
∥∥∥∥A xn

‖Axn‖Y

∥∥∥∥
Y

“
‖Axn‖Y
‖Axn‖Y

“ 1

for all n P N, which contradicts continuity of A in x “ 0.

iii)ñi): Let A be bounded and pxnqnPN Ď X with xn
‖.‖X
Ñ 0 for nÑ8. Then

‖Axn‖Y ď ‖A‖ ‖xn‖X Ñ 0 as nÑ8

and thus A continuous in x “ 0.

An especially appealing feature of linear operators is that their properties are

inherited to product operators, since these are established through simple con-

catenation of the application of the involved linear operators, as we can see

from the following lemma.

Lemma 6.13 (Submultiplicativity): Let pX, ‖.‖Xq, pY, ‖.‖Y q, pZ, ‖.‖Zq be
normed linear spaces.

A :X Ñ Y

B :Y Ñ Z

bounded linear operators, then the operator concatenation

BA : X Ñ Z

6.2. Linear Operators, Operator and Matrix Norms 123

is bounded with

‖BA‖ ď ‖B‖ ‖A‖ . (6.2)

Proof. First we note that for any x P X due to boundedness of A and B we
have

‖BAx‖ ď ‖B‖ ‖Ax‖Y ď ‖B‖ ‖A‖ ‖x‖X
The lemma thus is a direct consequence of

‖BA‖ “ sup
‖x‖X“1

‖BAx‖ ď sup
‖x‖X“1

‖B‖ ‖Ax‖Y

ď sup
‖x‖X“1

‖B‖ ‖A‖ ‖x‖X “ ‖B‖ ‖A‖

A bounded linear operator from one finite dimensional linear space into an-

other can always be expressed as a matrix. This is due to the fact that an

evaluation of the operator on a basis immediately provides the matrix repre-

sentation. We collect some notation to classify matrices.

Definition 6.14: Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m
.
.
.

. . .
.
.
.

an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Rnˆm,

i) the transposedmatrix AT
is defined as

A “

»

—

–

a11 ¨ ¨ ¨ an1
.
.
.

. . .
.
.
.

a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Rmˆn,

ii) If AT “ A, then A is called symmetric pn “ mq

iii) If ATA “ I , then A is called orthogonal pn ď mq

iv) If ATA “ AAT
, then A is called normal pn “ mq

124 Chapter 6. Basic Operations, Formats and Matrix-Norms

Definition 6.15: i) Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m
.
.
.

. . .
.
.
.

an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Cnˆm,

the conjugate transposedmatrix AH
is defined as

A “

»

—

–

a11 ¨ ¨ ¨ an1
.
.
.

. . .
.
.
.

a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Cmˆn,

ii) If AH “ A, then A is called hermitian pn “ mq

iii) If AHA “ I , then A is called unitary pn ď mq

iv) If AHA “ AAH
, then A is called normal pn “ mq

Definition 6.16: LetX “ Rn, orX “ Cn. A matrix A : X Ñ X is called

i) upper triangular, if aij “ 0 @i ą j,

ii) lower triangular, if aij “ 0 @i ă j,

iii) diagonal, if aij “ 0 @i ­“ j,

iv) positive semidefinite if pAx, xq2 ě 0 @x P X ,

v) positive definite if pAx, xq2 ą 0 @x P Xzt0u,

vi) negative (semi)definite if´A is positive (semi)definite.
Two linear systems of equations are called equivalent if and only if their sets of

solutions coincide.

Lemma 6.17: Let P P Cnˆn be invertible and A P Cnˆn, then the linear
systems of equations Ax “ y and PAx “ Py for x, y P Cn are equiva-
lent.

Proof.
P is invertibleñ “Px “ 0 ðñ x “ 02

ñ “P pAx´ yq “ 0 ðñ Ax´ y “ 02

6.2. Linear Operators, Operator and Matrix Norms 125

Lemma 6.18: The linear system Ax “ b permits a solution if and only if
rankpAq “ rankprA bsq

Proof. Homework
Some structural properties of matrices are preserved in products of matrices.

This is often exploited to generate structure preserving algorithms or limit error

amplification. The following two Lemmas collect such properties and will be

proved in the exercises.

Lemma 6.19: Products of lower (upper) triangular matrices are lower (up-

per) triangular.

Lemma 6.20: Products of orthogonal matrices are orthogonal matrices.

Some matrix norm examples:

i) ‖A‖ :“ max
i,j
|aij | (induced by the pair (‖.‖1, ‖.‖8) of norms, not sub-

multiplicative,)

ii) ‖A‖F :“

d

n
ř

i“1

n
ř

j“1

∣∣∣a2
ij

∣∣∣ (not induced, compatible with the vector ‖.‖2-

norm)

iii) ‖A‖1 :“ max
j“1,...,n

n
ř

i“1
|aij | (induced, column sum norm)

iv) ‖A‖8 :“ max
i“1,...,n

n
ř

j“1
|aij | (induced, row sum norm)

v) ‖A‖2 :“ sup
‖x‖2“1

‖Ax‖2 (induced, spectral norm)

Theorem 6.21: Any matrix A P Cnˆn is bounded in every matrix norm.

Proof. Homework
6.2.1 Spectral Norm and Spectral Radius

A complex number λ P C is called eigenvalue of a matrix A if Dx ­“ 0

Ax “ λx

126 Chapter 6. Basic Operations, Formats and Matrix-Norms

Then x is called (right) eigenvector of A. The set of all eigenvalues is ΛpAq :“
tλ P C : Ax “ λxu, it is called spectrum of A. The value ρpAq “ maxt|λ| : λ P
ΛpAqu is called the spectral radius of A.

Theorem 6.22 (Schur decomposition): Let A P Cnˆn (Rnˆn). There exists
a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

T “ U˚AU

is a (quasi) upper triangular matrix.

Proof. Homework.

Remark 6.23: • ΛpAq “ ttii : i “ 1, . . . , nu pA P Cnˆnq

• The Schur decomposition can be computed in a QR-algorithm in

Opn3q.

Corollary 6.24: LetA P Cnˆn pRnˆnq hermitian (symmetric). There exists
a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

„

@
@
@



“ diagpλ1, . . . , λnq “ U˚AU

Here λi pi “ 1, . . . , nq is the i-th eigenvalue of A with the i-th column of
U the corresponding eigenvector.

Theorem 6.25: The ‖.‖2 operator norm ofA is called spectral norm since
we have:

i) ‖A‖2 “
a

ρpA˚Aq

ii) ρpAq ď ‖A‖ for an arbitrary induced norm ‖.‖

iii) A “ A˚ ñ ρpAq “ ‖A‖2

Proof. i) pA˚Aq “ pA˚Aq˚ thus Corollary 6.24 tells us that there exists an
orthogonal matrix U with

U˚A˚AU “

»

—

–

λ1

. . .

λn

fi

ffi

fl

6.2. Linear Operators, Operator and Matrix Norms 127

Further, for all x P Cn we find coefficients αi, pi “ 1, . . . , nq, such that

x “
n
ÿ

i“1

αiui

Thus,

A˚Ax “
n
ÿ

i“1

λiαiui,

and therefore

‖Ax‖2
2 “ pAx,Axq2 “ px,A

˚Axq2

“ p
ÿ

αiui,
ÿ

λiαiuiq
2

“
ÿ

pαiui, λiαiuiq2

“
ÿ

λi|αi|
2pui, uiq2

“
ÿ

λi|αi|
2 ‖u‖2

2

“
ÿ

λi|αi|
2

ď ρpA˚Aq
ÿ

|αi|
2

“ ρpA˚Aq ‖x‖2
2 ,

such that

‖Ax‖2

‖x‖2

ď ρpA˚Aq

and λi ě 0@i. Now let λi0 “ ρpA˚Aq, and ui0 the corresponding eigen-
vector, then

‖Aui0‖
2
2

‖ui0‖
2
2

“
λi0 ‖ui0‖

2
2

‖ui0‖
2
2

“ λi0 “ ρpA˚Aq.

So we have proved the first statement.

ii) By definition of the induced norm we have for each pair of eigenvalue λ
and corresponding eigenvector u that

‖A‖ “ sup
‖x‖“1

‖Ax‖ ě ‖Au‖ “ ‖λu‖ “ |λ| ‖u‖ “ |λ|,

and therefore ρpAq ď ‖A‖.

iii) A˚ “ A:

‖A‖2 “
a

ρpA˚Aq “
a

ρpA2q “

b

ρpAq2 “ ρpAq

128 Chapter 6. Basic Operations, Formats and Matrix-Norms

In fact the last statement is true also for normal matrices. The proof is slightly

more technical, though, since it requires the full eigendecomposition of A and
the knowledge that for normal matrices the left and right eigenbases coincide.

6.2.2 Condition Number and Singular Values

Recall:

crelpf, xq “
‖x‖

‖fpxq‖
¨
∥∥f 1pxq∥∥

Now let f ” A and A invertibleñ

y “ Axô x “ A´1y

ñ
‖x‖

‖fpxq‖
“

‖x‖
‖Ax‖

“

∥∥A´1y
∥∥

‖y‖
ď sup

y ­“0

∥∥A´1y
∥∥

‖y‖
“

∥∥A´1
∥∥ .

Since the Jacobian of a linear operator is the linear operator, we have

f 1pxq “ A
ˇ

ˇ

x
.

Such that we find

crelpA, xq ď ‖A‖
∥∥A´1

∥∥ .
In case A “ I we further have

crel “
‖x‖
‖x‖

‖I‖ “ 1 “ ‖I‖
∥∥I´1

∥∥ ,
which proves that the bound is indeed sharp. This motivates the following def-

inition.

Definition 6.26: Let A P Cnˆn and ‖.‖a an induced operator norm

κapAq :“ ‖A‖a
∥∥A´1

∥∥
a

denotes the a-condition number of A.

Lemma 6.27: For any induced operator norm ‖.‖a it holds

κapAq ě κapIq “ 1

6.2. Linear Operators, Operator and Matrix Norms 129

Proof.
κapIq “ ‖I‖a

∥∥I´1
∥∥
a
“ 1 “ ‖I‖a “

∥∥AA´1
∥∥
a

Lemma 6.13

ď ‖A‖a
∥∥A´1

∥∥
a
“ κapAq

In the following we will, for ease of notation, leave out the index a if a property
holds for all possible values of a.

Theorem 6.28: LetA P Rnˆn, b P Rn. Let x be the exact solution ofAx “
b and x `∆x the exact solution of the perturbed Apx `∆xq “ b `∆b.
Then

‖∆x‖
‖x‖

ď κpAq
‖∆b‖
‖b‖

.

Theorem 6.29: Let Ax “ b, as in Theorem 6.28. Moreover define the
error ek :“ A´1b ´ xk, and the residual rk :“ b ´ Axk in step k of an
iterative solver for Ax “ b. It holds:

1

κpAq

‖rk‖
‖r0‖

ď
‖ek‖
‖e0‖

ď κpAq
‖rk‖
‖r0‖

ď κpAq2
‖ek‖
‖e0‖

. (6.3)

Proof. Note
‖rk‖ “ ‖b´Axk‖ “

∥∥ApA´1b´ xkq
∥∥ “ ‖Aek‖ ď ‖A‖ ‖ek‖

and analogously

‖ek‖ “
∥∥A´1b´ xk

∥∥ ď ∥∥A´1
∥∥ ‖rk‖

Thus

1

κpAq

‖rk‖
‖r0‖

“
1

‖A‖ ‖A´1‖
‖rk‖
‖r0‖

ď
1

‖A‖
‖rk‖

‖A´1r0‖
“

1

‖A‖
‖Aek‖
‖e0‖

ď
‖ek‖
‖e0‖

.

This proves the leftmost inequality in (6.3). The others can be shown similarly.

6.2.3 Some Remarks on κ2pAq

Theorem 6.30: Let A P Rnˆn. There exist orthogonal matrices U, V P

130 Chapter 6. Basic Operations, Formats and Matrix-Norms

Rnˆn such that

UTAV “

¨

˚

˝

σ1 0
. . .

0 σn

˛

‹

‚

(6.4)

where 0 ď σn ď ¨ ¨ ¨ ď σ1. For i “ 1, . . . , n we further have

detpATA´ σ2
i Iq “ 0 (6.5)

i.e. σ2
i “ λi with λi P ΛpATAq.

Proof. ATA is symmetric and positive semidefinite, so there exists V P Rnˆn,
such that

VTATAV “ diagpλ1, . . . , λnq

where λ1 ě ¨ ¨ ¨ ě λn ě 0. Thus σi “
?
λi is well defined in Theorem 6.30

and (6.5) follows from Corollary 6.24. For (6.4) we define U “ AVD´1
, where

D “ diagpσ1, . . . , σnq. Since we have

UTU “ D´TVTATAVD´1 “ D´1 diagpλ1, . . . , λnqD
´1 “ I

U is ortogonal and

UTAV “ D´TVTATAV “ D´1 diagpλiq “ D

In addition for invertible A we have σn ą 0 and λn ą 0.

Definition 6.31: The σi in Theorem 6.30 are called singular values of A.
The corresponding columns in U , V are called the i-th left/right singular
vectors.

Now from

sup
x ­“0

‖Ax‖2
2

‖x‖2
2

“ sup
x ­“0

pAx,Axq2
px, xq2

“ sup
x ­“0

xTATAx

xTx

V reg.
“ sup

V x ­“0

xTVTATAV x

xTVTV x

U,V orth.
“ sup

x ­“0

xTVTATUUTAV x

xTx
“ sup

x ­“0

xTDTDx

xTx
“ σ2

1,

we analogously find for the infimum

inf
x ­“0

‖Ax‖2

‖x‖2

“ σn.

6.3. Matrix Storage Formats 131

Further we have

UTAV “ diagpσ1, . . . , σnq ,

and

VTA´1U “ diag

ˆ

1

σ1
, . . . ,

1

σn

˙

and thus ‖A‖2 “ σ1 and
∥∥A´1

∥∥
2
“ 1

σn
, which proves the following Corollary.

Corollary 6.32: Let A P Rnˆn invertible, σ1, σn its largest and smallest
singular values, then we have

κ2pAq “
σ1

σn

If A is in addition normal and λ1 and λn are its largest and smallest mag-
nitude eigenvalues, then we also have

κ2pAq “
|λ1|
|λn|

Here the second part uses the fact that A P Cnˆn normal guarantees that
DU P Cnˆn unitary, such that U˚AU is diagonal (compare, e.g., [4, Corollary
7.1.4]).

Definition 6.33: (compare Theorem 6.6)

‖.‖a , ‖.‖b vector norms on Rn. The condition numbers κa, κb are calledequivalent if one can find α, β ą 0 such that

ακapAq ď κbpAq ď βκapAq @A P Rnˆn invertible

The equivalence constants α and β coincide with the constants α, β in Theo-
rem 6.6.

6.3 Matrix Storage Formats

In this section we will introduce different ways of storing matrices in C data

structures. Depending on the type of matrix, judged by the number of non-zero

entries, we apply different techniques. The varying suggested storage schemes

will be demonstrated using the example matrix

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

.

132 Chapter 6. Basic Operations, Formats and Matrix-Norms

6.3.1 Dense Matrices

Definition 6.34: Amatrix is called dense, or densely populated if essentially
all its entries are non-zero.

Dense matrices should be stored as some storage type that resembles a 2d

array.

2d Arrays in C We have seen this in Chapter 2. In principle for the C program-

ming language two definitions of 2d arrays are available:

• double A[5][10] (static array),

• double **A + malloc() (dynamic array).

Both versions result inA being a 2d array. In both cases it is stored “rowmajor”,
i.e., the order of elements follows the model:

Differences of Static and Dynamic 2d Array in C

i) A static array in C is essentially one big row vector:

double A[5][10]

a00, . . . , a09 a10, . . . , a19 a20, . . . , a29 a30, . . . , a39 a40, . . .

ii) For a dynamic array the rows may be stored somewhere (possibly) not

consecutively arranged

double **A;

a0˚

a1˚

a2˚

a3˚

.

.

.

a00, . . . , a09

a10, . . . , a19

a20, . . . , a29

a30, . . . , a39

Option i) is only usable when size is known a priori.

6.3. Matrix Storage Formats 133

Option ii) is more flexible, but destroys data locality. An advantage of this for-

mat, however, is easy swapping of rows, since no data needs to be copied, but

only pointers are rearranged.

2d Arrays in Fortran Section 6.4 introduces basic mathematical / linear alge-

bra operations based on Fortran 77/90 implementations.

Static Fortran arrays (all arrays in Fortran 77) are stored “column major”, i.e.,

a00, . . . , an0 a01, . . . , an1 a02, . . . , an2 a03, . . . , an3 a04, . . .

This behavior can be implemented as a 1d array with index transformation in

C, as well. To this end we introduce an important expression that will play an

even more important role in Section 6.4, again.

Definition 6.35: The distance between the beginning of 2 subsequent

columns in a 2d array counted in the number of elements, is called the

leading dimension (LD) of the array.
ñ akl“̂Arl ¨ LD ` ks

In Fortran 77 this behavior is already part of the language definition. The ex-

pression ApLD, :q does this mapping automatically.

Advantages:

• Data locality is enforced also for dynamic arrays since the single row/col-

umn pointers can no longer be scattered around the main memory.

• More importantly, the array is now stored in Fortran 77 compliant col-

umn major format and can thus be passed directly to (optimized) Fortran

libraries.

Basic Object Oriented Design Although C does not directly support object

oriented programming, structures and functions on structures can be used to

mimic the object oriented behavior and increase code efficiency.

134 Chapter 6. Basic Operations, Formats and Matrix-Norms

struct my_matrix_st{
INT cols;
INT rows;
INT LD;

double *values;

char structure;
};

Thereby, INT can either be int or long depending on the application and, if
Fortran libraries are used, the default integer size in Fortran. Typically, this is

realized by a preprocessor define. To use 32-bit integers, being the default in
Fortran, we use

#define INT int;

If 64-bit integers are required we set INT using

#define INT long;

Remark 6.36: If a double precision matrix needs more than 16GB mem-

ory and Fortran libraries, like BLAS and LAPACK, should be used to operate

on this matrix, it is mandatory to use 64 bit integers in both C and Fortran.

Note that due to the non-existence of Fortran unsigned integer types we

also use the signed types int and long in C to avoid conflicts when
passing data to Fortran routines.

The matrix A would thus lead to A.cols“ 4, A.rows“ 4, A.LD“ 4 and

A.values= 1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

The structure entry in this case could be NULL to indicate, that the matrix
is not specially structured. In order to better understand the value of the lead-

ing dimension concept, consider we want to manipulate the 2 ˆ 2 sub-matrix
starting in the (2,2)-position in A, i.e., the matrix

B “

„

3 4
5 0



.

The corresponding values would then be B.cols“ 2, B.rows“ 2, B.LD“ 4,
again B.structure“NULL and the B.values pointer would be set to the
A.values[5]. This way we know that in B.values the entry with value 4 is
4 (B.LD) positions ahead of the one where the 3 is stored.

6.3. Matrix Storage Formats 135

Tiled Matrix Storage In Chapter 7, we will see that it is essential to work on

small tiles covering the matrix to get optimal performance for several opera-

tions. Therefore, if the matrix is large it becomes mandatory to store it in this

style already. This fact will become even more important when multi– or many-

core considerations come into play. In order to have an easy access to the tiles

and ensure that the tiles are small matices that can be handled using existing

software, we adapt the above storage structure a bit:

struct tiled_matrix_st{
INT cols;
INT rows;

INT Tcols;
INT Trows;
INT Tsize;

double *tiles;

char structure;
};

Let us revisit the example matrixA. As before we have A.cols“ 4, A.rows“
4. Consider the case of a tile size A.Tsize“ 2, that means, also, A.Tcols“ 2,
A.Trows“ 2, and

A.tiles= 1 2
0 3

0 5
0 0

0 0
4 0

0 6
7 0

Note that this is a very simplified representation of A.tiles, that is supposed
to illustrate the priciple. The actual list is a static or dynamic array of adresses

of small tile matrices. For the single tiles the same considerations as for the

2d array above hold. Again a Fortran style storage should be preferred if high

performance libraries in Fortran are aimed.

6.3.2 Sparse Matrices

Definition 6.37:We call a matrix A P Rnˆn or A P Cnˆn sparse if only a
few entries of A per row or column are non-zero, in average.

Precisely, we want A to be such that storing A uses Opnq storage and
multiplication with A is performed inOpnq effort.

Both conditions boil down to the number of non-zero entries in A (nnzpAq)
beingOpnq. Several formats for storing sparse matrices exist. Some important
ones are introduced below. They all follow the same fundamental principle.

136 Chapter 6. Basic Operations, Formats and Matrix-Norms

Basic idea: In order to save memory we store “only” the non-zero entries and

neglect the zeros.

Coordinate Storage (COO)

StoresA in 3 vectors of length nnzpAq for entry values, row indices, and column
indices:

. . .vals
0 nnz´1

(float, double)

. . .rows
0 nnz´1

(INT)

. . .cols
0 nnz´1

(INT)

Advantages:

• easy to implement

• easy addition of new entries

• easy elementwise access

Drawbacks:

• non local memory access

• (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the

storage for the matrix Amight look like

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

which is using C indexing starting at 0 to avoid index shifts in, e.g., matrix vector

product implementations, where the indices in the vector are C, i.e., zero based.

Remark 6.38: The coordinate storage format is, e.g., the basis of the sparse

matrix version of the Matrix Market
a
file exchange format.

ahttp://math.nist.gov/MatrixMarket/

http://math.nist.gov/MatrixMarket/

6.3. Matrix Storage Formats 137

Compressed Sparse Row Storage (CSR/CRS)

As above the format uses three vectors to store the data. Two vectors vals and
cols store the entry values and column indices. The third vector holding the
row indices (rows) stores, where the corresponding row starts in the vectors
vals and cols. Additionally, the last entry stores the number of non-zero
entries nnzpAq. Not that, since the start of the first row is evident, the first entry
is actually not needed, but it simplifies implementations as discussed below.

. . .vals
0 nnz´1

(float, double)

. . .cols
0 nnz´1

(INT)

. . .rows
0 n

(INT)

Advantages:

• optimal storage requirements

• can exploit BLAS (Section 6.4) in per row operations

• allows multithreading

Drawbacks:

• non local memory access due to indirect indexing

• (load balancing problem in threaded implementations due to different

row lengths)

Remark 6.39: An equivalent format swapping the roles of row and col-

umn pointers in the above, is used, e.g., in MATLAB. It is called compressed
sparse column storage (CSC/CCS).

As noted above, the first entry in the rows pointer actually contains redundant
information, since it is clear that the corresponding row starts at the first posi-

tion in both other arrays. However, most implementations still use the version

including the redundant value since then loops running over all entries in a row

can simply be written as something like

for (j = rowptr [i] ; j < rowptr[i+1]; j++) {...}

and the first and last rows do not need any special treatment.

The matrix A in CSR format looks as follows:

138 Chapter 6. Basic Operations, Formats and Matrix-Norms

1 2 3 4 5 6 7vals

0 1 1 2 1 3 2cols

0 2 4 6 7rows

Here again we have used zero based indexing of columns as usual in C to avoid

index shifts.

Ellpack and Ellpack-R (ELLR)

This describes a format that was introduced as storage format specially tailored

for vector computers. Themain idea was to automatically balance the workload

and exploit data parallelism
1
. Let nr be themaximum row length. Ellpack stores

two 2d-arrays vals and cols with size n ˆ nr. The Ellpack-R (ELLR) format
adds an additional vector storing the actual lengths of the single rows in order

to avoid processing of zero elements.

2

3

1

2

1

2

4

2

3

2

vals
(n ˆ nr)

cols
(n ˆ nr)

r
(n)

(float,
double)

(INT) (INT)

Advantages:

• constant per row length good load balancing properties

• (coalesced memory access (threads k, k+1 access consecutive memory

cells))

• (no synchronization required)

Drawbacks:

• The storage requirement is dominated by the longest row. ñ Possibly,

many zeros are stored.

1
Details will be introduced in Term 2.

6.3. Matrix Storage Formats 139

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

good bad

• The zeros are actually processed without leading to new information.

Advantage of the ELLR:

• The unnecessary processing of zeros is avoided.

Drawback of the ELLR:

• Additional n integers for storing of the row lengths are required.

• Load balancing features of the Ellpack format are no longer valid.

Also here we present the matrix A in the form of the stored data for this for-
mat. As in the examples above we again use the C/zero based indexing in the

cols array to avoid index shifts in loops using this matrix together with vectors
implemented as 1d arrays.

1 02 1

3 14 2

5 16 3

7 20 0

2

2

2

1

vals
(4 ˆ 2)

cols
(4 ˆ 2)

r
(4)

Remark 6.40: In the Nvidia® CUDA® toolkit for acceleration of codes us-
ing Nvidia® graphics adapters, or more precisely in the corresponding
cusparse library used for working with sparse matrices, a hybrid matrix

storage format is used. This format is using Ellpack for the short rows,

i.e., rows with only few non-zero entries. The exceptionally long rows that

are causing the storage problems in both Ellpack and ELLR, are stored and

treated separately.

6.3.3 Complex Matrices

In the above sections we have focused on the storage schemes for real ma-

trices. In the dense case, the structure for a possibly complex matrix could

simply be extended by a second double pointer ivals for storing the imagi-
nary parts and a second char that indicates whether the matrix is real or com-
plex, i.e., whether ivals contains useful values or is simply NULL. Since the

140 Chapter 6. Basic Operations, Formats and Matrix-Norms

information in the additional char is in principle redundant, this could also be
hidden in the structure field by using clever preprocessor defines indicating
the different structures in addition with the information whether they are real

or complex. However, this version breaks the property of the values field to

be directly passable to the Fortran call. Therefore, in the dense complex case,

the vals array should be double as large and real and imaginary parts of each
entry should be stored next to each other. This can, e.g., be achieved by using

the double complex, or float complex types from complex.h (in the
C99 standard). These are compatible with the Fortran types COMPLEX*16 and
COMPLEX*8=COMPLEX.

Similarly, for sparse matrices the vals field gets a twin ivals. Also, similar
to the above, special structures together with the indication of real or com-

plex data storage can be handled by an additional information member like

structure.

6.4 Linear Algebra Software

One of the most basic tasks in most applications in scientific computing is the

necessity to provide a basic set of routines dealing with the linear algebra sub-

tasks. Due to the foresight of a couple of developers in the mid 1970s this is

a rather easy task, as long as the involved linear operators can be represented

as dense matrices. Then, the related functions and solutions are usually well

approximated by simple vectors in Rn, or Cn. The basic operations that are
required in this case have been grouped in three classes, the so-called levels, in

the basic linear algebra subroutines (BLAS) library introduced in Section 6.4.1.

Those levels are

• basic vector operations,

• matrix-vector operations,

• and matrix-matrix operations.

Each of the levels is described in a separate paragraph below. The BLAS library

only contains the most basic operations like products and weighted sums. The

application of those operations inmore complex tasks, like linear system solves,

eigenvalue computation, matrix factorizations and similar calculations, is im-

plemented in a set of routines gathered in the linear algebra package (LAPACK).

We will briefly sketch its content in Section 6.4.2. There exist several implemen-

tations of these two libraries. The main reference implementation is hosted

at http://www.netlib.org. It provides source codes for both libraries

that can be compiled on basically any machine. Hardware manufacturers have

started early to provide their own implementations. The most well known one

http://www.netlib.org

6.4. Linear Algebra Software 141

today is probably the Intel
®
Math Kernel Library

2
(MKL) that contains optimized

versions of both libraries. Also AMD has an own implementation called AMD

Core Math Library
3
(ACML).

6.4.1 Basic Linear Algebra Subroutines (BLAS)

The basic linear algebra subroutines BLAS are sub-divided into three classes,

called levels, that are mainly standing for the involved memory and computa-

tion complexities, but also for their historic development.

• Level 1 described in [5]: Opnq operation onOpnq data

• Level 2 described in [2]: Opn2q operations onOpn2q data

• Level 3 described in [1]: Opn3q operations onOpn2q data

While, as mentioned above, the reference implementation is available in the

online library for numerical software at http://www.netlib.org/blas,
vendor versions are available from major hardware manufacturers:

• Intel
®
Math Kernel Library (MKL)

• AMD Core Math Library (ACML)

• Apple Accelerate framework

• IBM Engineering and Scientific Subroutines Library (ESSL)

• ¨ ¨ ¨

BLAS has a Fortran induced naming scheme: (Level 1)
4

cblas_
looomooon

X XXXX

prefix datatype operation

Data types (allowed specifiers)

• s— single precision real

• c— single precision complex

• d— double precision real

• z— double precision complex

2http://software.intel.com/en-us/intel-mkl/
3http://developer.amd.com/tools/cpu-development/

amd-core-math-library-acml/
4
We base our presentation on the prefix used, e.g., in the Apple Accelerate framework.

http://www.netlib.org/blas
http://software.intel.com/en-us/intel-mkl/
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml/
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml/

142 Chapter 6. Basic Operations, Formats and Matrix-Norms

Operations (examples)

• axpy y Ð αx` y

• dot r Ð xTy

• nrm2 r Ð ‖x‖2 “
?
xTx

• asum r Ð ‖x‖1 “
ř

i
|xi|

Example 6.41: cblas_daxpy double precision real version of y Ð ax ` y in
the C wrapped format.

The prefix is usually only needed in C versions. It is empty for calling the F77

versions (compare also Section 2.11).

Levels 2 and 3 additionally respect/exploit matrix structures and indicate them

in the correspndign function names:

cblas_
looomooon

X XX XXX

prefix datatype structure operations

Possible values for the structure placeholder are:

GE general GB general banded

SY symmetric SB symmetric banded SP symmetric packed

HE hermitian HB hermitian banded HP hermitian packed

TR triangular TB triangular banded TP triangular packed

Typical arguments For triangular matrix operations the type of triangular

structure is controlled by the argument UPLO. It is taking character values ’L’,
’U’ for lower or upper triangular, respectively.

The operand order (e.g., decision about left or right multiplication) is steered by

the SIDE arguments ’L’ or ’R’.

For triangular matrices the DIAG argument specifies whether they have a unit
diagonal ’U’ or not ’N’.

Transposition is decided via TRANS argument taking either of the following val-
ues:

’N’ non transposed X
’T’ transposed XT

’C’ conjugate transposed XH

6.4. Linear Algebra Software 143

Remark 6.42: Note that ’H’ is not defined by the standard and not under-
stood by the general implementations. Although some implementations

may support it, it should therefore never be used.

As two examples, we report on the double precision and double precision com-

plex matrix-matrix-product routines that perform the operation

C Ð αoppAq ¨ oppBq ` βC,

where op(.) refers to the transposition types above. The Fortran interfaces and

data types are

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
REAL*8 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
REAL*8 A(LDA,*),B(LDB,*),C(LDC,*)

for the real case and

SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
COMPLEX*16 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)

for the complex one. Thus, the corresponding C prototypes look like

void dgemm_(char *transa, char *transb, int *m, int *n, int
*k,
double *alpha, double *A, int *lda,
double *B, int *ldb,
double *beta, double *C, int *ldc);

for the real and

void zgemm_(char *transa, char *transb, int *m, int *n, int
*k,
double complex *alpha, double complex *A, int *lda,
double complex *B, int *ldb,
double complex *beta, double complex *C, int *ldc);

for the complex case.

144 Chapter 6. Basic Operations, Formats and Matrix-Norms

Vector Operations (BLAS level 1)

• scaling and addition: αx, αx` y,

• inner products: x˚y,

• norm expressions: ‖x‖2, ‖x‖1,‖x‖8.

Matrix-Vector Operations (BLAS level 2)

Let F P tC,Ru, α, β P F, A P Fmˆn, x, y P Fn:

• scaling and addition: αAx` βy, αA˚x` βy,

• rank-1/2 updates: A` αxy˚, A` αxx˚, A` αxy˚ ` βyx˚,

• triangular solves: αT´1x, αT´˚x, T triangular.

Matrix-Matrix Operations (BLAS level 3)

• αAB ` βC , αAB˚ ` βC , αA˚B˚ ` βC ,

• rank k updates: αAA˚ ` βC , αA˚A` βC

• rank 2k updates: αA˚B ` βC , αB˚A` βC

• triangular multi-solves: αT´1C , αT´˚C , T triangular.

Idea Behind the Level 3 Performance Gain The performance of Level 3 op-

erations increases by block sub-structuring the operations. The special case

C Ð C `ABT
of the above GEMM operation, evaluated in a simple 2ˆ 2 block

structured form becomes

„

C11 C12

C21 C22



`

„

A11

A21



“

BT
11 B

T
21

‰

,

which allows to compute the single blocks in the result as:

C11 Ð C11 `A11B
T
11, C12 Ð C12 `A12B

T
21,

C21 Ð C21 `A21B
T
11, C22 Ð C22 `A21B

T
21.

Analogous formulas result from further refinement of the block-subdivision.

Optimal block sizes depend on the processors cache hierarchy (see Chapter 5).

They are intended to keep data in the caches as long as they are required. This

way the implementation aims at minimizing the transfers of single data ele-

ments between cache and main memory. This is paying off since each data

element is involved Opnq-times in the operation. Also the order of operations
during calculations can influence the amount of data copied per time unit.

6.4. Linear Algebra Software 145

Tuning is done by exploiting knowledge about the hardware specifications in

vendor implementations (MKL, ACML, but also OpenBLAS), or by optimizing the

block sizes at compilation time as in ATLAS
5
(automatically tuned linear algebra

subroutines).

6.4.2 Linear Algebra PACKage (LAPACK)

LAPACK is a Fortran 90 based library that provides routines for

• solution of linear systems of equations,

• least squares solutions of linear systems of equations,

• solutions of eigenvalue problems,

• and singular value problems.

The associated matrix factorizations that are underlying these algorithms are

also provided, as are related operations (e.g., reordering of Schur factorizations

to achieve other orderings of the eigenvalues.)

LAPACK was first released Feb 1992. The latest version is 3.8.0 and was pub-

lished November 12, 2017. The library is in conception an add-on to BLAS, es-

pecially BLAS Level 3. It uses the appropriate BLAS routines wherever possible.

That especially means that LAPACK supports the same data types as BLAS and

uses, respectively, exploits the samematrix structures as described for the BLAS

above.

Just like for the BLAS, the reference implementation is available at http://
netlib.org/lapack.

Optimized vendor versions are for example included in:

• Intel
®
MKL

• AMD ACML

• Apple Accelerate framework (ATLAS based)

The automatically tuned linear algebra subroutines (ATLAS) also cover the op-

erations defined in LAPACK.

LAPACK routines are divided in 3 Categories

i) auxiliary routines

ii) computational routines

iii) driver routines

5http://math-atlas.sourceforge.net/

http://netlib.org/lapack
http://netlib.org/lapack
http://math-atlas.sourceforge.net/

146 Chapter 6. Basic Operations, Formats and Matrix-Norms

The general naming scheme follows the BLAS Level-2/3 approach.

• auxiliary routines: these routines in LAPACK provide common helper func-

tionality: scaling, reordering, machine specifications. Examples are:

– disnan, sisnan— check the argument for NaN

– dlamch, slamch— retrieve machine parameters, i.e., getM, eps,
base, length of mantissa, emin, emax

– cerbla— error handling in case of invalid inputs

• computational routines: perform simple specific tasks

– factorizations: LU , LL˚, LDL˚,QR, LQ, . . .

– eigenvalue and singular value computations

– recovery of eigenvectors, Schur vector

• driver routines: these routines call a set of computational routines to

solve linear algebra problems

– linear equations: Ax “ b

– linear least squares: min
x

‖b´Ax‖2

– generalized linear least squares

– eigenvalue decompositions

– generalized eigenvalue/singular value decompositions

Related software:

• CLAPACK (C wrapper to LAPACK)

http://www.netlib.org/clapack/

• ScaLAPACK (distributed parallel version)

http://www.netlib.org/scalapack/

• PLASMA (Parallel Linear Algebra for Scalable Multicore Architectures)

http://icl.cs.utk.edu/plasma/software/

• MAGMA (Matrix Algebra on GPU and Multicore Architectures)

http://icl.cs.utk.edu/magma/

• LAPACK95 (Fortran 95)

http://www.netlib.org/lapack95/

• JLAPACK (rather outdated Fortran-Java LAPACK)

• lapack++ (native C++ implementation last update in 2000)

http://math.nist.gov/lapack++/

http://www.netlib.org/clapack/
http://www.netlib.org/scalapack/
http://icl.cs.utk.edu/plasma/software/
http://icl.cs.utk.edu/magma/
http://www.netlib.org/lapack95/
http://math.nist.gov/lapack++/

6.4. Linear Algebra Software 147

6.4.3 SuiteSparse

SuiteSparse is a collection of software packages/tools related to sparse factor-

izations (LU, Cholesky and QR) and direct solution of sparse linear systems. The

UMFPACK tool from the collection is working behind the application of back-

slash to sparse linear systems in MATLAB. The main authors are T. A. Davis and

his team at the Texas A&M University
6
.

6.4.4 ITPACK

This package is intended for solving large sparse linear systems by iterative

methods. It is hosted at http://www.netlib.org/itpack.

The main library consists of three sub-packages for

• single precision,

• double precision,

• vector machines.

It uses CG, PCG, Chebyschev acceleration and generalized CG for systems with

non-symmetric matrices.

The development of this Fortran based package takes place at Center for Nu-

merical Analysis at University of Texas at Austin.

6.4.5 Trilinos

“Trilinos is a collection of open source software libraries intended a building

blocks for the development of scientific applications”.
7

Trilinos is developed at the Sandia National Labs. The current version is 12.12.1

from Sept. 2016. The package is licensed under the terms of the LGPL
8
and

covers:

• construction and usage of sparse and dense matrices, graphs and vec-

tors.

• Iterative and direct solution of linear systems

• parallel multilevel and algebraic preconditioning

• and many more . . .

6http://faculty.cse.tamu.edu/davis/suitesparse.html
7http://en.wikipedia.org/wiki/Trilinos
8
see, e.g., http://opensource.org/licenses/lgpl-license

http://www.netlib.org/itpack
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://en.wikipedia.org/wiki/Trilinos
http://opensource.org/licenses/lgpl-license

148 Chapter 6. Basic Operations, Formats and Matrix-Norms

The basic library is written in C++ with Fortran kernels. Moreover Python bind-

ings are provided via SWIG. Trilinos can be found online at:

http://trilinos.org

6.4.6 Native Packages for other Programming Environments and

Languages

• C++

– boost — supports threading as well

http://www.boost.org/

– MTL — The Matrix Template Library

http://www.simunova.com/en/node/24

* The library uses boost and BLAS in kernels.

* A single computer version available as OpenSource.

* MTL4 has distributed computing capabilities, but those are con-

nected to a payed license release.

• Python

– NumPy — provides proper n-d array for Python

http://www.numpy.org/

– SciPy— amongst many others provides LAPACK functionality (calling

F90 LAPACK)

http://www.scipy.org/

• Java

– JaMa — Java Matrix Package provides basic linear algebra in Java

http://math.nist.gov/javanumerics/jama/

– JaMPack — same as JaMa

– maintenance questionable: latest release Nov 2012, previous ver-

sion July 2005.

Bibliography

[1] J. J. DONGARRA, J. D. CROZ, I. S. DUFF, AND S. HAMMARLING, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[2] J. J. DONGARRA, J. D. CROZ, S. HAMMARLING, AND R. J. HANSON, An extended set
of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Software,
14 (1988), pp. 1–17.

http://trilinos.org
http://www.boost.org/
http://www.simunova.com/en/node/24
http://www.numpy.org/
http://www.scipy.org/
http://math.nist.gov/javanumerics/jama/

Bibliography 149

[3] M. GATES, Routines for BLAS and LAPACK 3.3.1. http://web.eecs.utk.
edu/~mgates3/docs/lapack.html, Feb. 2012. last visited 2015-03-
25.

[4] G. H. GOLUB AND C. F. VAN LOAN,Matrix Computations, Johns Hopkins Univer-
sity Press, Baltimore, third ed., 1996.

[5] C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, Basic linear algebra subpro-
grams for FORTRAN usage, ACM Trans. Math. Software, 5 (1979), pp. 303–323.

http://web.eecs.utk.edu/~mgates3/docs/lapack.html
http://web.eecs.utk.edu/~mgates3/docs/lapack.html

150 Chapter 6. Basic Operations, Formats and Matrix-Norms

An algorithm must be seen to be believed.

Donald Ervin Knuth

CHAPTER7

The Solution of Moderate Size Dense Linear Systems

Contents

7.1 Important Preliminaries 151

7.2 Cache/BLAS Exploitation 154

7.2.1 Triangular System 154

7.2.2 Triangular Systems with Multiple Right Hand Sides

and BLAS Level-3 formulation 155

7.2.3 BLAS Level-3 based Gaussian Elimination 156

7.3 Iterative Refinement . 157

Bibliography . 159

7.1 Important Preliminaries

In this section we collect some facts that should be known fromNumerical Anal-

ysis I

Theorem 7.1 (LU decomposition): LetA P Rnˆn and for k “ 1, . . . , n´ 1,
Ak “ Ap1 : k, 1 : kq P Rkˆk the leading k ˆ k sub-matrix.

i) If @k “ 1, . . . , n´ 1 it holds detpAkq ­“ 0, then DL,U P Rnˆn such
that

A “ LU

151

152 Chapter 7. The Solution of Moderate Size Dense Linear Systems

with

L “ @
@

1

1

@@ (unit lower triangular)

and

U “ @
@
@

(upper triangular).

ii) If A “ LU exists and A is regular then the LU factorization is
unique.

iii) If A “ LU as in (ii) then

detpAq “ u11 ¨ ¨ ¨ ¨ ¨ unn

Proof. homework.

Note that the simple regular 2ˆ2matrixA “

„

0 1
1 0



does not allow for an LU

decomposition, but applying a single row permutation we get:

Ã :“ PA “

„

1 0
0 1



, where P “

„

0 1
1 0



Ã has an LU decomposition by Theorem 7.1. This observation motivates the
following theorem.

Theorem 7.2: Let A P Rnˆn regular. There exists a permutation matrix
P P Rnˆn such that

PA “ LU

for L,U as in Theorem 7.1.

idea of the proof. Exploit properties of Gaussian elimination procedure, that de-
fines the L and U matrices, and permutation matrices. The full proof can be
found, e.g. in [1, 3]

Gaussian elimination is used to compute the L and U matrices. It consists of
a triple loop procedure. The straight forward row-by-row elimination version

7.1. Important Preliminaries 153

reads:

Algorithm 7.1: Gaussian Elimination “kij”-formulation

Input: A P Rnˆn
Output: A overwritten by L,U

1 for k “ 1 : n´ 1 do
2 Apk ` 1 : n, kq “ Apk ` 1 : n, kq{Apk, kq;
3 for i “ k ` 1 : n do
4 for j “ k ` 1 : n do
5 Api, jq “ Api, jq ´Api, kqApk, jq;

There are 5 other versions kji, ikj, ijk, jik, jki. The jki version is sometimes
called left looking LU. It will become important for sparse matrices in Chapter 8.

Clever data arrangement (vector formulation) in kij-version leads to the so
called outer product Gaussian Elimination:

Algorithm 7.2: Outer product Gaussian Elimination

Input: A P Rnˆn fulfilling Theorem 7.1
Output: L,U P Rnˆn such that A “ LU as in Theorem 7.1 A is

overwritten by the factors.

1 for k “ 1 : n´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk, kq;
4 Aprows, rowsq “ Aprows, rowsq ´Aprows, kqApk, rowsq;

Algorithm 7.2 is a rank-1 update, i.e., BLAS Level 2 operation formulation of the

Gaussian elimination process. It involves
2
3n

3
flops. Solving Ax “ b for x P Rn

given A P Rnˆn, b P Rn now is performed as in

Algorithm 7.3: Linear System solver using Gaussian Elimination and for-

ward/backward substitution

Input: A P Rnˆn, b P Rn
Output: x P Rn

1 Compute L,U as in Theorem 7.1, such that
A “ LU (e.g. via Algorithm 7.2);

2 Solve Ly “ b by forward substitution (e.g., using Algorithm 7.5);
3 Solve Ux “ y by backward substitution;

154 Chapter 7. The Solution of Moderate Size Dense Linear Systems

Algorithm 7.4: Forward Substitution (Row Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 bp1q “ bp1q
Lp1,1q ;

2 for i “ 2 : n do

3 bpiq “ bpiq´Lpi,1:i´1qbp1:i´1q
Lpi,iq

7.2 Cache/BLAS Exploitation

7.2.1 Triangular System

Consider

a11x1 “ b1,

a21x1 ` a22x2 “ b2.

In case a11 ­“ 0 and a22 ­“ 0 this leads to

x1 “
b1
a11

,

x2 “
b2 ´ a11x1

a22
“
b2 ´

a21
a11
b1

a22

In the i-th equation in a system Lx “ b in Algorithm 7.3 we find:

xi “

bi ´
i´1
ř

j“1
lijxj

lii

For the computation of all xi we find a complexity of n
2
flops.

An accuracy discussion can be found in [2]. It states that the rounding error in

each element of the solution vector is smaller than n ¨ u.

Note that row-wise access to L is “bad” in column major storage, since it de-
stroys memory locality. Algorithm 7.5 presents a column major storage ori-

ented version of the procedure.

Note further that the backward substitution can be derived completely analo-

gously.

7.2. Cache/BLAS Exploitation 155

Algorithm 7.5: Forward Substitution (Column Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 for j “ 1 : n´ 1 do

2 bpjq “ bpjq
Lpj,jq ;

3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;

4 bpnq “ bpnq
Lpn,nq ;

Algorithm 7.6: Block Forward Substitution

Input: L,B as in 7.1
Output: X solving LX “ B

1 for j “ 1 : N do
2 Solve LjjXj “ Bj forXj ;

3 for i “ j ` 1 : N do
4 Bi “ Bi ´ LijXj

7.2.2 Triangular Systems with Multiple Right Hand Sides and BLAS

Level-3 formulation

Let B P Rnˆq leading to a family of linear systems LX “ B withX P Rnˆq . L
is (unit) lower triangular and we consider the block substructure as in

»

—

—

—

–

L11 0 ¨ ¨ ¨ 0
L21 L22 ¨ ¨ ¨ 0
.
.
.

.

.

.
. . .

.

.

.

LN1 LN2 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X1

X2
.
.
.

XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B1

B2
.
.
.

BN

fi

ffi

ffi

ffi

fl

(7.1)

Now we apply Algorithm 7.5 with the Lp1, 1q element replaced by the L11 block

to get

»

—

—

—

–

L22 0 ¨ ¨ ¨ 0
L32 L33 ¨ ¨ ¨ 0
.
.
.

.

.

.
. . .

.

.

.

LN2 LN3 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X2

X3
.
.
.

XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B2 ´ L21X1

B3 ´ L31X1
.
.
.

BN ´ LN1X1

fi

ffi

ffi

ffi

fl

after computingX1 fromL11X1 “ B1 by Algorithm 7.5. Continuing withL22X2 “

B̃2 and so forth, we derive the block forward elimination scheme given in Algo-

rithm 7.6

We can optimize the block sizes in (7.1) such that we get optimal performance

out of the BLAS Level 3 block operations.

156 Chapter 7. The Solution of Moderate Size Dense Linear Systems

Again the backward substitution case allows for the analogous approach. This

allows to accelerate the last two steps in Algorithm 7.3 by fast BLAS Level 3

operations.

7.2.3 BLAS Level-3 based Gaussian Elimination

The above raises the obvious question:

Can we do something similar for the Gaussian elimination process?

In fact we can. The following derivation will provide the block outer product

formulation of the outer product Gaussian elimination in Algorithm 7.2. To this

end, let A P Rnˆn with partitioning

A “

„

A11 A12

A21 A22



(7.2)

Here A11 P Rrˆr , A12 P Rpn´rqˆr , A21 P Rrˆpn´rq, A22 P Rpn´rqˆpn´rq, for a
blocking parameter 1 ď r ď n. Now we can computeA11 “ L11U11, e.g., using

Algorithm 7.2 and solve the triangular systems

L11U12 “ A12 for U12,

L21U11 “ A21 for L21.

Then it follows:

„

A11 A12

A21 A22



“

„

L11 0

L21 Ã22

 „

U11 U12

0 In´r



,

where

Ã22 “ A22 ´ L21U12. (7.3)

Now if Ã22 “ L22U22 were the LU of the updated p2, 2q block, then

„

A11 A12

A21 A22



“

„

L11 0
L21 L22

 „

U11 U12

0 U22



Since we did not post special assumptions on the matrix A in Equation (7.2)
other than the existence of the LU-decomposition, we can proceed with Ã22 as

above. This leads to the procedure summarized in Algorithm 7.7.

Algorithm 7.7 requires
2
3n

3
flops, just like Algorithm 7.2 but the rank-r update

is a BLAS Level 3 operation, so optimizing the size of r according to our CPUs
cache hierarchy we can expect superior performance. However, forN “ n

r , [1]

shows that the fraction of BLAS Level 3 operations in Algorithm 7.7 is 1 ´ 1
N2 ;

and 1´ 1
N for the block-triangular solves. Note that this contradicts choosing r

as large as possible and requires an additional level of optimization.

7.3. Iterative Refinement 157

Algorithm 7.7: Panel Outer Product LU

Input: A P Rnˆn as in Theorem 7.1, r as above
Output: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 l “ minpn, k ` r ´ 1q;

4 Compute Apk : l, k : lq “ L̃Ũ via Algorithm 7.2;

5 Solve L̃Z “ Apk : l, l ` 1 : nq and store Z;

6 SolveWŨ “ Apl ` 1 : n, k : lq and storeW ;
7 Perform the rank-r update:

Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´WZ;
8 k “ l ` 1;

Algorithm 7.8: iterative refinement

Input: A P Rnˆn, b P Rn, x̂ an approximate solution
Output: x̂ a solution (approximation)

1 repeat

2 r “ b´Ax̂;
3 solve Ad “ r;
4 update x̂ “ x̂` d

5 until x̂ accurate enough;

7.3 Iterative Refinement

Iterative refinement is a fixed point type approach that seeks to improve the

computed result of a linear system solve. In the notation of Chapter 4 let x̂ be
the computed solution of Ax “ b. The iterative refinement process is summa-
rized in the Algorithm 7.8. A common application is the iterative refinement of

single precision results on a double precision architecture. This is, e.g., used in

connection with accelerator devices such as graphics processing units, that are

usually working a lot faster in single precision, than in double precision.

Motivation: Let r “ b´Ax̂ and d “ A´1r, x̃ “ x̂`d. Then in exact arithmetic
we have

Ax̃ “ Apx̂` dq “ Ax̂`Ad “ pb´ rq `AA´1r “ b´ r ` r “ b

Thus in exact arithmetic the updated x̂ in Algorithm 7.8 would be the exact
solution after 1 step.

The literature distinguishes mainly 2 approaches:

i) fixed precision refinement

158 Chapter 7. The Solution of Moderate Size Dense Linear Systems

ii) mixed precision refinement

In fixed precision refinement all steps in Algorithm 7.8 are computed in the

same precision (u).

For mixed precision refinement the residual r is computed in a higher precision
pûq. Classically û “ u2

, i.e., u corresponds to single precision, and û then stands
for double precision.

Notation: Let A P Rnˆn be a square matrix. The absolute value of A is de-
fined component-wise:

|A| “ p|aij |qi,j“1,...,n.

Under the assumption

pA`∆Aqx̂ “ b |∆A| ď uW (7.4)

for W non-negative depending on A, n, and u (but not on b), [2] proves the
following two theorems based on forward analysis:

Theorem 7.3 (Mixed Precision Refinement): LetAx “ b be a non-singular
linear system solvedwith amethod satisfying (7.4) and residuals in double

the working precision. Moreover

η “ u
∥∥|A´1| p|A| ` wq

∥∥
8

If η ă 1 ´ δ for δ large enough, then iterative refinement reduces the
forward error by approximately a factor of η at each stage until

‖x´ x̂‖8
‖x‖8

« u

Theorem 7.4 (Fixed Precision Refinement): Setting as in Theorem 7.3 but

with residual computation in working precision. The same reduction holds,

but with limit

‖x´ x̂‖8
‖x‖8

ď 2nu

∥∥|A´1||A||x|
∥∥
8

‖x‖8
loooooooomoooooooon

condpA,xq

(7.5)

Remark 7.5: • (7.5) is essentially the best we can expect in fixed pre-

cision.

• Note that the solver need not be of LU type and û is not limited to
u2
.

Bibliography 159

• When working in û “ u2
, i.e., system solves in single precision and

residual in double precision, one can reuse the LU decomposition
from the outer solve. That means the iterative refinement is of

Opn2q complexity, i.e., one order of magnitude cheaper than the

actual solve and the amount of data copied is reduced due to single

precision storage.

• Fixed precision iterative refinement may be used to stabilize unsta-

ble solvers forAx “ b, e.g.,LU “ PA computed with poor pivoting
(see [2, Section 12.2]).

• rule of thumb:

machine precision: 10´d “ u, κ8pAq « 10q k steps of mixed
precision refinement lead to approximatelyminpd, kpd´qqq correct
digits in x.

Convergence of iterative refinement from the splitting method point of

view: Splitting Methods: A “ B ` pA´Bq

ñ Ax “ bô B´1pB ` pA´Bqqx “ B´1b

ô pI ` pB´1A´ Iqqx “ B´1b

ô x` pB´1A´ Iqx “ B´1b

 xi`1 “ B´1b´ pB´1A´ Iqxi (*)

“ xi `B
´1 pb´Axiq

loooomoooon

ri
looooooomooooooon

di

IfB´1 “ pL̂Ûq
´1
this reflects a refinement of the LU . From (*) we immediately

find xi`1 “ B´1b`B´1pB ´Aq
loooooomoooooon

“:M

xi. As for the splitting methods in general, by

the Banach fixed point theorem we then have that the iteration converges ifM
is a contraction, i.e. ρpMq ă 1.

Bibliography

[1] G. H. GOLUB AND C. F. VAN LOAN,Matrix Computations, Johns Hopkins Univer-
sity Press, Baltimore, fourth ed., 2013.

[2] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM Publica-
tions, Philadelphia, PA, second ed., 2002.

[3] A. MEISTER, Numerik linearer Gleichungssysteme. Eine Einführung in moderne
Verfahren., Vieweg+Teubner, Wiesbaden, 4th revised ed. ed., 2011, https:
//doi.org/10.1007/978-3-8348-8100-7.

https://doi.org/10.1007/978-3-8348-8100-7
https://doi.org/10.1007/978-3-8348-8100-7

160 Chapter 7. The Solution of Moderate Size Dense Linear Systems

I would rather have today’s algorithms on yesterday’s computers

than vice versa.

Phillipe Toint

CHAPTER8

Solving Linear Systems With Sparse Matrices

Contents

8.1 Preconditioning . 164

8.1.1 Diagonal Preconditioning 164

8.1.2 Splitting Methods 165

8.1.3 Multigrid approaches 165

8.1.4 Incomplete Factorizations 165

8.1.5 Sparse Approximate Inverses (SPAI) 166

8.2 Krylov Subspaces and Projection Methods 166

8.3 Conjugate Gradients . 168

8.4 Direct Solvers for Sparse Symmetric Systems 170

8.4.1 The Elimination Graph Model for Symmetric Matri-

ces . 171

8.4.2 The filled graph G`pAq 172

8.4.3 Characterization of Fill-in 173

8.4.4 Heuristic Fill Reduction 174

8.4.5 Related Software 180

Bibliography . 180

Recall:

• sparse matrix: A P Rnˆn, such that y “ Ax can be computed in Opnq
complexity.

• storage:

161

162 Chapter 8. Solving Linear Systems With Sparse Matrices

– only non-zero entries are stored,

– indirect indexing is mandatory for minimal storage requirements,

– e.g., CSR (compressed sparse row storage, with C/zero based index-

ing)

»

—

–

1 2 0 0

0 3 4 0
0 5 0 6

0 0 7 0

fi

ffi

fl

Ñ

«

1 2 3 4 5 6 7
0 1 1 2 1 3 2
0 2 4 6 7

ff

values (double)

column indices (long)

row-pointers (long)

number of non-zeroes

Issues

“Cache” Indirect indexing requires the value, index and row-pointer vectors to

reside in the cache simultaneously for optimal performance.

Consider:

• 64 bit architecture

• in average 10 entries per row

• 4MB cache

• A P R24 000ˆ24 000

Required storage:
1

p24 000` 240 000` 240 000q ˆ 8 Bytes “ 504 000ˆ 8 Bytes

“ 4032 kBytes

That means we have 4096 ´ 4032 kBytes“ 64 kByte of cache left for
instructions in y “ Ax. In applications one easily wants to work with
n “ 106 . . . 108

, which on modern computers usually easily fits into RAM.

The execution speed of operations withA are thus strictly limited by data
transfer rate from the main memory to the caches.

“Fill in” Another important issuewith sparsematrices arises with direct solvers.

These require matrix factorizations. However, it can not be guaranteed

that the factors stay sparse if the matrix A is sparse. Usually the factors
get a certain amount of new entries. The new entries are referred to as

fill or fill-in. We will see more details on this phenomenon in Section 8.4.
1
neglecting the nnz entry for the sake of simpler numbers

163

Example 8.1 ((Fill-In)): The diagrams below show the non-zero en-

try distribution in A, L and U for A sparse and A “ LU .
A L U

worst case

best case

Definition 8.2 (pattern): Let A P Rnˆn be a matrix.
We call the set

PpAq “ tpi, jq : aij ­“ 0u

the pattern of A.
Furthermore, we define

PRpA, iq “ tj : aij ­“ 0u

as the pattern of the i-th row of A.

Definition 8.3 (structural rank): Let PpAq Ă N2
be a pattern of a matrix

A P Rnˆn. The number

rkSpAq “ maxtrankpBq : B P Rnˆn with PpBq “ PpAqu

is called the structural rank of A.
If rkSpAq ď n, then A is called structural rank deficient

Example 8.4:

A “

„

1 1
1 1



, C “

„

0 1
0 0



,

rkSpAq “ 2 ­“ 1 “ rankpAq , rkSpCq “ 1 “ rankpCq .

164 Chapter 8. Solving Linear Systems With Sparse Matrices

Remark 8.5: The structural rank of A is:

• a property related to the pattern PpAq,

• much cheaper to compute than the (numerical) rank,

• available via sprank() in MATLAB,

• an upper bound to the rank of A.

8.1 Preconditioning

In everything presented here, we will only use the so-called left preconditioning.

Other versions like right, or two sided preconditioning also exist. The ideas are

very similar there, therefore we restrict the presentation to the most simple

case.

Recall Lemma 6.17:

P P Cnˆn non-singular, A P Cnˆn, x, b P Cn

Ax “ bô PAx “ Pb

The matrix P can be used to lower the condition number for finding x. The
perfect candidate for such a matrix P is obviouslyA´1

, since then PA “ I and
κpPAq “ 1.

However, A´1
is not accessible and especially has even worse “fill in” restric-

tions than the factorizations. Good approximations to A´1
are thus required

that are:

• cheap to generate,

• easily and efficiently applicable,

• able to get stored with similar memory requirement as A.

P does not need to be a matrix, e.g., sometimes other (iterative) solvers are
used.

8.1.1 Diagonal Preconditioning

P´1 “ diagpAq

• also called Jacobi preconditioning

• very simple and cheap

• might improve certain problems, e.g., diagonal dominant systems

8.1. Preconditioning 165

• generally not sufficient

• more sophisticated variants use diagonal kˆ k (k ą 1) blocks or multiple
diagonals (e.g., tridiagonal preconditioning)

8.1.2 Splitting Methods

Recall Section 7.3. Set A “ B ` pA´Bq and define:

xi`1 “ B´1b`B´1pB ´Aq
loooooomoooooon

M

x.

If we can ensure ρpMq ă 1 ñ then by a fixed point argument we can guarantee
convergence.

Example 8.6: Two common examples of splitting methods are:

• B “ diagonal of A Jacobi method

• B “ lower triangle of A Gauß Seidel method

Splitting methods are often considered to be smoothers rather than precondi-

tioners. They mainly damp out high frequency parts of the error. Therefore, of-

ten they are used in combination with multigrid techniques in order to smooth

interpolation errors.

8.1.3 Multigrid approaches

If A was generated by a hierarchical approach (e.g., the finite element method
(FEM) with successive mesh refinement), the multiple layers (FEM grids) can

be used to successively restrict the current iterate of the outer iteration to the

coarsest grid/mesh. Then one gets a good solution there and performs inter-

polation to get back to the finest level.

Splitting methods are used to smooth out the high frequency interpolation er-

rors. If the hierarchy is unknown or unusable, algebraic approaches can be

used to generate the hierarchy from the connectivity graph of the matrix, i.e.,

the graph with nodes 1, . . . , n and edges from i to j if pi, jq P PpAq. Clusters
and subclusters of nodes then produce the required hierarchy.

8.1.4 Incomplete Factorizations

Computation of LU “ A is often infeasible due to fill-in.
Basic idea: ILU“̂ILUp0q.
Only allow entries in L,U corresponding to PpAq.

• usually only poor approximation

166 Chapter 8. Solving Linear Systems With Sparse Matrices

• variants allow:

– “levels of fill” (ILUpkq)

– fill-in that exceeds a drop tolerance (ILUpεq)

– adding dropped fill to the diagonal pMICq

8.1.5 Sparse Approximate Inverses (SPAI)

The basic idea of the sparse approximate inverse (SPAI) is to find thematrixM P

Rnˆn that best approximates A´1
among all matrices with PpMq “ PpAq, in

the sense

min
M

‖AM ´ I‖2
F “ min

M

n
ÿ

j“1

‖Amj ´ ej‖2
F

looooooooomooooooooon

n independent least squares problems

.

The SPAI preconditioner is especially attractive in parallel computing due to the

independent column wise computation.

In order to improve the approximation quality similar pattern extension consid-

erations as for the incomplete factorizations can be used.

In any case, only matrix vector products are required for the application of the

preconditioner.

8.2 Krylov Subspaces and Projection Methods

Definition 8.7: A P Cnˆn regular, b P Cn. A projection method for Ax “ b
is a procedure for approximation of x by xm P x0 `Km, which satisfies

pb´Axmq K Lm. (8.1)

Here, x0 P Cn is an arbitrary initial vector andKm, Lm arem-dimensional
subspaces of Cn.

Condition (8.1) represents orthogonality in the Euclidean sense.

In caseKm “ Lm, (8.1) is called Galerkin-condition and one has an orthog-onal projection method. In case Km ­“ Lm, (8.1) is called Petrov-Galerkin-condition and one has an oblique projection method.

8.2. Krylov Subspaces and Projection Methods 167

Definition 8.8: A P Cnˆn regular, y P Cn.

i) KmpA, yq “ spanty,Ay,A2y, . . . , Am´1yu is called them-th Krylov
subspace of A for a seed vector y.

ii) A projection method with Km “ KmpA, yq is called Krylov subspace(projection) method.

Definition 8.9 (minimal polynomial of A): Let pνpλq “
λ
ř

j“0
ajλ

j
. pν is

called minimal polynomial of A if ν P N is the smallest degree such that
pνpAq “ 0.

In exact arithmetic we get the exact solution withm “ ν, since

ν
ÿ

j“0

ajA
j “ 0 ô A

ν
ÿ

j“1

ajA
j´1 “ ´a0I.

Thus

A´1 “ ´
1

a0

ν
ÿ

j“1

ajA
j´1,

which, in turn, means

x “ A´1b “ ´
1

a0

ν
ÿ

j“1

ajA
j´1b P KνpA, bq.

Now we let x0 P Cn be the initial vector and r0 :“ b ´ Ax0 the correspond-

ing initial residual. Further, let Km “ KmpA, r0q, Lm be subspaces, and the
columns of Vm,Wm P Cnˆm bases of Km and Lm, respectively.

Then, for xm P x0`Km there exists a σm P Cm with xm “ x0`Vmσm and (8.1)
holds if and only if

ô 0 “WH
mpb´Apx0 ` Vmσmqq

ô 0 “WH
mpb´Ax0q ´W

H
mAVmσm

ôWH
mAVmσm “WH

mr0

ô σm “ pW
H
mAVmq

´1
WH
mr0.

Thus xm “ x0 ` VmpW
H
mAVmq

´1
WH
mr0

rm “ b´Axm

“ b´Apx0 ` VmpW
H
mAVmq

´1
WH
mr0q

“ r0 ´AVmpW
H
mAVmq

´1
WH
mr0

168 Chapter 8. Solving Linear Systems With Sparse Matrices

Algorithm 8.1: Conjugate Gradient Method

Input: A P Rnˆn, b P Rn, x0 P Rn
Output: x “ A´1b

1 p0 “ r0 “ b´Ax0, α0 “ ‖r0‖2
2;

2 form “ 0, . . . , n´ 1 do
3 if αm ­“ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq

;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;

8 αm`1 “ ‖rm`1‖2
2;

9 pm`1 “ rm`1 `
αm`1

αm
pm;

10 else

11 STOP;

The projection Pm to them-th subspace is then given as Pm “ I ´Qm, where

Qm “ pWH
mAVmq

´1
WH
m. The above derivation proves the following simple

lemma.

Lemma 8.10: If WH
mAVm is invertible, then (8.1) has a unique solution

given as

xm “ x0 ` VmpW
H
mAVmq

´1
WH
mr0

with corresponding residual

rm “ r0 ´AVmpW
H
mAVmq

´1
WH
mr0

The invertibility assumption is sometimes easily guaranteed. For example if A
is symmetric positive definite (s.p.d.) with Km “ KmpA, r0q “ Lm

ñWm “ Vm and dimKm “ m

ñWH
mAVm “ V H

mAVm s.p.d.

Analogously, for A invertible and Lm “ AKm ñ Wm “ AVm with dimKm “

m “ dimLm, we immediately see thatWH
mAVm “ V H

mA
HAVm is s.p.d..

8.3 Conjugate Gradients

Different choices of Km and Lm lead to different methods. Let A P Rnˆn
be symmetric and positive definite. If we choose xm P x0 ` KmpA, r0q and

8.3. Conjugate Gradients 169

Algorithm 8.2: Preconditioned Conjugate Gradient Method

Input: A P Rnˆn, b P Rn, x0 P Rn, A´1 « P P Rnˆn
Output: x “ A´1b

1 r0 “ b´Ax0, p0 “ z0 “ Pr0, α0 “ pr0, p0q;

2 form “ 0 : n´ 1 do
3 if αm ­“ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq2

;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 zm`1 “ Prm`1;

9 αm`1 “ prm`1, zm`1q2;

10 pm`1 “ zm`1 `
αm`1

αm
pm;

11 else

12 STOP;

rm K KmpA, r0q this leads to the choice Km “ Lm “ KmpA, r0q. Then, also

Vm “ Wm and therefore, as we have investigated, W
H
mAVm “ V H

mAWm is

s.p.d. for allm. The resulting method is called conjugate gradients (CG) method
and is summarized in Algorithm 8.1. We have discussed the necessity of precon-

ditioning in Section 8.1 above. The algorithm that results from the application

of left preconditioning in Algorithm 8.1 is the preconditioned CG, presented in
Algorithm 8.2. Note that the algorithm can be formulated such that we only

need one additional matrix vector product at the cost of one additional vector

in memory, namely the preconditioned residual.

Remark 8.11: The CG method is often derived from minimization of the

functional

F : Rn Ñ R,

x ÞÑ
1

2
pAx, xq2 ´ pb, xq2

In fact CG minimizes the error em :“ xm´A
´1b with respect to the norm

‖x‖A :“
b

pAx, xq2

induced by the matrix A due to symmetry and positive definiteness.

170 Chapter 8. Solving Linear Systems With Sparse Matrices

Theorem 8.12: Let

em “ xm ´A
´1b

denote the error in them-th step of the CG algorithm. Then it holds

‖em‖A ď 2

ˆ

κ2pAq ´ 1

κ2pAq ` 1

˙m

‖e0‖A .

Proof. any textbook on iterative methods.

8.4 Direct Solvers for Sparse Symmetric Systems

In the following, to ease the presentations, we will follow the general assump-

tions that

• A P Rnˆn is sparse and symmetric,

• and no pivoting is used.

For non-symmetric matrices the presented concepts have to be generalized

from undirected to directed graphs. We leave these details out to get a bet-

ter view on the basic ideas and avoid the additional technical difficulties that

would distract readers.

Definition 8.13: Two graphs are easily related to the matrix A P Rnˆn.

i) V “ t1, . . . , nu is called the set of vertices, i.e., variable indices.
ii) The set of edges E Ď V 2

is the set of pairs pi, jq P E ô aij ­“ 0.

iii) The directed connectivity graph of A GdpAq “ pV, Eq associates a
direction to an edge by the order of indices in the pair.

iv) The undirected connectivity graph of A GpAq “ pV, Eq identifies the
pairs pi, jq and pj, iq, i.e. considers pi, jq “ pj, iq, and thus neglects
the direction.

Remark 8.14:We collect some properties of the symmetric case treated

in this chapter.

• A symmetricñ aij “ aji ñ “pi, jq P E ô pj, iq P E”
ñ its is sufficient to the treat the undirected graph

• If A s.p.d. then @i aii ą 0 ñ pi, iq P E , i.e., the graph contains
the trivial edges (usually not included in graphical representations

8.4. Direct Solvers for Sparse Symmetric Systems 171

of the graph)

• The number of nonzero elements in column i equals the number
of neighbors of the vertex i in the graph GpAq.

• Symmetric permutations, i.e., permutations of the matrix where

both columns and rows are swapped simultaneously, are equiva-

lent to renumbering the graph, i.e., application of a permutation to

the elements of V .

• E“̂PpAq

8.4.1 The Elimination Graph Model for Symmetric Matrices

Idea: Compute LLT from a sequence of rank-1 reductions, following the lines
of the derivation of Algorithm 7.2

A “ A0 “ H0 “

„

d1 vT1
v1 H̃1



, H̃1 P Rn´1ˆn´1

“

« ?
d1 0

1?
d1
v1 In´1

ff

loooooooomoooooooon

L1

„

1 0
0 H1



looomooon

A1

«?
d1

1?
d1
vT1

0 In´1

ff

loooooooomoooooooon

LT
1

A “ pL1L2L3 . . . Ln´1qInpL
T
n´1 . . . L

T
3L

T
2L

T
1 q

“ pL1L2L3 . . . Ln´1qInpL1L2L3 . . . Ln´1q
T

“ LLT

vjv
T
j influence the structure, i.e., pattern of Hj . It is a usually dense (but prob-

ably scattered) sub-block of Hj . If PpvjvTj qzpPpvjvTj q X PpHj´1qq ­“ H then

step j leads to fill-in inHj .

What does this procedure mean in terms of the graphs? The answer is

best understood following a simple example.

Example 8.15: This example demonstrates the graph elimination procedure

and resulting fill-in for the Cholesky decomposition of a simple 6 ˆ 6 exam-
ple. Actual values are unimportant and thus replaced by ˚’s. The indices are

indicated on the diagonal.

172 Chapter 8. Solving Linear Systems With Sparse Matrices

1

2

34

6 5

(a) initial graph G0

H0 “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) corresponding submatrix 0

2

34

6 5

(c) elimination graph G1

H1 “

»

—

—

—

—

–

2 ˚ ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

fl

(d) corresponding submatrix 1

34

6 5

(e) elimination graph G2

H2 “

»

—

—

–

3 ˚ ˚ ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ ˚ 6

fi

ffi

ffi

fl

(f) corresponding submatrix 2

4

6 5

(g) elimination graph G3

H3 “

»

–

4 ˚ ˚

˚ 5 ˚

˚ ˚ 6

fi

fl

(h) corresponding submatrix 3

Figure 8.1: Basic graph elimination procedure for a symmetric matrix and the

Cholesky decomposition

8.4.2 The filled graph G`pAq

The procedure above introduces new elements. Let F “ L ` LT, then PpF q
is the filled pattern of A and GpF q ist called the filled graph of A denoted by
G`pAq. For the example above we have:

8.4. Direct Solvers for Sparse Symmetric Systems 173

Algorithm 8.3: graph eliminations process

Input: GpAq “ pV, Eq undirected graph of A
Output: G1, . . . ,Gn´1 sequence of eliminations graphs

1 for k=1:n-1 do
2 V “ Vztku (remove vertex k);
3 E “ pEztpk, lq : l neighbor of kuq Y tpx, yq : x, y neighbors of ku;

1

2

34

6 5

(a) The filled graph G`pAq “ GpF q

F “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚ ˚

˚ 3 ˚ ˚ ˚

˚ ˚ 4 ˚ ˚

˚ ˚ 5 ˚

˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) The final matrix F “ L` LT
with fill.

Figure 8.2: The filled graph and matrix of a Cholesky decomposition example.

Obviously, the filled graphG`pAq is the union of the elimination graphsG0,G1, . . .
In fact one can prove:

Lemma 8.16 ([3]): pi, jq P G`pAq ô pi, jq P GpAq, or there exists k ă
minpi, jq, such that pi, kq P G`pAq and pk, jq P G`pAq.

8.4.3 Characterization of Fill-in

Let L “ plijqi,j“1,...,n be a Cholesky factor of A, i.e., A “ LLT.

Theorem 8.17 (Fill-path-theorem [4]): lij ­“ 0 ô D path in GpAq between
i and j such that all nodes (vertices) in the path have indices smaller than
both i and j.

We have seen in the introduction of Chapter 8, that reordering of variables can

have strong impact on the amount of fill-in and consequently on the subse-

quent operations.

Definition 8.18: The minimum fill-in problem describes the problem of

finding the optimal permutation of vertex labels that produces the small-

174 Chapter 8. Solving Linear Systems With Sparse Matrices

est possible number of new edges in G`pAq compared to GpAq.

The article [7] shows that the minimum fill-in problem is NP-complete and thus

NP-hard in general. Several heuristic approaches exist that come up with sub-

optimal solutions.

8.4.4 Heuristic Fill Reduction

Mainly 3 classes of methods exist.

i) Global approaches

• Structured permutation

• Fill-in only in the resulting structure

• Examples: (reverse) Cuthill-McKee, nested dissection

ii) Local heuristics

• Incorporated into pivoting strategies

• Symmetric case: minimum degree, minimum fill

• General case: Markowitz criterion

iii) Hybrid variants

(a) Permutation to block structure

(b) Local heuristic applied on the single blocks

(Reverse) Cuthill-McKee Reordering (RCM)

A global strategy that approaches the minimum fill problem by bandwidth pnbq
minimization is the (Reverse) Cuthill-McKee reordering. Its general aim is to find

a symmetric permutation such that

nb “ max
i

max
aij ­“0

|i´ j|

is minimized. Recall that a symmetric permutation is just the same as a vertex

relabeling.

Example 8.19: Influence of the ordering of the degrees of freedom on the re-

sulting fill-in in the Cholesky decomposition is demonstrated in the following

two figures.

8.4. Direct Solvers for Sparse Symmetric Systems 175

1 2 3

4

56

(a) Graph before reordering.

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Bandwidth 5 pattern.

Figure 8.3: Graph and sparsity pattern before reordering.

2 3 5

1

64

(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚

2 ˚ ˚

˚ ˚ 3 ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 2 pattern.

Figure 8.4: Graph and sparsity pattern after RCM reordering.

Basically, RCM reordering selects a root node, forms the tree that consists of

all shortest paths to all other vertices in GpAq and then performs an ordered
breadth first search on that tree to fill the permutation vector.

In contrast to a standard breadth first search, here the vertices are ordered with

respect to their increasing degree.

Step 12 in Algorithm 8.4 is mandatory for the reverse reordering, when avoided

the algorithm implements Cuthill-McKee reordering. Selection of a good root

node in Step 3 is crucial as we learn from the next example. The root node

should be chosen such that it has preferably long paths to all other nodes in

the graph.

Example 8.20: This example shows the importance of the selection of the root

node in Step 3 of Algorithm 8.4.

176 Chapter 8. Solving Linear Systems With Sparse Matrices

Algorithm 8.4: RCM reordering

Input: A P Rnˆn with PpAq symmetric
Output: p P Rn such that Ã “ App, pq has reduced bandwidth

1 Q “ rs, R “ rs;
2 repeat

3 Select root node P ;
4 R “ rR,P s;
5 Q “ rQ,@g adjacent to P ordered by increasing degrees;
6 while Q ­“ H do
7 C “ Qp1q;
8 if C R R then
9 R “ rR,Cs,
10 Q “ rQp2 : endq, all nodes adjacent of C that are not in R by

increasing degrees;

11 until all nodes are contained in R;
12 p “ Rpn : ´1 : 1q;

4

2

1 3

6 5

R “ r4s Q “ r2s
R “ r4, 2s Q “ r1, 3s
R “ r4, 2, 1s Q “ r3, 6s
R “ r4, 2, 1, 3s Q “ r6, 5s
R “ r4, 2, 1, 3, 6, 5s Q “ rs
p “ r5, 6, 3, 1, 2, 4s

6

1

2

4

5

3

R “ r6s Q “ r1, 5s
R “ r6, 1s Q “ r5, 2s
R “ r6, 1, 5s Q “ r2, 3s
R “ r6, 1, 5, 2s Q “ r3, 4s
R “ r6, 1, 5, 2, 3, 4s Q “ rs
p “ r4, 3, 2, 5, 1, 6s

Here the right column shows exactly the procedure that lead to the bandwidth

2 representation in Example 8.19.

Local heuristics

Let A P Rnˆn sparse symmetric GpAq “ pV, Eq the undirected corresponding
graph of A andm : V Ñ R a metric, such thatmpiq ă mpjq implies that vertex
i is “better” than vertex j.

8.4. Direct Solvers for Sparse Symmetric Systems 177

Algorithm 8.5: Generic local strategy

Input: A P Rnˆn sparse,m a metric on the nodes in GpAq
Output: p P Rn such that Ã “ App, pq is the reordered matrix

1 repeat

2 Select node P (the pivot element) with min. metric valuempP q:
p “ rp, P s;

3 Update elimination graph erasing P ;
4 Update metric for all non-selected nodes;

5 until all nodes selected;

Note:

• Step 4 in Algorithm 8.5 should be restricted to those nodes where m
changed due to the graph update.

• The local pivot search allows combination with classical pivoting strate-

gies to increase the numerical stability.

Minimum degree idea: The basic strategy behind minimum degree reorder-

ing is to choose the degree of a vertex as the metric. That meansmpiq ă mpjq
if node i has less neighbors than node j. Especially, the degrees only change
for adjacent nodes of P during the elimination of P , i.e., we have a very local
metric updated.

Step 3 of Algorithm 8.5 is performed as in Section 8.4.1.

Minimum degree reordering is not always optimal as we see from the following

example.

Example 8.21:We consider the following matrix A P R9ˆ9
for which factoriza-

tion is possible without fill-in.

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ˚ ˚ ˚

˚ 2 ˚ ˚

˚ ˚ 3 ˚

˚ ˚ ˚ 4 ˚

˚ 5 ˚

˚ 6 ˚ ˚ ˚

˚ 7 ˚ ˚

˚ ˚ 8 ˚

˚ ˚ ˚ 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

GpAq looks like this

178 Chapter 8. Solving Linear Systems With Sparse Matrices

1

2

3

4 5 6

7

8

9

Now the minimum degree metric suggests to choose node 5 (of degree 2) for

elimination, which results in:

1

2

3

4 6

7

8

9

This obviously introduces a new edge from node 4 to node 6, i.e., results in

fill-in. On the other hand, all other nodes could obviously be removed without

causing additional edges.

All heuristic approaches to the minimum fill problem in general only produce

suboptimal solutions. This is however clear, since the optimal solution is usually

not accessible since it is the solution to an NP-hard problem.

Example 8.22 (minimum degree metric versus minimum fill metric): The fol-

lowing simple graph (edges) shows the discrepancies between minimum

degree and minimum fill as metrics.

1

2

3

4

5

67

8

9

The potential fill is indicated by the colored edges. The edges indicate the

fill resulting from the removal of node 4. The edges show that all edges that

are required to preserve paths after removal of node 9 do already exist. That

8.4. Direct Solvers for Sparse Symmetric Systems 179

means, the degree and the fill measures of node 4 are both 3, while the degree

of node 9 is 4, but the fill measure is 0. Below we collect a comparison of the

two metrics on the entire graph.

node degree metric value fill metric value

1 1 0

2 2 1

3 2 1

4 3 3

5 5 4

6 4 0

7 4 0

8 5 4

9 4 0

Hybrid method and graph components

Definition 8.23 (connected): In an undirected graph G two vertices’s u
and v are called connected if G contains a path from u to v. Otherwise,
they are called disconnected.
A Graph G is said to be connected if each pair of vertices’s is connected. A
connected component is a maximal connected subgraph of G.

That means, if u, v are vertices in G from different connected components, then
u, v are disconnected. Thus, the corresponding degrees of freedom in the linear
system are independent of each other.

Especially, reordering A corresponding to the connected components leads to
a block diagonal matrix. The resulting diagonal blocks can then be treated by

local strategies or dense solvers.

For general non-symmetric matrices strongly connected components have to be
used. That means, both directed paths between two vertices need to exist.

Therefore, not all diagonal blocks decouple completely, since only one direction

may exist for a pair of vertices in two components. Nonetheless strongly con-

nected components may form so-called supernodes that can be used to localize
the memory access. This idea leads to the SuperLU algorithm and software

package.

180 Chapter 8. Solving Linear Systems With Sparse Matrices

Sparse Matrix Vector Products and Reordering

Consider the matrix vector product of a matrix A stored in CSR format and a
dense vector x.

Naively looking at the problem one might think: Even if the elements in A are
scattered all over the row, in the CSR format they are stored one after the other,

anyway. This would lead us to the expectation that we get no advantage due to

reordering.

However, this is only half the truth. Consider an RCM reordered matrix with

small bandwidth. The relevant indices corresponding to the entries are local,

as well. Thus, a local portion of x is used. Additionally, the next row has a very
similar set of indices containing entries. That means, in the next row product

almost the entire portion of x can be reused, which leads to only little cache
misses on x.

In contrast to this scattered row entries will lead to a rather irregular and espe-

cially non-sequential access to x possibly causing lots of cache misses.

8.4.5 Related Software

• SuiteSparse (Section 6.4.3)

– CSparse— Introductory basic direct solver library used for “The sparse

backslash book” [2]

– UMFPACK — The library behind the sparse “z” in MATLAB and the

sparse direct solver in SciPy
2

– ApproximateMinimum Degree related reordering

• ITPack — see Section 6.4.4

• Trilinos — see Section 6.4.5

• METIS
3
/ SCOTCH

4
— 2 libraries for graph partitioning, clustering and

computation of fill reducing reorderings.

Bibliography

[1] T. A. DAVIS, Direct methods for sparse linear systems (lec-
tures). http://www.youtube.com/playlist?list=
PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB.

2http://www.scipy.org
3http://www.cs.umn.edu/~metis
4http://www.labri.fr/perso/pelegrin/scotch/

http://www.youtube.com/playlist?list=PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB
http://www.youtube.com/playlist?list=PL5EvFKC69QIyRLFuxWRnH6hIw6e1-bBXB
http://www.scipy.org
http://www.cs.umn.edu/~metis
http://www.labri.fr/perso/pelegrin/scotch/

Bibliography 181

[2] T. A. DAVIS, Direct Methods for Sparse Linear Systems, no. 2 in Fundamentals of
Algorithms, SIAM, Philadelphia, PA, USA, 2006, https://doi.org/10.
1137/1.9780898718881.

[3] S. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3 (1961),
pp. 119–130, https://doi.org/10.1137/1003021.

[4] D. ROSE, R. TARJAN, AND G. LUEKER, Algorithmic aspects of vertex elimination
on graphs, SIAM Journal on Computing, 5 (1976), pp. 266–283, https://
doi.org/10.1137/0205021.

[5] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA,
2003, https://doi.org/10.1137/1.9780898718003.

[6] H. A. VAN DER VORST, Iterative Krylov Methods for Large Linear Systems, vol. 13
of Cambridge Monographs on Applied and Computational Mathematics,

Cambridge University Press, Cambridge, 2003, https://doi.org/10.
1017/CBO9780511615115.

[7] M. YANNAKAKIS, Computing the minimum fill-in is np-complete, SIAM Journal
on Algebraic Discrete Methods, 2 (1981), pp. 77–79, https://doi.org/
10.1137/0602010.

https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/1003021
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0205021
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1017/CBO9780511615115
https://doi.org/10.1017/CBO9780511615115
https://doi.org/10.1137/0602010
https://doi.org/10.1137/0602010

182 Chapter 8. Solving Linear Systems With Sparse Matrices

Bibliography 183

	Linux and the Commandline
	A short History of an Accidental Revolution
	The Linux Shell and Basic Commands for Handling Files
	Getting Help
	Manipulation of Simple Commands
	Script File Basics
	Simple Automatic File Manipulation
	Remote Computing on Encrypted Connections
	Screen an Online/Offline Terminal
	The Toolchain
	Bibliography

	Introduction to C and the GNU Toolchain
	The Programming Environment
	C Statements, Types and Operators
	Control Structures
	Complex Data Types and Arrays
	Functions
	An Introduction to the Standard Library
	stdio.h and stdlib.h
	math.h and complex.h
	string.h

	File Input and Output
	The Preprocessor and Header Files
	Makefiles
	Writing Own Libraries
	Interfacing Fortran
	Automatic Generation of Documentations Using DOXYGEN
	Bibliography

	Revision Control
	Types of Revision Control Systems
	Local Revision Control
	Central Revision Control
	Distributed Revision Control

	Collaborative Work on Projects
	Conflicts
	Branches
	Tags

	Revision Control meets Social Networking
	Issues
	Pull Request / Merge Request
	Forks
	A generic workflow

	Error Analysis and Machine Numbers
	Machine Numbers
	Rounding Errors and Error Propagation
	Rounding Rules
	Computer Arithmetic
	Error Propagation
	The IEEE Standard 754

	Error Analysis
	Conditioning/Condition Number
	Stability
	Forward Error Analysis
	Backward Error Analysis
	Perturbation Analysis

	Bibliography

	Memory Architecture and Memory Management
	Virtual Memory Concept
	Paging
	Memory Related Error Signals

	Volatile memory
	Registers
	Cache
	Main Memory

	Non-Volatile Storage
	Local Storage Media
	Local Network
	Cloud and Remote Network Services

	Non Uniform Memory Access
	Cache Coherence
	Memory Consistency

	Bibliography

	Basic Operations, Formats and Matrix-Norms
	Vector Norms and Inner Products
	Linear Operators, Operator and Matrix Norms
	Spectral Norm and Spectral Radius
	Condition Number and Singular Values
	Some Remarks on 2(A)

	Matrix Storage Formats
	Dense Matrices
	Sparse Matrices
	Complex Matrices

	Linear Algebra Software
	Basic Linear Algebra Subroutines (BLAS)
	Linear Algebra PACKage (LAPACK)
	SuiteSparse
	ITPACK
	Trilinos
	Native Packages for other Programming Environments and Languages

	Bibliography

	The Solution of Moderate Size Dense Linear Systems
	Important Preliminaries
	Cache/BLAS Exploitation
	Triangular System
	Triangular Systems with Multiple Right Hand Sides and BLAS Level-3 formulation
	BLAS Level-3 based Gaussian Elimination

	Iterative Refinement
	Bibliography

	Solving Linear Systems With Sparse Matrices
	Preconditioning
	Diagonal Preconditioning
	Splitting Methods
	Multigrid approaches
	Incomplete Factorizations
	Sparse Approximate Inverses (SPAI)

	Krylov Subspaces and Projection Methods
	Conjugate Gradients
	Direct Solvers for Sparse Symmetric Systems
	The Elimination Graph Model for Symmetric Matrices
	The filled graph G+(A)
	Characterization of Fill-in
	Heuristic Fill Reduction
	Related Software

	Bibliography

