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What problem does this Lecture try to solve?

e« Not ax=Dh.
dx
o NOt ed— = aX + b

e Not

* Not

e But:



Motivation

Large-scale dynamical systems are omnipresent in science and technology.

Example 1.

Copper interconnect pattern(IBM)
ar: L i e

04 ] e

Picture from [N.P can der Meijs’01] Picture from Encarta

http://encarta.msn.com/media_461519585/pentium_microprocessor.html

Ccross

Signal integrity:
noise, delay.
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Motivation

The interconnect can be modelled by a mathematical model:

dx(t)
dt
y(t) = Cx(t),

With O(10°) ordinary differential equations.

E

= AXx(t) + Bu(t),

Example 2

« A Gyroscope is a device for measuring or
maintaining orientation and has been used @
in various automobiles (aviation, shipping
and defense).

« The design of the device is verified by
modelling and simulation.
https://morwiki.mpi- Pic. by Jan Lienemann and

magdeburg.mpg.de/morwiki/index.php/Gyroscope - Moosmann, IMTEE
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Motivation

* The butterfly Gyroscope can be modeled by partial differential equations (PDEs).

e Using finite element method, the PDE is discretized into (in space) ODEs:

M (0 S5+ K (0 B 1 D yx + Bu(,
y(t) = Cx(1),

With O(10°) ordinary differential equations. #« = (z4,--., £4) is the vector of parameters.
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Motivation

Example 3: Simulated Moving Bed

Simulated Moving Bed Process

Feed (A+B)_,..--....Z:'e i Raffinate (A)
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Zone |
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Motivation

Mathematical modeling of SMB process H

C'tz)  q'(t2)

385583 porous adsorbent

PDE system (couple N, columns)

8Ci;(t,z) L1-c aqi”a(t,z) " 8Ci;(t,z) 4D, 82Cai”(2t,z)’ —AB
aq.”(i,z) € nEt n z | 2" n=1,2,...N_,
ST =Km (@M (2)-q](t,2)). 1=AB

Hi,lC:in + Hi,Z(:in
1+K,Ca+K; Co 1+K,,Cr+K, ,Cpo
Initial and boundary conditions:
C'(t=0,2)=0, q'(t=0,2z)=0
oC'
0z

CIin’Eq = fi (CR'CS) =

oC!
0z

=0

z=L

u, n __~niin
:D_n(C‘ (t,0)-C"" (1)),

z=0
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Motivation

Mathematical modeling of SMB process

PDE system spatial discretization
(couple Ng, columns) DAE system

A complex system of nonlinear, parametric DAEs:

M (u)%= f (10, %) + B,
y(t) = Cx(1),

M operating conditions

with proper initial conditions.
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Analytical solution of the LTI System

{dx(t)/dt = AX(t) + Bu(t)
LTI System:
X(0) = X

Multiplying e ! on both sides of dx(t)/dt = Ax(t) + Bu(t) yields

oA d);f) e M Ax() = e MBu(t)

which implies,
%(e"“x(t)) = e MBu(t)

Its integration from O to t yields,

t
e AT ()|t = joe—AfBu(r)dr




£

& Analytical solution of the LTI System

t
0

At

Because the inverse of e “tis e™ and 0 — 1, (1) implies

t
x(t) =e"'x, + joeA(t_T) Bu(z)dr (2)

e It is impossible to plot the waveform of x(t) by hand, we need computers to
compute x(t) numerically and plot x(t) at many samples of time.

e It is difficult to compute x(t) by following the analytical formulation in (2) if
A is very large. We need to solve the LTI system numerically with some
numerical methods, like backward Euler, ...etc.

e If the system is very large, then MOR is necessary!



o

& Basic |ldea of MOR

Original model (discretized) Reduced order model
dx ~ dz - -
. {M(ﬂ)azf(y,x)ﬂs, A {M(u)a—f(u,2)+8,
y(t) = Cx(t), y(t) =Cz(1),
statesxeR", states z(t) e R,
inputsu(t) e R™ r<<n inputsu(t) e R™
output y(t) e R® output y(t) e R®
u(t, u) y(u.t) u(t, u) . Y(wt)
—> > —> —> 3 —>

ly-yli<tol  Vu(t x)
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<

& Basic |ldea of MOR

MOR Reduce order model (ROM)

|

Replace the original model with the reduced model.
The reduced model is then integrated with other
components in the device or circuit; or is integrated
into a process.

The reduced model is repeatedly
used in design analysis.

Original model

v
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Basic Idea of MOR

Example: Optimization for SMB

max Q.
5
S.t. PeR
m SMB model (PDEs) m Cyclic steady state (CSS) constraints
m Product purity constraints: Pur, 2Pur, .., Purg >Purg .

m Operational constraints on p

|~ ROM-based
optimization
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Basic Idea of MOR

x10 b of ion profiles (rigorous SME madel) x10° Development of concentration profiles (ROM)
. . . . 3 ............................................
3 . . . TR T N
2I5 = 25 S B SRRSO S SRR St
. §
HEN R S IS M N— e S
- FREN I BN DU S ——
i o
! PN T T T s A S S S
¢ RPN A P R B
5 =
é E I N NS (. T e S
| AR
@
g 0 5 ....................
5" E-CN [ SR T
0
)

% ' o 105 2 315 42 525 63 735
ks Auxial position [em]

0 105 21 35 42 52.5 735 &84

Axial position [em]

Axial concentration profiles of the full-order DAE model with order of  Axial concentration profiles reproduced by POD-based ROM
672. (with reduced order of only 2).
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Basic Idea of MOR

Example: Layout of a switch with four microbeams

Plate-Mass

MOR Lihong Feng

Microbeam
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The microbeam is replaced

The schematic switch

by the ROM
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Projection based MOR

Original model (discretized) Reduced order model
dx ~ dz ~ 5
M (£) —— = A(x, X) + Bu(t), M (1) — = A(x, 2) + Bu(t),
2 dt 2 dt
y(t) = Cx(t), y(t) = Cz(t),
Find a subspace which includes the trajectory of x, use the projection of x in
the subspace to approximate x. X
Let: x=~Vz
dz
M (ILI)V E - A(/J,VZ) + BU(t) + €, Px

y(t) =Cvz(t),

M
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Projection based MOR

Petrov-Galerkin projection: W =[w,,...,w ]
e=0inrangeW) < w'e=0foralli=1,...,n, i.e.W'e=0

dzII

WM (z)V p =W T A(z,Vz) +W T Bu(t),
y() = CVz(1),

M=W'MV, f=WTf(xVz),B=WTB,C=CV.

MOR Lihong Feng 20




Conclusion

The question:

How to construct the ROMs (W, V) for large-scale complex systems?

Answer:

The lecture will provide many solutions.

MOR Lihong Feng
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Outline of the Lecture

Lecture 1: Introduction
Lecture 2-5: Mathematical basics
Lecture 6: Balanced truncation method for linear time invariant systems.

Lecture 7: Moment-matching and rational interpolation methods for linear
time invariant systems.

Lecture 8: Krylov subspace based method for nonlinear systems and
POD method for nonlinear systems.

Lecture 9: Krylov subspace based method for linear parametric systems.

Lecture 10: POD and reduced basis method for nonlinear parametric
systems.

Notice: Lecture slides, excercises, time and location changes can
be found at:

https://www.mpi-magdeburg.mpg.de/3668354/mor_ss19
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