

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Model Reduction for Dynamical Systems

Lihong Feng

Otto-von-Guericke Universitaet Magdeburg Faculty of Mathematics Summer term 2019

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

feng@mpi-magdeburg.mpg.de
https://www.mpi-magdeburg.mpg.de/3668354/mor_ss19

- 1. Linear parametric systems
- 2. PMOR based on Multi-moment matching
- 3. A Robust Algorithm
- 4. IRKA based PMOR
- 5. Steady systems
- 6. Extension to nonlinearities

A microthruster

Upper-left¹: the structure of an array of pyrotechnical thrusters. Lower-right: the structure of a 2D-axisymmetric model.

- When the PolySilicon (green) in the middle is excited by a current, the fuel below is ignited and the explosion will occur through the nozzle.
- The thermal process can be modeled by a heat transfer partial differential equation, while the heat exchange through device interfaces is modeled by convection boundary conditions with different film coefficients h_t, h_s, h_b.
- The film coefficients h_t , h_s , h_b respectively describe the heat exchange on the top, side, and bottom of the microthruster with the outside surroundings. The values of the film coefficients can change from 1 to 10^9

After finite element discretization of the 2D-axisymmetric model, a parameterized system is derived,

$$\begin{aligned} E\dot{x} &= (A - h_t A_t - h_s A_s - h_b A_b) x + B \\ y &= Cx. \end{aligned} \tag{1}$$

Here, h_t , h_s , h_b are the parameters and the dimension of the system is n = 4,257. We observe the temperature at the center of the PolySilicon heater changing with time and the film coefficient, which defines the output of the system².

²Detailed description of the parameterized system can be find at http://simulation.uni-freiburg.de/downloads/benchmark

The second example is a butterfly gyroscope. The parameterized system is obtained by finite element discretization of the model for the gyroscope (The details of the model can be found in [Moosmann07]).

- The paddles of the device are excited to a vibration z(t), where all paddles vibrate in phase. With the external rotation φ, the Coriolis force acts upon the paddles, which causes an out-of-phase movement measured as the z-displacement difference δz between the two red dotted nodes.
- The interesting output of the system is δz , the difference of the displacement z(t) between the two end nodes depicted as red dots on the same side of the bearing.

The system is of the following form:

$$M(d)\ddot{x} + D(\theta, \alpha, \beta, d)\dot{x} + T(d)x = Bu(t)$$

$$y = Cx.$$
(2)

•
$$M(d) = (M_1 + dM_2), D(\theta, \alpha, \beta, d) = \theta(D_1 + dD_2) + \alpha M(d) + \beta T(d), \text{ and } T(d) = (T_1 + \frac{1}{d}T_2 + dT_3).$$

Parameters d, θ, α, β. d is the width of the bearing, and θ is the rotation velocity along the x axis. α, β are used to form the Rayleigh damping matrices αM(d), βT(d) in D(θ, α, β, d).

• The dimension of the system is n = 17913.

The third example is a silicon-nitride membrane³. This structure resembles a micro-hotplate similar to other micro-fabricated devices such as gas sensors [GrafBT04] and infrared sources [SpannSH05].

Temperature distribution over the silicon-nitride membrane.

³Picture courtesy of T. Bechtold, IMTEK, University of Freiburg, Germany.

The model of the silicon-nitride membrane is a system with four parameters [BechtoldHRG10].

$$(E_0 + \rho c_p E_1) \dot{x} + (K_0 + \kappa K_1 + h K_2) x = Bu(t) y = Cx.$$
 (3)

• The mass density ρ in kg/m³, the specific heat capacity c_{ρ} in J/kg/K, the thermal conductivity in W/m/K, and the heat transfer coefficient h in W/m²/K.

• The dimension of the system is n = 60020.

In frequency domain

Using Laplace transform, the system in time domain is transformed into

$$E(s_1,\ldots,s_p)x = Bu(s_p), y = L^T x,$$

$$(4)$$

where the matrix $E \in \mathbb{R}^{n \times n}$ is parametrized. The new parameter s_p is in fact the frequency parameter s, which corresponds to time t.

In case of a nonlinear and/or non-affine dependence of the matrix E on the parameters, the system in (4) is first transformed to an affine form

$$(E_0 + \tilde{s}_1 E_1 + \tilde{s}_2 E_2 + \ldots + \tilde{s}_p E_p) x = Bu(s_p),$$

$$y = L^T x.$$
(5)

Here the newly defined parameters \tilde{s}_i , i = 1, ..., p, might be some functions (rational, polynomial) of the original parameters s_i in (4).

Lihong Feng

To obtain the projection matrix V for the reduced model, the state x in (5) is expanded into a Taylor series at an expansion point $\tilde{s}_0 = (\tilde{s}_1^0, \dots, \tilde{s}_p^0)^T$ as below,

$$x = [I - (\sigma_1 M_1 + \ldots + \sigma_p M_p)]^{-1} \tilde{E}^{-1} Bu(s_p)$$

= $\sum_{m=0}^{\infty} [\sigma_1 M_1 + \ldots + \sigma_p M_p]^m \tilde{E}^{-1} Bu(s_p)$
= $\sum_{m=0}^{\infty} \sum_{k_2=0}^{m-(k_3 + \ldots + k_p)} \ldots \sum_{k_{p-1}=0}^{m-k_p} F_{k_2, \ldots, k_p}^m(M_1, \ldots, M_p)$ (6)

where
$$\sigma_i = \tilde{s}_i - \tilde{s}_i^0$$
, $\tilde{E} = E_0 + \tilde{s}_1^0 E_1 + \ldots + \tilde{s}_p^0 E_p$, $M_i = -\tilde{E}^{-1} E_i$, $i = 1, 2, \ldots p$, and $B_M = \tilde{E}^{-1} B$.

- σ^0 : $L^T B_M$: the 0th order multi-moment; the columns in B_M : the 0th order moment vectors.
- σ¹: L^TM_iB_M, i = 1, 2, ..., p: the first order multi-moments; the columns in M_iB_M, i = 1, 2, ..., p: the first order moment vectors.
- σ^2 : ...; the columns in $M_i^2 B_M$, i = 1, 2, ..., p, $(M_1 M_i + M_i M_1) B_M$, i = 2, ..., p, $(M_2 M_i + M_i M_2) B_M$, i = 3, ..., p, ..., $(M_{p-1} M_p + M_p M_{p-1}) B_M$: the second order moment vectors.

Since the coefficients corresponding not only to $s = s_p$, but also to those associated with the other parameters s_i , i = 1, ..., p - 1 are, we call them as **multi-moments** of the transfer function.

.

For the general case, the projection matrix \boldsymbol{V} is constructed as

$$range \{V\}$$

$$= colspan \{ \bigcup_{m=0}^{m_q} \bigcup_{k_2=0}^{m-(k_p+\ldots+k_3)} \dots \bigcup_{k_{p-1}=0}^{m-k_p} \bigcup_{k_p=0}^{m} F_{k_2,\ldots,k_p}^m (M_1,\ldots,M_p)B_M \}$$

$$= colspan \{ B_M, M_1B_M, M_2B_M, \ldots, M_pB_M, (M_1)^2B_M, (M_1M_2 + M_2M_1)B_M, \ldots, \\ (M_1M_p + M_pM_1)B_M, (M_2)^2B_M, (M_2M_3 + M_3M_2)B_M, \ldots \}.$$

$$(7)$$

By observing the power series expansion of x in (6), we get the following equivalent, but different formulation,

$$\begin{aligned} x &= [I - (\sigma_1 M_1 + \ldots + \sigma_p M_p)]^{-1} \tilde{E}^{-1} B u \\ &= \sum_{m=0}^{\infty} [\sigma_1 M_1 + \ldots + \sigma_p M_p]^m B_M u \\ &= B_M u + [\sigma_1 M_1 + \ldots + \sigma_p M_p] B_M u \\ &+ [\sigma_1 M_1 + \ldots + \sigma_p M_p]^2 B_M u + \ldots \\ &+ [\sigma_1 M_1 + \ldots + \sigma_p M_p]^j B_M u + \ldots \end{aligned}$$

By defining

$$\begin{aligned} x_0 &= B_M, \\ x_1 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] B_M, \\ x_2 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p]^2 B_M, \ldots, \\ x_j &= [\sigma_1 M_1 + \ldots + \sigma_p M_p]^j B_M, \ldots, \end{aligned}$$

we have $x = (x_0 + x_1 + x_2 + \dots + x_i + \dots)u$ and obtain the recursive relations

(8)

$$\begin{aligned} x_0 &= B_M, \\ x_1 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_0, \\ x_2 &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_1, \ldots \\ x_j &= [\sigma_1 M_1 + \ldots + \sigma_p M_p] x_{j-1}, \ldots. \end{aligned}$$

If we define a vector sequence based on the coefficient matrices of x_j , j = 0, 1, ... as below,

$$R_{0} = B_{M},$$

$$R_{1} = [M_{1}R_{0}, M_{2}R_{0}, \dots, M_{p}R_{0}],$$

$$R_{2} = [M_{1}R_{1}, M_{2}R_{1}, \dots, M_{p}R_{1}],$$

$$\vdots$$

$$R_{j} = [M_{1}R_{j-1}, M_{2}R_{j-1}, \dots, M_{p}R_{j-1}],$$

$$\vdots$$
(9)

and let R be the subspace spanned by the vectors in R_j , $j = 0, 1, \dots, m$:

$$R = \operatorname{colspan}\{R_0, \ldots, R_j, \ldots, R_m\},\$$

then there exists $z \in \mathbb{R}^q$, such that $x \approx Vz$. Here the columns in $V \in \mathbb{R}^{n \times q}$ is a basis of R. We see that the terms in R_j , j = 0, 1, ..., m are the coefficients of the parameters in the series expansion (8). They are also the *j*-th order moment vectors.

How to compute an orthonormal basis V?

Algorithm 1: Compute $V = [v_1, v_2, \dots, v_q]$ [Benner, Feng'14]

Initialize $a_1 = 0$, $a_2 = 0$, sum = 0. Compute $R_0 = \tilde{E}^{-1}B$. if multiple input then Orthogonalize the columns in R_0 using MGS: $[v_1, v_2, \ldots, v_{a_1}] = \operatorname{orth} \{R_0\}$ with respect to a user given tolerance $\varepsilon > 0$ specifying the deflation criterion for numerically linearly dependent vectors. (% q_1 is the number of columns remained after deflation w.r.t. ε .) $sum = q_1$ else $v_1 = R_0 / ||R_0||_2$ sum = 1end if

Compute the orthonormal columns in R_1, R_2, \ldots, R_m iteratively as below:

continued

for i = 1, 2, ..., m do $a_2 = sum$: for t = 1, 2, ..., p do if $a_1 = a_2$ then stop else for $j = a_1 + 1, \dots a_2$ do $w = \tilde{E}^{-1}E_t v_i$; col = sum + 1; for k = 1, 2, ..., col - 1 do $h = v_k^T w; w = w - h v_k$ end for if $||w||_2 > \varepsilon$ then $v_{col} = \frac{w}{\|w\|_2}$; sum = col; end if end for end if end for $a_1 = a_2$: end for Orthogonalize the columns in V by MGS w.r.t. ε .

Lihong Feng

Adaptively select expansion points

Let $\mu = (\tilde{s}_1, \dots, \tilde{s}_p)$, $\Delta(\mu)$ is an error estimation, or error bound for \hat{x}/\hat{y} , the state/output of the system computed from ROM.

Greedy algorithm: Adaptive selection of the expansion points μ^i

```
V = []; \epsilon = 1;
Initial expansion point: \mu^0: i = -1:
\Xi_{train}: a large set of the samples of \mu
WHILE \epsilon > \epsilon_{tot}
   i = i + 1:
   \mu^i = \hat{\mu}
   Use Algorithm 1 to compute V_i = span\{R_0, \ldots, R_q\}_{u_i};
   V = [V, V_i]
   \hat{\mu} = \arg \max_{\mu \in \Xi_{train}} \Delta(\mu);
   \epsilon = \Delta(\hat{\mu}):
END WHILE
```


Example 1: A MEMS model with 4 parameters (benchmark available at http://modlereduction.org),

$$\begin{array}{rcl} M(d)\ddot{x}+D(\theta,\alpha,\beta,d)\dot{x}+T(d)x&=&Bu(t),\\ y&=&Cx. \end{array}$$

Here, $M(d) = (M_1 + dM_2)$, $T(d) = (T_1 + \frac{1}{d}T_2 + dT_3)$, $D(\theta, \alpha, \beta, d) = \theta(D_1 + dD_2) + \alpha M(d) + \beta T(d) \in \mathbb{R}^{n \times n}$, n=17,913. Parameters, d, θ, α, β .

- $\theta \in [10^{-7}, 10^{-5}]$, $s \in 2\pi\sqrt{-1} \times [0.05, 0.25]$, $d \in [1, 2]$.
- $\equiv \Xi_{train}$: 3 random θ , 10 random s, 5 random d, $\alpha = 0$, $\beta = 0$ [Salimbahrami et al.' 06]. Totally 150 samples of μ .

Example 2: a silicon nitride membrane

$$(E_0 + \rho c_p E_1) dx/dt + (K_0 + \kappa K_1 + h K_2)x = bu(t)$$

$$y = Cx.$$

Here, the parameters $\rho \in [3000, 3200]$, $c_{\rho} \in [400, 750]$, $\kappa \in [2.5, 4]$, $h \in [10, 12]$, $f \in [0, 25]$ Hz Ξ_{train} : 2250 random samples have been taken for the four parameters and the frequency. $\varepsilon_{true}^{re} = \max_{\mu \in \Xi_{train}} |H(\mu) - \hat{H}(\mu)| / |H(\mu)|, \ \hat{\Delta}^{re}(\mu) = \hat{\Delta}(\mu) / |\hat{H}(\mu)|$

iteration	$arepsilon^{re}_{true}$	$\hat{\Delta}^{re}(\mu^i)$
1	$1 imes 10^{-3}$	3.44
2	$1 imes 10^{-4}$	$4.59 imes10^{-2}$
3	$2.80 imes10^{-5}$	$4.07 imes10^{-2}$
4	$2.58 imes10^{-6}$	$2.62 imes 10^{-5}$

$$V_{\mu^i = \mathrm{span}\{B_M, R_1\}}$$
, $\epsilon^{re}_{tol} = 10^{-2}$, $n = 60,020$, $r = 8$,

Lihong Feng

- **E** \equiv_{train} : 3 samples for κ , 10 samples for the frequency.
- **•** Ξ_{var} : 16 samples for κ , 51 samples for the frequency.

Relative error of the final ROM over Ξ_{var} .

Consider a linear parametric system

$$\begin{aligned} \mathcal{L}(p_1, p_2, \cdots, p_l) \frac{dx}{dt} &= G(p_1, p_2, \cdots, p_l) x + B(p_1, p_2, \cdots, p_l) u(t), \\ y(t) &= L(p_1, p_2, \cdots, p_l)^{\mathrm{T}} x, \end{aligned}$$
 (10)

where the system matrices $C(p_1, p_2, \dots, p_l)$, $G(p_1, p_2, \dots, p_l)$, $B(p_1, p_2, \dots, p_l)$, $LT(p_1, p_2, \dots, p_l)$, are (maybe, nonlinear, non-affine) functions of the parameters p_1, p_2, p_l .

A straight forward way is [Baur, et.al'11]: Set a group of samples of $\mu = (p_1, \ldots, p_l)$: μ^0, \ldots, μ^l . For each sample $\mu^i = (p_1^i, \ldots, p_l^i)$, $i = 1 \ldots, l$, implement IRKA to get the projection matrices W_i, V_i . The final projection matrices:

- range(V) = orth (V_1, \ldots, V_l) ,
- range(W) = orth(W_1, \ldots, W_l),
- $W = W(V^T W)^{-1}$.

The reduced parametric model is:

Parametric ROM

$$W^{T}C(p_{1}, p_{2}, \cdots, p_{l})V_{\frac{dx}{dt}} = W^{T}G(p_{1}, p_{2}, \cdots, p_{l})V_{x} + W^{T}B(p_{1}, p_{2}, \cdots, p_{l})u(t),$$

y(t) = $L(p_{1}, p_{2}, \cdots, p_{l})^{T}V_{x},$

Question: How to select the samples of μ ?

Nonafine matrices are those matrices that cannot be written as:

$$E(p_1,\ldots,p_l)=E_0+p_1E_1+\ldots,p_lE_l.$$

- PMOR based on multi-moment-matching cannot directly deal with nonaffine case. We must first approximate with affine matrices.
- IRKA can deal with nonaffine matrices directly.

Steady parametric systems

$$E(p_1,\ldots,p_l)x=B(p_1,\ldots,p_l)$$

- Solving steady systems for multi-query tasks is also time-consuming.
- Application of PMOR based on multi-moment-matching to steady systems is straight forward.
- IRKA ?.

CSC Applicable to nonlinear parametric systems?

Nonlinear parametric systems:

$$f(\mu, x) = b(\mu),$$

or

$$\begin{split} \mathsf{E}(\mu) \frac{dx}{dt} &= \mathsf{A}(\mu) \mathsf{x} + f(\mu, \mathsf{x}) = \mathsf{B}(\mu) u(t), \\ \mathsf{y}(t) &= \mathsf{L}(\mu)^{\mathrm{T}} \mathsf{x}, \end{split}$$

 $\mu = (p_1,\ldots,p_m), x = x(\mu,t).$

- PMOR based on multi-moment matching or IRKA could deal with weakly nonlinear parametric systems.
- Good candidates for MOR of general nonlinear parametric systems are POD and reduced basis methods.
- **To be introduced**: POD and reduced basis method for linear and nonlinear parametric systems.

1. Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(5), 678-693 (2004).

2. Peter Benner and Lihong Feng: A robust algorithm for parametric model order reduction based on implicit moment-matching.

In Reduced Order Methods for Modeling and Computational Reduction. A. Quarteroni, G. Rozza (editors), 9: 159–186, Series MS &A, 2014, Springer.

3. U. Baur and C. Beattie and P. Benner and S. Gugercin: Interpolatory Projection Methods for Parameterized Model Reduction.

SIAM Journal on Scientific Computing, 33:2489-2518, 2011.

And many more...