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Motivation

Balanced truncation: first balancing, then truncate.
Given a LTI system: dx(t)/dt = Ax(t) + Bu(t)
y(t) = L' x(t)

For convenience of discussion, we denote the system as a block form:
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reduced model |« (Elrl 1]( The unimportant

part is truncated




Motivation

What's the
unimportant part?

The states which are difficult to control and difficult to observe correspond the
unimportant part.

In system theory, the unknown vector x is called the state (vector) of the system.
Actually, the entries in x depict the system variables, such as branch currents,

node voltages in the interconnect model, and therefore describe the state of the
system.
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6% Controllability measure

Reachability
— . Al B :
Definition: Given a system T , a state x is reachable from the zero state

if there exist an input function U(t) of finite energy such that x can be obtain
from the zero state and within a finite period of time t < 0.




Controllability measure

Denote X™ the subspace spanned by the reachable states, then

X reach — X

Xis the whole state space, e.g.

X ={x(t):R, >C"}

The system is reachable<———> x reach _ x: every state in the state space is
reachable.




Controllability measure

Exa mple 1 Picture referred to [Chi-Tsong Chen,

Linear system Theory and Design,
3rd edition, New York Oxford, Oxford
University Press, 1999]

0

2Q) 8Q2

x denotes the voltage drop along the capacitor, and is the state of the
system. In this circuit, x=0 at any time.

Conclusion:

In this circuit, O state is a reachable state, but any nonzero state is a unreachable
state! Therefore the whole system is unreachable.



Example 1 is actually the Wheatstone bridge.

R, is adjustable, it is adjusted till
Vs becomes zero. It means there

. Ry Rs is no voltage drop throughVs .
7~/ Therefore, we have
Vv Ry _Re
- R, R
R2 RX 1 3

The value of R, can be easily computed
by the above relation.

Wheatstone bridge

A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie in 1833 and improved
and popularized by Sir Charles Wheatstone in 1843. (http://en.wikipedia.org/wiki/Wheatstone_bridge)



Example 2 dx(t)/dt = Ax(t) + Bu(t)

y(t) = L x(t)
IF [ x, @) 1IF *:xz(t) X(t):(xl(t)
X, (1)

Vv <> voltage drops through

= the two capacitors.

Those states X(t) with x;(t) = X,(t) are reachable, but those states with

X, (t) # X, (t) are not reachable. Because whatever the input is, the voltage drops
through the two capacitors are always identical. Therefore the whole system is
unreachable.



¥ Controllability measure

Example 3

dx(t)/ dt = Ax(t) + Bu(t)
Ya (t) = I—TX(t)

50 ) 7050} (o) ()
A= () = B=| | L=
0 A X, (t) 0 L,

The state variables in the vector X, () are unreachable,
since no input u(t) exists to reach X, (t) .




Controllability measure

For a standard LTI system, the reachability matrix is defined as:

R(A, B)=[B, AB, A°B---A"'B--]

e Why it is called reachability matrix?
e Any connection between R(A, B) and reachability?




Controllability measure

Notice the analytical solution of system state equation dx/dt = Ax+ Bu is
X(U, X, t) = €%, + |t eAPBu(r)dr, t >t

The reachability of a state x of the system is tested by the zero initial state, Xg =0,
we look at the above analytical solution with X, =0,

X(u,0,t) = jt e’ Bu(r)dr

Notice:
t 2 k

At _A_|_t_A2_|_..._|_t_Ak_|_...
1 2 k!

e =1,+



¥ Controllability measure

x(u,0,t) = jeA“ 9Bu(r)dr = j (B +(t— T)AB+(t 21) A’B +..)u(r)dr

—Bj u(r)dHABj (t— f)u(r)dHAZBj M(f)dr

= Bao(t)+ABa1(t)+AZBaz(t)+~-+A"Bak(t)+-~,

which means a reachable state x is the linear combination of the terms:

B, AB,A%B,--- A¥B,--.

ThereforeR(A,B) = (B, AB, A°B---, A"'B,--) is defined as the reachability
Matrix.



Controllability measure

By the Cayley-Halmilton theorem, the rank of the reachability matrix and
the span of its columns are determined (at most) by the first n terms (not

the first n columns), i.e. A'B,t=0,12,---,n-1.

Thus for computational purpose the following (finite) reachability matrix
is of importance:

R,(A B)=[B, AB, A°B--- A" 'B]

Sometimes R, (A,B) is directly defined as the reachability matrix.




Controllability measure

Actually there is a Theorem (Theorem 4.5 in Chapter 4 in [Antoulas05]):

Theorem 1 If x " js the subspace spanned by the reachable states, then
X " =im R(A, B) :subspace spanned by the columns of R(A, B).

The theorem tells us the subspace spanned by all reachable states is exactly the
subspace spanned by the columns of the reachability matrix R(A,B).

The finite reachability gramian at timel < oo is defined as :

t
P(t):jeAfBBTeA”dr, for O<t<oo
0




Controllability measure

Connection between reachability matrix and reachability gramians

Proposition 1 The finite reachability gramians have the following
properties: (a) P(t)=P'(t)>0, and (b) their columns span the reachability
Su bspace, i.e., Im P(t) =1m R(A, B). ( Proposition 4.8 in [Antoulas 05] )

Proof An easier way is to prove im P (t) =im R®(A, B), where

imP®(t)®@imP(t)=C" and imR®(AB)®imR(AB)=C"

We first prove VxeimP®(t) = xeim R?(A,B)

vx eim P® we have
X"P()x=[ | BTe" x| dr =0

— BTeAtx =0, forall t=0



&' Controllability measure

Be”'x =0, Vt:%(BTeAT‘x):O, Vt:%(BTeATtXX =0, Vi>0

=/B"(A")'x=0,¥i>0.

J

x 1 A'B

ll

x Lim R(A,B)

g

x cim R®(A, B)

t=0

We have proved: VxeimP®(t)= xeimR¥(A, B)



o

¢ Controllability measure

\'

Next we prove: VxeimR®(A B)= xeimP®

XeimR®(A B)——> x LimR(A,B)——> x L A'B, for all i>0

d

BT (AT)*x=0, for all i>0.

d

BTeA'tx=0, forall t>0

X eim P® ﬂ

H | BTe” 'x|[2= x"e*BB e" 'x = 0

x Lim(P) <——=x"P(t)x= _[; x'eA"BBTe” "xdz =0,
|



% Controllability measure

The relation im P(t) =im R(A, B) provides a way to derive the minimal
energy which is needed to reach a state x.

The states needing large minimal energy to reach will be truncated during MOR
based on balanced truncation.

Therefore, the minimal energy for reaching a state x is a key concept for model
order reduction based on balanced truncation.

Next, we will derive the minimal energy for reaching a state x.




Controllability measure

From the analytical solution, if a state x is reached at time T, then Ju(t) with
finite energy, such that

How much energy must the input u(t) have?

From Theorem 1 and propositon 1, we know X "2 —im P(t), therefore,
if x is reachable, then xeim (P(t)),i.e. 3¢&,T,

X=P(T)f = x= jOT eMBBTe” At = J'OT eAT-IBBTe” T (1)

This means x can be reached at
time T with input U



The input u(t) is the excitation of the system, its energy is the energy required
to reach the state x .

.
Energy of a function is defined as: |u ||2: I u”(t)u(t)dt
0



> "
N’ Controllability measure

We see from above analysis, if x is reachable at time t, x can be
represented as:

£,
X= IO e""IBUdr  (T=-BTe" ¢

Any other input [[U(t) [P>[|T(t) I can also reach x. However if lu(t) [F<|[T(t) IF, it
cannot reach x at time t , but needs longer time.

Actually the energy of U is the minimal energy to reach the state x at the
given time period t. (Proposition 4.10 in [Antoulas 05])

Energy of {:

Ju|P=[ o" @udt = &Te" BB e Vet = £TP(D)

relation to x?

I

X



Controllability measure

A system is reachable means every state x in the whole state space is reachable.

From theorem 1: X" =im R(A,B)=imR (A, B)
Therefore the system is reachable <——> rank (Rn (A,B))=n

From Proposition 1:  Im P(t) =im R(A, B)

Therefore the system is reachable «<——> rank (P(t))=n, VvVt >0

Therefore, P(t) is nonsingular for any t, if the system is reachable.



%% Controllability measure

Energy of 7 = BTe? =2 (notice x = P(f)¢&) :

1T IF=¢"PE)E = (P (0)x) PE)P(1)x) =x P (f)x

Only for reachable
systems.




Controllability measure

Remark 1:

Reachability is a generic property for LTI systems with the form:

dx/dt = Ax+ Bu

This means, intuitively, that almost every LTI system with the standard form is

reachable. If there are any unreachable systems, they are very rare. The
unreachable LTI systems like examples 1,2 are rare.

Remark 2:

The reachability of the system can be more easily checked by the criteria:

The system is reachable <——> rank(R,(A,B))=n




Controllability measure

A concept which is closely related to reachability is that of controllability.

Here, instead of driving the zero state to a desired state, a given non-zero state is
steered to the zero state. More precisely we have:

Definition of controllability: Given a LTI system as above, a non-zero
state x is controllable if there exist an input u(t) with finite energy such
that the state of the system goes to zero from x within a finite time: t < oo .




Controllability measure

It has been proved that for standard time continuous LTI systems
dx(t)/dt = Ax(t) + Bu(t)
y(t) = L' x(t)

the concepts of reachability and controllability are equivalent.

Theorem 2 For time continuous systems X 13N — x €M (Theorem 4.16 in
[Antoulas 05])

Similarly, X" s the subspace spanned by the controllable states.
From the property of reachable system, we have

The system is controllable <——=> rank (R.(A,B))=n



Controllability measure

Controllability
measure!

Only for reachable
systems.




Controllability measure

Example: Platform system 2ult) l
X1 X2
Damping Dampir_mg
Coefficient: 2 ‘ Coefficient: 1 ‘
Spring
ashpdt Constant: 1 dashpot

Spring
Constant: 1

The system is described by the following linear time invariant (LTI) system:
assume mass of the platform is zero, then from Newton’s law: F —nv —kx =ma

U=2%=%=0 o dx(t)/dt z.x(t)+u(t)




Controllability measure

Is the platform system controllable?

The system is controllable <——> rank(R,(A,B))=n

R (A B)=[B, AB,]

0.5 -05 0 )05 -0.25
B = AB = =
1 0O -1N1 -1
B, AB are linearly independent!

rank(R,(A,B))=2=n

Therefore, the platform system is controllable.



% Controllability measure

Associated with controllability, there is the concept of observability.

Controllability: input u(t) ——> state x(t).

Possibility of steering the state using the input.

Observability: output y(t) ——> state x(t).

Possibility of estimating the state from the output.




Outline

e Observability measures

¢ Infinite Gramians




8% Observability measure

Observability is a measure for how well internal states of a system can be
estimated by knowledge of its external outputs.

Definition of Observability: Given any input u(t) , a state x of the system is
observable, if starting with the state x (x(0)=x), and after a finite period of
time t < o0, x can be uniquely determined by the outputY(t).

it‘
. =5‘35/()




Observability measure

Observability matrix? (T )
N . L' A
Observability Gramian? O(L,A) =
L™ A
Output energy? : )




Observability measure

Derivation of Observability matrix

From the analytical solution to dx/dt = Ax+ Bu, we see that after timet < co:

T
X () = e x, +j eAT-IBY(r)d 7
0

The system starting with x(0)=x, therefore
~ ,— t f 3
X (F) :eAtx+j eAT-IBY(r)d 7
0

And the output corresponding to i(t_) is:

y(@) = 'X(E) = LTeAl x+ L7 jo AT BY(r)d

i o
=L"eMx+ LTeAtI e A"Bu(r)dr
0

f
= L'eMX and X:x+j e "Bu(r)dr
0



Observability measure

Derivation of Observability matrix

If x is observable, then for any u(t), x can be uniquely determined by the
corresponding y :

yE) =L"eMx and xX=x+[e *Bu(r)dr
0

Since x can be uniquely determined by X , it is sufficient to prove that X can be
uniquely determined by Y(t) .

Let us see under what condition can X be uniquely determined by y(t) ?




b Observability measure

Derivation of Observability matrix

y(@) = LTeMx

Differentiate the above equation on both sides and get the derivatives at t=0:

y(0)=L'X
y (0) = L' AX

y" (0) _ LT AZY <:>

y ) (0) = L" A*x

(#) has a unique solution X if

( LT \
LT A

4 LT ) [ y(o) \
LA

('A< y ),

T ak
L A"

el
Il

y 0) | @

is square and has full rank n.



Observability measure

Derivation of Observability matrix

Denote:
() [ y(0)

Qy = LT.A y= ny) —— x=Qy
A o),

X can be uniquely determined, with k being at most n-1.

LT e R™" if m>1, then k<n-1, if m=1, k=n-1.



Observability measure

Derivation of Observabilit

For standard LTI systems, the observability matrix is defined as:
LT
L' A

O(L, A) = T

From above analysis, actually the finite Observability matrix is enough to
determine observability:

LT

:
o,LAay= -~

LT An—l
Therefore:

The system is observable <<———> rank(O, (L, A)) =n



£ Observability measure

Output energy

The output energy associated with the initial state x is:
Iy©1P=] yO y(t)dt = x"e""LL e xdt
=X r eM LU e dtx
0

=X'Q(f)X

1. Energy of observation
produced by an
observable state x.

Observability measure!

Finite Observability Gramian at time { < o is defined as:

Q(t) = j;eATTLLTeA’dr, 0<t<oo



£ Observability measure

Output energy

The system is observable: <<——> rank(O,, (L, A)) =n

Finite Observability Gramian at time t: Q(t) = IoteATTLLTeATdT, O<t<ow
rank (O, (L, A)) =n<«< ker(O,)=0

ker(O,) ={x:L" A'x =0,i > 0} = ker(Q(t))

ker(O,) =0= ker(Q(t)) =0 = rank(Q(t)) =n

The system is observable: <<——> rank(Q(t)) =n:Q(t) is nonsingular




. Observability measure

>
Observability Gramian

Recall the minimal energy to reach a state x at time t is
1T |*=x"P(f)x

Notice both energies are related to time.
|T|P=x"PH(E)x  NyOIP=x"Q()xX
t T C A e TAA
P(t):j eA"BBTeA "dr, O<t<oo Q(t):joe ‘LTeAdr, O<t<oo
0
Finite (reachability) controllability Gramian and observability Gramian will
be used to derive the infinite Gramians which

1. Make the two measures computable.
2. will be directly used for truncation in MOR.



Outline

¢ Infinite Gramians




D Infinite Gramians

make the two measures computable

Under which condition, Q(t) and P(t) are bounded when time goes to
infinity: t > 00 ?
ot

Pt)=| e*"BBTe* "dz, O<t<oo
J0

ot T
Q(t) = 0eA "LLTeAd7z, O<t<w

At

Roughly speaking, Q(t) andP(t) can be bounded whent — oo , if e

is bounded whent — o0,




Infinite Gramians

make the two measures computable

e™ is bounded if the real parts of all the eigenvalues of A are negative.

Why? Let A=S "AS be the eigen-decomposition of A,

1 _ . _
eAt _ eS ASt _ S—leAtS _ S—leAret+A|mtS _ S leAreteAlmtS

K \ (A \
Jre - 2im
Ape = i Aip = 172
y ) X i
A =2°+jA", i=12,---n are eigenvalues of A.



Infinite Gramians

make the two measures computable

1 _
eAt _ eS ASt _ S—leAtS _ S—letAreetAlmS

(e A
re
tAre g2 > 0
€ = >
A° <0
tAy
\ e ) \ 0)
([ tiam A
pli/
tjA5" t—>
etAim _ e’ > bounded

4" = cos(tA™) + jsin(A™)




,Infinite Gramians

X

make the two measures computable

-1
Therefore, Al _ eS AS _ g leAg = S_letAfeetA‘mS —0

if the real parts of all the eigenvalues of A are negative.

Therefore the follow limits exists if all the eigenvalues of A are negative,
i.e. if the system is stable:

ot o0
P = lim P(t) = lim eATBBTeAderzj e BBTe” tdt

t—oo t—o0 J0 0

ot 0
Q = limQ(t) = lim eATTLLTeAfdf=j ™ tLL Mt

t—o0 t—o0 0 0

where P and Q are the infinite Gramians (only for stable systems).



,Infinite Gramians

O
make the two measures computable

Recall:

If a system is controllable: P(t) nonsingular

If a system is observable: Q(t) nonsingular

Then: (Exercise)

If a system is controllable: P nonsingular

If a system is observable: Q nonsingular




Infinite Gramians

make the two measures computable

The infinite Gramians:

P=limP(t) = lim eATBBT Afdf_ eAtBBTeATtdt

t—>w [ e

Q= limQ(t) = lim AL A dr = [ AL e Mt
t—>0J0 J0

From the property of integral, we have

P>P(t), Wt Q>Q(t), Wt

|

In the meaning of inner product: P > P(t) < (Px, x) > (P(t)x, X)



A Infinite Gramians

>
make the two measures computable

The minimal energy necessary for reaching a reachable state x at time t is:
[T ]I*=x"P~(t)x

For stable systems, lower bound of the minimal energ
reaching a reachable state x is:

necessary for

|T|[°=x"P(t) x> X' P7IX because P>P(t), Wt

For stable systems, the upper bo
observable state x is:

d of the energy produced by the

Iy =X QWX <FQX because Q>0Q@), Vi—

Computable
measures!

Only suitable for stable
systems!




Infinite Gramians

make the two measures computable

For stable systems, the minimal energy necessary for reaching any state is:

min||T|)°=x"P'x

For stable systems, the maximal energy produced by any state x is:

max || y(t) [I*=X"Qx




Infinite Gramians

make the two measures computable

Because the MOR method we will introduce uses P and Q to derive the
reduced-order model, and therefore is only suitable for stable systems.

min || T |*=x"P~x max || y(t) [I'= X" QX

|

The eigenspaces of P and Q make the two measurements practically
computable!




Eigenspaces of P and Q

make the two measures parctically computable

The states which are difficult to reach are included in the subspace spanned by
those eigenvectors of P that corresponds to small eigenvalues.

The states which are difficult to observe are included in the subspace spanned by
those eigenvectors of Q that corresponds to small eigenvalues.




Eigenspaces of P and Q

make the two measures practically computable

Denote $1,$2:""*:6p as the n eigenvectors of P, the corresponding eigenvalues
are 4, 2 A4, 2---2 A, (P is symmetric positive definite, it has positive eigenvalues.)

&85, &, are linearly independent, therefore they constitute a basis of the
whole space .

The state x can therefore be represented by &;,$5,+-+ &,

X=0yg) + a6, +-+ a6,

min || T ||°= x" P X

If a matrix is nonsingular, then its inverse has the same eigenvectors, but the
eigenvalues are the reciprocals:

PE=AE=PIPE= AP =g/ =P 7Y



Eigenspaces of P and Q

make the two measures practically computable
min|| T |°’= x" P~'x

X=a18) + a8y + +ané,

U

_ 1 1 1
P 1X:0‘1—§1+052/1—§2 +"'+an7§n

2 n
1 1 1
Tp-1 2 T 2 T 2 T
X P X=af — +o, — +ota, —E& &
Hard T as e
Pis Symmetric,@ Therefore Q =[&.+.&,1 is orthogonal.

. 1 1 1
min||T|ra? —+a?—+--+a?—
A Aq

min ||T |* indicates the minimal energy needed to reach the state x, therefore
the larger min||T | is, the more difficult the state x to reach.



£ Eigenspaces of P and Q

‘\’&d
make the two measures practically computable

min || U | is larger if 4 =4, 2-->> A4 = A4y 2+ > 4, and

Oy, 0y, << O, Ay, Ay than if
A2 0y 25> A > Ay 2> A and

U1 Oyt 22 Oy Oyt A,

X=0c +ay6, ++ -+ a6,

This means if x is difficult to reach (|| T ||* is large), x should have large
components in the subspace spanned by the eigenvectors corresponding to the

small eigenvalues of P. Or x should almost locates in the subspace spanned by the
eigenvectors corresponding to the small eigenvalues.



Eigenspaces of P and Q

make the two measures practically computable

Similarly, if x is difficult to observe (|| y(t)||*= X' QX is small) x should have large
components in the subspace spanned by the eigenvectors corresponding to the
small eigenvalues of Q. Or x should almost locates in the subspace spanned by
the eigenvectors corresponding to the small eigenvalues.

2Ry 2> A 2 Ay 22 A

PE = A& ,i=12,n

n

Sk

~ ~ ~

L2l 2> 2 A 224

Qé:za,i:]ﬂz,...n 5%;\)2
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