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Example 1
A microthruster
Upper-left1: the structure of an array of pyrotechnical thrusters. Lower-right: the structure of a
2D-axisymmetric model.

A model of the microthruster unit.

1The picture is taken from [Rossi05], we acknowledge the author’s permission for using the picture.
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Example 1

When the PolySilicon (green) in the middle is excited by a current, the fuel below is
ignited and the explosion will occur through the nozzle.

The thermal process can be modeled by a heat transfer partial differential equation, while
the heat exchange through device interfaces is modeled by convection boundary conditions
with different film coefficients ht , hs , hb.

The film coefficients ht , hs , hb respectively describe the heat exchange on the top, side,
and bottom of the microthruster with the outside surroundings. The values of the film
coefficients can change from 1 to 109
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Example 1

After finite element discretization of the 2D-axisymmetric model, a parameterized system is
derived,

Eẋ = (A− htAt − hsAs − hbAb)x + B
y = Cx .

(1)

Here, ht , hs , hb are the parameters and the dimension of the system is n = 4, 257. We observe
the temperature at the center of the PolySilicon heater changing with time and the film
coefficient, which defines the output of the system2.

2Detailed description of the parameterized system can be find at
http://simulation.uni-freiburg.de/downloads/benchmark
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Example 2
The second example is a butterfly gyroscope. The parameterized system is obtained by finite
element discretization of the model for the gyroscope (The details of the model can be found
in [Moosmann07]).

Scheme of the butterfly gyroscope [Moosmann07].Lihong Feng Model Reduction for Dynamical Systems 6/31



Example 2

The paddles of the device are excited to a vibration z(t), where all paddles vibrate in
phase. With the external rotation φ, the Coriolis force acts upon the paddles, which
causes an out-of-phase movement measured as the z-displacement difference δz between
the two red dotted nodes.

The interesting output of the system is δz , the difference of the displacement z(t)
between the two end nodes depicted as red dots on the same side of the bearing.
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Example 2

The system is of the following form:

M(d)ẍ + D(θ, α, β, d)ẋ + T (d)x = Bu(t)
y = Cx .

(2)

M(d) = (M1 + dM2), D(θ, α, β, d) = θ(D1 + dD2) + αM(d) + βT (d), and
T (d) = (T1 + 1

dT2 + dT3).

Parameters d , θ, α, β. d is the width of the bearing, and θ is the rotation velocity along
the x axis. α, β are used to form the Rayleigh damping matrices αM(d), βT (d) in
D(θ, α, β, d).

The dimension of the system is n = 17913.
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Example 3

The third example is a silicon-nitride membrane3. This structure resembles a micro-hotplate
similar to other micro-fabricated devices such as gas sensors [GrafBT04] and infrared
sources [SpannSH05].

Temperature distribution over the silicon-nitride membrane.

3Picture courtesy of T. Bechtold, IMTEK, University of Freiburg, Germany.
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Example 3

The model of the silicon-nitride membrane is a system with four parameters [BechtoldHRG10].

(E0 + ρcpE1)ẋ + (K0 + κK1 + hK2)x = Bu(t)
y = Cx .

(3)

The mass density ρ in kg/m3, the specific heat capacity cp in J/kg/K , the thermal
conductivity in W/m/K, and the heat transfer coefficient h in W/m2/K.

The dimension of the system is n = 60020.
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PMOR based on Multi-moment matching

In frequency domain

Using Laplace transform, the system in time domain is transformed into

E (s1, . . . , sp)x = Bu(sp),
y = LTx ,

(4)

where the matrix E ∈ Rn×n is parametrized. The new parameter sp is in fact the frequency
parameter s, which corresponds to time t.

In case of a nonlinear and/or non-affine dependence of the matrix E on the parameters, the
system in (4) is first transformed to an affine form

(E0 + s̃1E1 + s̃2E2 + . . .+ s̃pEp)x = Bu(sp),
y = LTx .

(5)

Here the newly defined parameters s̃i , i = 1, . . . , p, might be some functions (rational,
polynomial) of the original parameters si in (4).
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PMOR based on multi-moment matching

To obtain the projection matrix V for the reduced model, the state x in (5) is expanded into a
Taylor series at an expansion point s̃0 = (s̃0

1 , . . . , s̃
0
p)T as below,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu(sp)

=
∞∑

m=0
[σ1M1 + . . .+ σpMp]mẼ−1Bu(sp)

=
∞∑

m=0

m−(k3+...+kp)∑
k2=0

. . .
m−kp∑
kp−1=0

Fm
k2,...,kp

(M1, . . . ,Mp)

(6)

where σi = s̃i − s̃0
i , Ẽ = E0 + s̃0

1E1 + . . .+ s̃0
pEp, Mi = −Ẽ−1Ei , i = 1, 2, . . . p, and

BM = Ẽ−1B.
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PMOR based on multi-moment-matching

σ0: LTBM : the 0th order multi-moment; the columns in BM : the 0th order moment
vectors.

σ1: LTMiBM , i = 1, 2, . . . , p: the first order multi-moments; the columns in
MiBM , i = 1, 2, . . . , p: the first order moment vectors.

σ2: . . . ; the columns in M2
i BM , i = 1, 2, . . . , p, (M1Mi + MiM1)BM , i = 2, . . . , p,

(M2Mi + MiM2)BM , i = 3, . . . , p, . . . , (Mp−1Mp + MpMp−1)BM : the second order
moment vectors.

. . . .

Since the coefficients corresponding not only to s = sp, but also to those associated with the
other parameters si , i = 1, . . . , p − 1 are, we call them as multi-moments of the transfer
function.
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PMOR based on multi-moment-matching

For the general case, the projection matrix V is constructed as

range {V }

= colspan{
mq⋃
m=0

m−(kp+...+k3)⋃
k2=0

. . .
m−kp⋃
kp−1=0

m⋃
kp=0

Fm
k2,...,kp

(M1, . . . ,Mp)BM}

= colspan{BM ,M1BM ,M2BM , . . . ,MpBM , (M1)2BM , (M1M2 + M2M1)BM , . . . ,
(M1Mp + MpM1)BM , (M2)2BM , (M2M3 + M3M2)BM , . . .}.

(7)
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A Robust Algorithm

By observing the power series expansion of x in (6), we get the following equivalent, but different formulation,

x = [I − (σ1M1 + . . .+ σpMp)]−1Ẽ−1Bu

=
∞∑
m=0

[σ1M1 + . . .+ σpMp ]mBMu

= BMu + [σ1M1 + . . .+ σpMp ]BMu
+[σ1M1 + . . .+ σpMp ]2BMu + . . .
+[σ1M1 + . . .+ σpMp ]jBMu + . . .

(8)

By defining

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp ]BM ,

x2 = [σ1M1 + . . .+ σpMp ]2BM , . . . ,

xj = [σ1M1 + . . .+ σpMp ]jBM , . . . ,

we have x = (x0 + x1 + x2 + · · ·+ xj + · · · )u and obtain the recursive relations
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A Robust Algorithm

x0 = BM ,

x1 = [σ1M1 + . . .+ σpMp]x0,

x2 = [σ1M1 + . . .+ σpMp]x1, . . .

xj = [σ1M1 + . . .+ σpMp]xj−1, . . . .

If we define a vector sequence based on the coefficient matrices of xj , j = 0, 1, . . . as below,

R0 = BM ,
R1 = [M1R0,M2R0, . . . ,MpR0],
R2 = [M1R1,M2R1, . . . ,MpR1],

...
Rj = [M1Rj−1,M2Rj−1, . . . ,MpRj−1],

...

(9)
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A Robust Algorithm

and let R be the subspace spanned by the vectors in Rj , j = 0, 1, · · · ,m:

R = colspan{R0, . . . ,Rj , . . . ,Rm},

then there exists z ∈ Rq, such that x ≈ Vz . Here the columns in V ∈ Rn×q is a basis of R.
We see that the terms in Rj , j = 0, 1, . . . ,m are the coefficients of the parameters in the series
expansion (8). They are also the j-th order moment vectors.

How to compute an orthonormal basis V ?
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A Robust Algorithm

Algorithm 1: Compute V = [v1, v2, . . . , vq ] [Benner, Feng’14]

Initialize a1 = 0, a2 = 0, sum = 0.
Compute R0 = Ẽ−1B.
if multiple input then

Orthogonalize the columns in R0 using MGS: [v1, v2, . . . , vq1 ] = orth{R0} with respect to a user given tolerance ε > 0
specifying the deflation criterion for numerically linearly dependent vectors.
sum = q1 (% q1 is the number of columns remained after deflation w.r.t. ε.)

else
v1 = R0/||R0||2
sum = 1

end if
Compute the orthonormal columns in R1,R2, . . . ,Rm iteratively as below:
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A Robust Algorithm

continued

for i = 1, 2, . . . ,m do
a2 = sum;
for t = 1, 2, . . . , p do

if a1 = a2 then
stop

else
for j = a1 + 1, . . . a2 do

w = Ẽ−1Etvj ; col = sum + 1;
for k = 1, 2, . . . , col − 1 do

h = vT
k w ; w = w − hvk

end for
if ‖w‖2 > ε then

vcol = w
‖w‖2

; sum = col ;

end if
end for

end if
end for
a1 = a2;

end for
Orthogonalize the columns in V by MGS w.r.t. ε.
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Adaptively select expansion points

Let µ = (s̃1, . . . , s̃p), ∆(µ) is an error estimation, or error bound for x̂/ŷ , the state/output of
the system computed from ROM.

Greedy algorithm: Adaptive selection of the expansion points µi

V = []; ε = 1;
Initial expansion point: µ0; i = −1;
Ξtrain: a large set of the samples of µ
WHILE ε > εtol

i=i+1;
µi = µ̂;
Use Algorithm 1 to compute Vi = span{R0, . . . ,Rq}µi ;
V = [V ,Vi ];
µ̂ = arg max

µ∈Ξtrain

∆(µ);

ε = ∆(µ̂);
END WHILE.
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Experimental results

Example 1: A MEMS model with 4 parameters (benchmark available at
http://modlereduction.org),

M(d)ẍ + D(θ, α, β, d)ẋ + T (d)x = Bu(t),
y = Cx .

Here, M(d) = (M1 + dM2), T (d) = (T1 + 1
dT2 + dT3),

D(θ, α, β, d) = θ(D1 + dD2) + αM(d) + βT (d) ∈ Rn×n, n=17,913. Parameters, d , θ, α, β.
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θ ∈ [10−7, 10−5], s ∈ 2π
√
−1× [0.05, 0.25], d ∈ [1, 2].

Ξtrain: 3 random θ, 10 random s, 5 random d , α = 0, β = 0 [Salimbahrami et al.’ 06]. Totally 150 samples of µ.
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ith iteration step

∆(µi )

εmax
true
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∆(µi )
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true

Vµi = span{BM ,R1,R2}µi , i = 1, . . . , 33. εtol = 10−7, εmax
true = max

µ∈Ξtrain

|H(µ)− Ĥ(µ)|, ROM size=804.
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Vµi = span{BM ,R1}µi , i = 1, . . . , 36. εtol = 10−7, ROM size=210.
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Example 2: a silicon nitride membrane

(E0 + ρcpE1)dx/dt + (K0 + κK1 + hK2)x = bu(t)
y = Cx .

Here, the parameters ρ ∈ [3000, 3200], cp ∈ [400, 750], κ ∈ [2.5, 4], h ∈ [10, 12], f ∈ [0, 25]Hz

Ξtrain: 2250 random samples have been taken for the four parameters and the frequency.

εretrue = max
µ∈Ξtrain

|H(µ)− Ĥ(µ)|/|H(µ)|, ∆̂re(µ) = ∆̂(µ)/|Ĥ(µ)|

Vµi=span{BM ,R1}, ε
re
tol = 10−2, n = 60, 020, r = 8,

iteration εretrue ∆̂re(µi )

1 1× 10−3 3.44

2 1× 10−4 4.59× 10−2

3 2.80× 10−5 4.07× 10−2

4 2.58× 10−6 2.62× 10−5
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Ξtrain: 3 samples for κ, 10 samples for the frequency.
Ξvar : 16 samples for κ, 51 samples for the frequency.

0
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20
3

4
0

2

4

6

·10−4

Frequency (Hz)

κ

Relative error of the final ROM over Ξvar .
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IRKA based PMOR

Consider a linear parametric system

C(p1, p2, · · · , pl ) dx
dt

= G(p1, p2, · · · , pl )x + B(p1, p2, · · · , pl )u(t),
y(t) = L(p1, p2, · · · , pl )Tx ,

(10)

where the system matrices C(p1, p2, · · · , pl ), G(p1, p2, · · · , pl ),B(p1, p2, · · · , pl ), LT (p1, p2, · · · , pl ), are (maybe,

nonlinear, non-affine) functions of the parameters p1, p2, pl .

A straight forward way is [Baur, et.al’11]:
Set a group of samples of µ = (p1, . . . , pl ): µ0, . . . , µl .
For each sample µi = (pi1, . . . , p

i
l ), i = 1 . . . , l , implement IRKA to get the projection matrices Wi ,Vi .

The final projection matrices:

range(V ) = orth(V1, . . . ,Vl ),

range(W ) = orth(W1, . . . ,Wl ),

W = W (VTW )−1.
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IRKA based PMOR

The reduced parametric model is:

Parametric ROM

W TC (p1, p2, · · · , pl)V dx
dt = W TG (p1, p2, · · · , pl)Vx

+W TB(p1, p2, · · · , pl)u(t),
y(t) = L(p1, p2, · · · , pl)TVx ,

Question: How to select the samples of µ ?
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How to deal with nonaffine matrices?

Nonafine matrices are those matrices that cannot be written as:

E (p1, . . . , pl) = E0 + p1E1 + . . . , plEl .

PMOR based on multi-moment-matching cannot directly deal with nonaffine case. We
must first approximate with affine matrices.

IRKA can deal with nonaffine matrices directly.
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Why and How MOR for Steady systems?

Steady parametric systems

E (p1, . . . , pl)x = B(p1, . . . , pl)

Solving steady systems for multi-query tasks is also time-consuming.

Application of PMOR based on multi-moment-matching to steady systems is straight
forward.

IRKA ?.
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Applicable to nonlinear parametric systems?

Nonlinear parametric systems:

f (µ, x) = b(µ),

or

E (µ)dxdt = A(µ)x + f (µ, x) = B(µ)u(t),
y(t) = L(µ)Tx ,

µ = (p1, . . . , pm), x = x(µ, t).

PMOR based on multi-moment matching or IRKA could deal with weakly nonlinear
parametric systems.

Good candidates for MOR of general nonlinear parametric systems are POD and reduced
basis methods.

To be introduced: POD and reduced basis method for linear and nonlinear parametric
systems.
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