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Motivation 

Balanced truncation: first balancing, then truncate. 

Given a LTI system: 
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For convenience of discussion, we denote the system as a block form: 
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What’s the 
unimportant part? 

The states which are difficult to control and difficult to observe correspond the 
unimportant part. 

In system theory, the unknown vector x is called the state (vector) of the system.  
Actually, the entries in x depict the system variables, such as  branch currents, 
node voltages in the interconnect model, and therefore describe the state of the 
system.   

Motivation 
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Controllability measure 

Reachability  

Definition: Given a system                  , a state x is reachable from the zero state  
 
if there exist an input function           of finite energy such that x can be obtain 
from the zero state and within a finite period of time             .   
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reachX

Controllability measure 

Denote               the subspace spanned by the reachable states, then   

XX reach =

XX reach ⊆

The system is reachable                                      : every state in the state space is 
reachable. 

    is the whole state space, e.g.                          
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Controllability measure 

Example 1 
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x denotes the voltage drop along the capacitor, and is the state of the  
system. In this circuit, x=0 at any time. 

Conclusion: 
In this circuit, 0 state is a reachable state, but any nonzero state is a unreachable 
state!  Therefore the whole system is unreachable. 

Picture referred to [Chi-Tsong Chen, 
Linear system Theory and Design, 
3rd edition, New York Oxford, Oxford 
University Press, 1999] 



Wheatstone bridge 

A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie in 1833 and improved 
and popularized by Sir Charles Wheatstone in 1843. (http://en.wikipedia.org/wiki/Wheatstone_bridge) 

Example 1 is actually the Wheatstone bridge. 
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       is adjustable, it is adjusted till  
       becomes zero. It means there  
 is no voltage drop through       . 
 
Therefore, we have  
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xRThe value of      can be easily computed  
by the above relation. 

Controllability measure 



Controllability measure 

Example 2 
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voltage drops through 
the two capacitors. 

Those states          with                           are reachable, but those states with                   
                      are not reachable. Because whatever the input is, the voltage drops 
through the two capacitors are always identical. Therefore the whole system is 
unreachable. 
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Controllability measure 

Example 3 
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The state variables in the  vector            are unreachable,  
since no input u(t) exists to reach            .   
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Controllability measure 

For a standard LTI system, the reachability matrix is defined as: 
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• Why it is called reachability matrix?          
• Any connection between                and reachability? ),( BAR



Controllability measure 

Notice the analytical solution of system state equation                                is BuAxdtdx +=/
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The reachability of a state x of the system is tested by the zero initial state,              ,  
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which means a reachable state x is the linear combination of the terms:  
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Therefore                                                                  is defined as the reachability 
Matrix. 
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Controllability measure 



Controllability measure 

By the Cayley-Halmilton theorem, the rank of the reachability matrix and 
the span of its columns are determined (at most) by the first n terms (not  
the first n columns), i.e.                             
 
Thus for computational purpose the following (finite) reachability matrix  
is of importance: 
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Sometimes                 is directly defined as the reachability matrix. ),( BARn



Controllability measure 

Actually there is a Theorem (Theorem 4.5 in Chapter 4 in [Antoulas05]):  

Theorem 1  If              is the subspace spanned by the reachable states, then                                                                       reachX
.),( of columns by the spanned  subspace :),( im BARBARX reach =

The theorem tells us the subspace spanned by all reachable states is exactly the 
subspace spanned by the columns of the reachability matrix              . ),( BAR

The finite reachability gramian at time             is defined as : ∞<t
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Controllability measure 

Connection between reachability matrix and reachability gramians 

Proposition 1  The finite reachability gramians have the following  
properties: (a)                                 and (b) their columns span the reachability  
subspace, i.e.,   
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( Proposition 4.8 in [Antoulas 05] ) 



Controllability measure 
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Controllability measure 
⊕⊕ ∈⇒∈∀ PxBARx  im),( imNext we prove: 
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The states needing large minimal energy to reach will be truncated during MOR 
based on balanced truncation. 

The relation                                     provides a way to derive the minimal  
energy which is needed to reach a state x. 

),( im)( im BARtP =

Controllability measure 

Therefore, the minimal energy for reaching a state x is a key concept for model 
order reduction based on balanced truncation. 

Next, we will derive the minimal energy for reaching a state x. 



Controllability measure 

From the analytical solution, if a state x is reached at time   , then          with 
finite energy, such that   
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Controllability measure 
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The input u(t) is the excitation of the system, its energy is the energy required 
to reach the state x . 

Energy of a function is defined as: dttutuu
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Controllability measure 

Actually the energy of     is the minimal energy to reach the state x at the  
given time period   .  (Proposition 4.10 in [Antoulas 05]) 
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Controllability measure 

A system is reachable means every state x in the whole state space is reachable. 
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From theorem 1: 

From Proposition 1: ),( im)( im BARtP =
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Controllability measure 

Energy of                              (notice                 ) : ξτ )( −= tAT T
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Remark 1: 
Reachability is a generic property for LTI systems with the form: 
 
 
This means, intuitively, that almost every LTI system with the standard form is 
reachable.  If there are any unreachable systems, they are very rare. The 
unreachable LTI systems like examples 1,2 are rare. 

Controllability measure 

BuAxdtdx +=/

Remark 2: 
The reachability of the system can be more easily checked by the criteria:  

The system is reachable      nBARrank n =)),((



Controllability measure 

A concept which is closely related to reachability is that of controllability. 
 
Here, instead of driving the zero state to a desired state, a given non-zero state is 
steered to the zero state. More precisely we have: 

Definition of controllability:  Given a LTI system as above, a non-zero  
state x is controllable if  there exist an input u(t) with finite energy such  
that the state of the system goes to zero from x within a finite time:             .  ∞<t



Controllability measure 

Theorem 2  For time continuous systems                              . (Theorem 4.16 in 
[Antoulas 05]) 
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Similarly,               is the subspace spanned by the controllable states.  

It has been proved that for standard time continuous LTI systems 
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The system is controllable 

From the property of reachable system, we have      
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the concepts of reachability and controllability are equivalent.  



Controllability measure 

Controllability  
measure! 
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Only for reachable 
systems.  



Controllability measure 

Spring 
Constant: 1 

Damping 
Coefficient: 1 

Damping 
Coefficient: 2 
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Example: Platform system 

The system is described by the following linear time invariant (LTI) system: 

)(
1
5.0

)(
10

05.0
/)( tutxdttdx 








+








−

−
=

A B

Spring 
Constant: 1 

0
02

22

11

=−−
=−−

xxu
xxu





makxvF =−−ηassume mass of the platform is zero,  then from Newton’s  law: 



Controllability measure 

Is the platform system controllable? 

nBARrank n =)),((The system is controllable 
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Therefore, the platform system is controllable. 



Controllability measure 

Associated with controllability, there is the concept of observability. 

Controllability:  input u(t)               state x(t).  

Possibility of steering the state using the input. 

Observability:  output y(t)                state x(t).  

Possibility of estimating the state from the output. 
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Observability measure 

Observability is a measure for how well internal states of a system can be 
estimated by knowledge of its external outputs.  

Definition of Observability: Given any input u(t) , a state x of the system is 
observable, if starting with the state x (x(0)=x), and after a finite period of 
time            , x can be uniquely determined by the output        . ∞<t
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Observability measure 

Observability matrix? 
 
Observability Gramian? 
 
Output energy? 
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Observability measure 
                         Derivation of Observability matrix 
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If x is observable,  then for any u(t), x can be uniquely determined by the 
corresponding y : 
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Since x can be uniquely determined by     , it is sufficient to prove that     can be 
uniquely determined by          .   

   Let us see under what condition can       be uniquely determined by          ? x
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xeLty tAT=)(

Differentiate the above equation on both sides and get the derivatives at t=0: 
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Observability measure 
                         Derivation of Observability matrix 
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     can be uniquely determined, with k being at most n-1. x
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Observability measure 
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From above analysis, actually the finite Observability matrix is enough to 
determine observability:  

For standard LTI systems, the observability matrix is defined as:   

The system  is observable nALOrank n =)),((
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                         Derivation of Observability matrix 



The output energy associated with the initial state x is: 
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Finite Observability Gramian at time             is defined as:  ∞<t
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The system is observable:  

Observability measure 
                         Output  energy 

Finite Observability Gramian at time t: 
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Observability measure 
                              Observability Gramian 

Recall the minimal energy to reach a state x at time     is                                                      t
xtPxu T )(|||| 12 −=

Notice both energies are related to time. 
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Finite (reachability) controllability Gramian and observability Gramian will 
be used to derive the infinite Gramians which  
 
1. Make the two measures computable. 
2. will be directly used for truncation in MOR.  
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Under which condition,         and         are bounded when time goes to 
infinity:               ? 
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      is bounded if the real parts of all the eigenvalues of A are negative.    Ate
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 Infinite Gramians 
                            make the two measures computable 
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SeeSSeSee imre ttSSAt  Therefore,    

if the real parts of all the eigenvalues of A are negative.    

dteBBedeBBetPP tATAtt ATA
tt

TT

∫∫
∞

∞→∞→
===

00
lim)(lim τττ

  Therefore the follow limits exists if all the eigenvalues of A are negative,  
   i.e. if the system is stable:   

dteLLedeLLetQQ AtTtAt ATA
tt

TT

∫∫
∞
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===
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 where P and Q are the infinite Gramians (only for stable systems).    

 Infinite Gramians 
                            make the two measures computable 



 Infinite Gramians 
                            make the two measures computable 

Recall: 

If a system is observable:           nonsingular  

If a system is controllable:           nonsingular       

 )(tQ

 )(tP

Then:  (Exercise) 

If a system is controllable:           nonsingular       

Q

P

If a system is observable:           nonsingular  



The infinite Gramians: 

dteBBedeBBetPP tATAtt ATA

tt

TT

∫∫
∞

∞→∞→
===

00
lim)(lim τττ

dteLLedeLLetQQ AtTtAt ATA
tt

TT

∫∫
∞

∞→∞→
===

00
lim)(lim τττ

From the property of integral, we have 

ttPP ∀≥ ),( ttQQ ∀≥ ),(
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In the meaning of inner product: ),)((),()( xxtPxPxtPP ≥⇔≥



For stable systems, lower bound of the minimal energy necessary for 
reaching a reachable state x is: 

xPxxtPxu TT 112 )(|||| −− ≥=

The minimal energy necessary for reaching a reachable state x at time t is: 

xtPxu T )(|||| 12 −=

because  ttPP ∀≥ ),(

For stable systems, the upper bound of the energy produced by the 
observable state x is: 

xQxxtQxty TT ≤= )(||)(|| 2 because  ttQQ ∀≥ ),(

Only suitable for stable 
systems! 

 Infinite Gramians 
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Computable 
measures! 

Exercise. 



For stable systems, the minimal energy necessary for reaching any state is: 

xPxu T 12||||min −=

For stable systems, the maximal energy produced by any state x is: 

xQxty T=2||)(||max
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Because the MOR method we will introduce uses P and Q to derive the  
reduced-order model, and therefore is only suitable for stable systems.  

xPxu T 12||||min −= xQxty T=2||)(||max

The eigenspaces of  P and Q make the two measurements practically 
computable!  

 Infinite Gramians 
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The states which are difficult to reach are included in  the subspace spanned by 
those eigenvectors of P that corresponds to small eigenvalues.  

The states which are difficult to observe are included in the subspace spanned by 
those eigenvectors of Q that corresponds to small eigenvalues.  

why and 
how? 

Eigenspaces of P and Q 
                      make the two measures parctically computable 



nξξξ ,,, 21 Denote                         as the n eigenvectors of P, the corresponding eigenvalues 
are                              . (P is symmetric positive definite, it has positive eigenvalues.) 

nC

The state  x can therefore be represented by               :  nξξξ ,,, 21 

nnx ξαξαξα +++= 2211

xPxu T 12||||min −=

If a matrix is nonsingular, then its inverse has the same eigenvectors, but the 
eigenvalues are the reciprocals: 

ξλξξλξλξξ 111 / −−− =⇒=⇒= PPPPP

                      are linearly independent, therefore they constitute a basis of the 
whole space      . 

nξξξ ,,, 21 

nλλλ ≥≥≥ 21
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xPxu T 12||||min −=

nnx ξαξαξα +++= 2211

n
n

nxP ξ
λ

αξ
λ

αξ
λ

α 111
2

2
21

1
1

1 +++=− 

n
T
n

n
n

TTT xPx ξξ
λ

αξξ
λ

αξξ
λ

α 111 2
22

2

2
211

1

2
1

1 +++=− 

n
nu
λ

α
λ

α
λ

α 111||||min 2

2

2
2

1

2
1 +++= 

                      indicates  the minimal energy needed to reach the state x, therefore      
     the larger                 is, the more difficult the state x to reach. 

2||||min u
2||||min u

Therefore                       is orthogonal. P is symmetric,  ],,[~
1 nQ ξξ =
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λλλ 111
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21 ≤≤≤⇒≥≥≥ 

2||||min u

This means if x is difficult to reach (            is large), x should have large 
components in the subspace spanned by the eigenvectors corresponding to the 
small eigenvalues of P. Or x should almost locates in the subspace spanned by the 
eigenvectors corresponding to the small eigenvalues. 

nnx ξαξαξα +++= 2211

             is larger if                                                             and 

2|||| u

nkk λλλλλ ≥≥≥>>≥≥ +  121

nkk ααααα ,,,,, 121  +<<
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than if 

nkk λλλλλ ≥≥≥>>≥≥ +  121 and 

nkk ααααα ,,,,, 121  +>>



Similarly, if x is difficult to observe (                                is small) x should have large 
components in the subspace spanned by the eigenvectors corresponding to the 
small eigenvalues of Q. Or x should almost  locates in the subspace spanned by 
the eigenvectors corresponding to the small eigenvalues. 
 

xQxty T=2||)(||

kξ
2ξ

1ξ

1+kξ
2+kξ nξ

x

niP iii ,2,1, == ξλξ

niQ iii ,2,1,~~~
== ξλξ

nkk λλλλλ ≥≥≥>>≥≥ +  121

nkk λλλλλ ~~~~~
121 ≥≥≥>>≥≥ + 

 Eigenspaces of P and Q 
                      make the two measures practically computable 
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