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1. Mathematical Basics |
Numerical Linear Algebra
Systems and Control Theory
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@ Numerical Linear Algebra

Image Compression by Truncated SVD
m A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x;; contains color information of pixel (i,;).

m Memory (in single precision): 4 - ny - n, bytes.
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& @ Numerical Linear Algebra

Image Compression by Truncated SVD
m A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x;; contains color information of pixel (i,;).
m Memory (in single precision): 4 - ny - n, bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

~ r T
XNX: E j:10'jujvj )

where X = UX VT is the singular value decomposition (SVD) of X.
The approximation error is HX — )?‘ ‘2 = @il
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& @ Numerical Linear Algebra

Image Compression by Truncated SVD

m A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x;; contains color information of pixel (i,;).
m Memory (in single precision): 4 - ny - n, bytes.
Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

~ r T
XNX: E j:10'jujvj )

where X = UV is the singular value decomposition (SVD) of X.
The approximation error is HX — )?‘ ‘2 = @il

Idea for dimension reduction

Instead of X save uy,...,Ur, O1V1,...,0,V,.
~+ memory = 4r x (ny + n,) bytes.
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%‘.@@ Example: Image Compression by Truncated SVD

320 x 200 pixel
~ = 256 kB
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@&!@ Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens, George
Forsythe, Alston Householder, Peter Henrici,
Fritz L. Bauer.

Original image
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@1@ Dimension Reduction via SVD

Example: Gatlinburg m rank r = 100, ~ 448 kB

Organizing committee T
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens, George

Forsythe, Alston Householder, Peter Henrici,
Fritz L. Bauer.

Original image

m rank r = 50, ~ 224 kB

Rank-50 approimation

640 x 480 pixel, ~ 1229 kB
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‘\4}!@ Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay

(exponentially).

Singular Values of the Image Data Matrices
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A\ @ A different viewpoint

Linear Mapping

A matrix A € R/*k represents a linear mapping

AR R x =y = Ax.

The truncated SVD ignores small Hankel singular values and thus the
related left and right singular vectors.
Consequence:

m Vectors (almost) in the kernel of A do not contribute to range(A) and
can hardly or not at all be reconstructed from the input-output
relation (“A~1") — “unobservable” states.

m Vectors (almost) in (range(A))* cannot be “reached” from any
x € R¥ — “unreachable/uncontrollable” states.

m Hence, the truncated SVD ignores states hard to reconstruct and hard
to reach.
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@ Systems and Control Theory

The Laplace transform of a time domain function f € L joc With
dom (f) =Ry is

L () F(s) = L{F(D)}(s) = /OOO e~tf(t)dt, secC.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (“frequency response analysis”), one
takes res =0 and ims > 0. Then w := im s takes the role of a frequency (in
[rad/second], radians per second, i.e., w = 2wv with v measured in [Hz]).

Lihong Feng Model Reduction for Dynamical Systems



@ Systems and Control Theory

The Laplace transform of a time domain function f € L joc With
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L{F(t)}(s) = sF(s) — £(0).

if £(0)=0, then .
L{F(t)}(s) = sF(s).

Note: For ease of notation, in the following we will use lower-case letters for both,
a function f(t) and its Laplace transform F(s)!
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@ Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) — x(s), x(t) — sx(s)) to linear system
Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
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@ Systems and Control Theory

Linear Systems in Frequency Domain
Application of Laplace transform (x(t) — x(s), x(t) — sx(s)) to linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
— |/O-relation in frequency domain:

y(s) = ( C(sE—A)"'B+D ) u(s).
=:G(s)

G(s) is the transfer function of X.
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@ Systems and Control Theory

Linear Systems in Frequency Domain
Application of Laplace transform (x(t) — x(s), x(t) — sx(s)) to linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

— |/O-relation in frequency domain:

y(s) = ( C(sE—A)"'B+D ) u(s).
—:G(s)

G(s) is the transfer function of X.

Goal: Fast evaluation of mapping u — y.
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Application of Laplace transform (x(t) — x(s), x(t) — sx(s)) to linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

— |/O-relation in frequency domain:

y(s) = ( C(sE—A)"'B+D ) u(s).
—:G(s)

G(s) is the transfer function of X.

Goal: Fast evaluation of mapping u — y.

Model Reduction for Dynamical Systems



@ Systems and Control Theory

Formulating model reduction in time domain

Approximate the dynamical system
E,AeR™" B e R™mM,

Ex = Ax-+ Bu,
C e RI*" D e RI*™M,

y = Cx+ Du,
by reduced-order system

Ex = Az+ éu,

/Z‘ERrXr éeRer
g = Cx+Du, Cec

E,
C e R9*r, D € RIXM
of order r < n, such that

|W—yHgHG—éH¢wn<mmmmenmy
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@ Systems and Control Theory

A linear system
Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov, or exponentially) stable if all poles
are in the open left half plane C™ := {z € C|R(z) < 0}.
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@ Systems and Control Theory

A linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane

and it is asymptotically (or Lyapunov, or exponentially) stable if all poles
are in the open left half plane C™ := {z € C|R(z) < 0}.

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the eigenvalues of the generalized eigenvalue problem
Ax = AEx, denoted by A (A, E), satisfies A (A, E) C C™.

Note that by abuse of notation, often stable system is used for asymptotically
stable systems.
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@ Systems and Control Theory

For a linear (time-invariant) system

. x(t) = Ax(t)+ Bu(t),  with transfer function
' { y(t) = Cx(t)+ Du(t), G(s)=C(sl—A)'B+D,

the quadruple (A, B, C, D) € R™" x R"™™M x RI*" x RI*™M is called a
realization of X.

Realizations are not unique!
Transfer function is invariant under state-space transformations,

T - X — Tx,
"\ (AB,C,D) — (TAT L, TB,CT71,D),
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@ Systems and Control Theory

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

%[2} - [;‘ :\)IHZ]JF{;]U(O, y(t)=[ C 0][;]+Du(t),
%[;} - |7 OHX]+[§]u(t), yit)=[C C2]{;:2]+Du(t),

0 A X2
for arbitrary A; € R%*"%, j=1,2, B € R"*™ G, € R7*™ and any n, n, € N.
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@ Systems and Control Theory

Realizations are not unique!

Hence,

A 0 B

(A787C7D)7 ([O A1]a|:81:|7|:c O]aD)a
A 0

(TAT 1, TB,CT 1, D), ([ ],[g],[c Cg],D),

are all realizations of X!
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@ Systems and Control Theory

The McMillan degree of X is the unique minimal number A > 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order A.

Lihong Feng

Model Reduction for Dynamical Systems



@ Systems and Control Theory

The McMillan degree of ¥ is the unique minimal number /i > 0 of states
necessary to describe the input-output PebavAiorAcompIeter.

A minimal realization is a realization (A, B, C, D) of ¥ with order A.

A realization (A, B, C, D) of a linear system is minimal <=

(A, B) is controllable and (A, C) is observable.
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