
Scientific Computing II
Parallel Methods

Jens Saak and Martin Köhler

Summer Term 2019
OVGU Magdeburg

Computational Methods in Systems and Control
Theory (CSC)
Max Planck Institute for Dynamics of Complex
Technical Systems

Preface

Preface

Jens Saak Scientific Computing II 2/349

Why are you here?

Jens Saak Scientific Computing II 3/349

Parallel Computing Basics
What is a Parallel Computer?

Characterization

A parallel computer is a

collection of processing elements

communicating and

cooperating

for the fast solution of a large problem.

Jens Saak Scientific Computing II 4/349

Parallel Computing Basics
Basic Types of Parallelism

Pseudo Parallelism, or Multitasking
modern operating systems simulate parallel execution by time slicing

Distributed Memory
Computations executed on single unit with exclusive memory each

Shared memory
Several computational units share a common main memory.

Jens Saak Scientific Computing II 5/349

Parallel Computing Basics
Basic Types of Parallelism

Pseudo Parallelism, or Multitasking
modern operating systems simulate parallel execution by time slicing

Distributed Memory
Computations executed on single unit with exclusive memory each

Shared memory
Several computational units share a common main memory.

Jens Saak Scientific Computing II 5/349

Parallel Computing Basics
Basic Types of Parallelism

Pseudo Parallelism, or Multitasking
modern operating systems simulate parallel execution by time slicing

Distributed Memory
Computations executed on single unit with exclusive memory each

Shared memory
Several computational units share a common main memory.

Jens Saak Scientific Computing II 5/349

Parallel Computing Basics
Common Pitfalls in Parallel Computing

Most errors and misunderstandings in parallel computing are related
to one of the following issues:

race conditions,

execution order based accuracy issues,

deadlocks,

data interdependence,

blocking problems on hardware level.

Jens Saak Scientific Computing II 6/349

Parallel Computing Basics
Common Pitfalls in Parallel Computing

Most errors and misunderstandings in parallel computing are related
to one of the following issues:

race conditions,

execution order based accuracy issues,

deadlocks,

data interdependence,

blocking problems on hardware level.

Jens Saak Scientific Computing II 6/349

Parallel Computing Basics
Common Pitfalls in Parallel Computing

Most errors and misunderstandings in parallel computing are related
to one of the following issues:

race conditions,

execution order based accuracy issues,

deadlocks,

data interdependence,

blocking problems on hardware level.

Jens Saak Scientific Computing II 6/349

Parallel Computing Basics
Common Pitfalls in Parallel Computing

Most errors and misunderstandings in parallel computing are related
to one of the following issues:

race conditions,

execution order based accuracy issues,

deadlocks,

data interdependence,

blocking problems on hardware level.

Jens Saak Scientific Computing II 6/349

Parallel Computing Basics
Common Pitfalls in Parallel Computing

Most errors and misunderstandings in parallel computing are related
to one of the following issues:

race conditions,

execution order based accuracy issues,

deadlocks,

data interdependence,

blocking problems on hardware level.

Jens Saak Scientific Computing II 6/349

Chapter 1

Introduction: Part I

Jens Saak Scientific Computing II 7/349

Why Parallel Computing?

1. Problem size exceeds desktop capabilities.

2. Problem is inherently parallel
(e.g. Monte-Carlo simulations).

3. Modern architectures require parallel
programming skills to be optimally exploited.

Jens Saak Scientific Computing II 8/349

Why Parallel Computing?

1. Problem size exceeds desktop capabilities.

2. Problem is inherently parallel
(e.g. Monte-Carlo simulations).

3. Modern architectures require parallel
programming skills to be optimally exploited.

Jens Saak Scientific Computing II 8/349

Why Parallel Computing?

1. Problem size exceeds desktop capabilities.

2. Problem is inherently parallel
(e.g. Monte-Carlo simulations).

3. Modern architectures require parallel
programming skills to be optimally exploited.

Jens Saak Scientific Computing II 8/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

How many processing elements?

How complex are they?

How are they connected?

How is their cooperation coordinated?

What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known as
Flynn’s taxonomy. It distinguishes four categories of parallel computers.

Jens Saak Scientific Computing II 9/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)

2. Multiple-Instruction, Single-Data (MISD)

3. Single-Instruction, Multiple-Data (SIMD)

4. Multiple-Instruction, Multiple-Data (MIMD)

Jens Saak Scientific Computing II 10/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)

2. Multiple-Instruction, Single-Data (MISD)

3. Single-Instruction, Multiple-Data (SIMD)

4. Multiple-Instruction, Multiple-Data (MIMD)

Jens Saak Scientific Computing II 10/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)

2. Multiple-Instruction, Single-Data (MISD)

3. Single-Instruction, Multiple-Data (SIMD)

4. Multiple-Instruction, Multiple-Data (MIMD)

Jens Saak Scientific Computing II 10/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)

2. Multiple-Instruction, Single-Data (MISD)

3. Single-Instruction, Multiple-Data (SIMD)

4. Multiple-Instruction, Multiple-Data (MIMD)

Jens Saak Scientific Computing II 10/349

Flynn’s Taxonomy of Parallel Architectures
[Flynn ’72]

The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)

2. Multiple-Instruction, Single-Data (MISD)

3. Single-Instruction, Multiple-Data (SIMD)

4. Multiple-Instruction, Multiple-Data (MIMD)

Jens Saak Scientific Computing II 10/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Single-Data (SISD)

The SISD model is characterized by

a single processing element,

executing a single instruction,

on a single piece of data,

in each step of the execution.
It is thus in fact the standard sequential computer implementing, e.g., the von
Neumann model.

Examples

desktop computers until Intel® Pentium® 4 era,

early netBooks on Intel® Atom™ basis,

pocket calculators,

abacus,

embedded circuits

Jens Saak Scientific Computing II 11/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Single-Data (SISD)

The SISD model is characterized by

a single processing element,

executing a single instruction,

on a single piece of data,

in each step of the execution.

It is thus in fact the standard sequential computer implementing, e.g., the von
Neumann model.

Examples

desktop computers until Intel® Pentium® 4 era,

early netBooks on Intel® Atom™ basis,

pocket calculators,

abacus,

embedded circuits

Jens Saak Scientific Computing II 11/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Single-Data (SISD)

The SISD model is characterized by

a single processing element,

executing a single instruction,

on a single piece of data,

in each step of the execution.
It is thus in fact the standard sequential computer implementing, e.g., the von
Neumann model.

Examples

desktop computers until Intel® Pentium® 4 era,

early netBooks on Intel® Atom™ basis,

pocket calculators,

abacus,

embedded circuits

Jens Saak Scientific Computing II 11/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Single-Data (SISD)

The SISD model is characterized by

a single processing element,

executing a single instruction,

on a single piece of data,

in each step of the execution.
It is thus in fact the standard sequential computer implementing, e.g., the von
Neumann model.

Examples

desktop computers until Intel® Pentium® 4 era,

early netBooks on Intel® Atom™ basis,

pocket calculators,

abacus,

embedded circuits

Jens Saak Scientific Computing II 11/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Single-Data (SISD)

in
st

ru
ct

io
n

p
o

ol

d
at

a
p

o
ol

PU

Figure: Single-Instruction, Single-Data (SISD) machine model

Jens Saak Scientific Computing II 12/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Single-Data (MISD)

In contrast to the SISD model in the MISD architecture we have

multiple processing elements,

executing a separate instruction each,

all on the same single piece of data,

in each step of the execution.
The MISD model is usually not considered very useful in practice.

Jens Saak Scientific Computing II 13/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Single-Data (MISD)

In contrast to the SISD model in the MISD architecture we have

multiple processing elements,

executing a separate instruction each,

all on the same single piece of data,

in each step of the execution.

The MISD model is usually not considered very useful in practice.

Jens Saak Scientific Computing II 13/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Single-Data (MISD)

In contrast to the SISD model in the MISD architecture we have

multiple processing elements,

executing a separate instruction each,

all on the same single piece of data,

in each step of the execution.
The MISD model is usually not considered very useful in practice.

Jens Saak Scientific Computing II 13/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Single-Data (MISD)

in
st

ru
ct

io
n

p
o

ol

d
at

a
p

o
ol

PU

PU

PU

Figure: Multiple-Instruction, Single-Data (MISD) machine model

Jens Saak Scientific Computing II 14/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Multiple-Data (SIMD)

Here the characterization is

multiple processing elements,

execute the same instruction,

on a multiple pieces of data,

in each step of the execution.
This model is thus the ideal model for all kinds of vector operations

c = a + αb.

Examples

Graphics Processing Units,

Vector Computers,

SSE (Streaming SIMD Extension) registers of modern CPUs.

Jens Saak Scientific Computing II 15/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Multiple-Data (SIMD)

The attractiveness of the SIMD model for vector operations, i.e., linear algebra
operations, comes at a cost.

Consider the simple conditional expression

if (b==0) c=a; else c=a/b;

The SIMD model requires the execution of both cases sequentially. First all
processes for which the condition is true execute their assignment, then the other
do the second assignment. Therefore, conditionals need to be avoided on SIMD
architectures to guarantee maximum performance.

Jens Saak Scientific Computing II 16/349

Flynn’s Taxonomy of Parallel Architectures
Single-Instruction, Multiple-Data (SIMD)

in
st

ru
ct

io
n

p
o

ol

d
at

a
p

o
ol

PU

PU

PU

Figure: Single-Instruction, Multiple-Data (SIMD) machine model

Jens Saak Scientific Computing II 17/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Multiple-Data (MIMD)

MIMD allows

multiple processing elements,

to execute a different instruction,

on a separate piece of data,

at each instance of time.

Examples

multicore and multi-processor desktop PCs,

cluster systems.

Jens Saak Scientific Computing II 18/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Multiple-Data (MIMD)

MIMD allows

multiple processing elements,

to execute a different instruction,

on a separate piece of data,

at each instance of time.

Examples

multicore and multi-processor desktop PCs,

cluster systems.

Jens Saak Scientific Computing II 18/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Multiple-Data (MIMD): Hardware classes

MIMD computer systems can be further divided into three class regarding their
memory configuration:

distributed memory

Every processing element has a certain exclusive portion of the entire memory
available in the system. Data needs to be exchanged via an interconnection
network.

shared memory

All processing units in the system can access all data in the main memory.

hybrid

Certain groups of processing elements share a part of the entire data and
instruction storage.

Jens Saak Scientific Computing II 19/349

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Multiple-Data (MIMD): Programming models

Single Program, Multiple Data (SPMD)

SPMD is a programming model for MIMD systems. “In SPMD multiple
autonomous processors simultaneously execute the same program at independent
points.”1 This contrasts to the SIMD model where the execution points are not
independent.

This is opposed to

Multiple Program, Multiple Data (MPMD)

A different programming model for MIMD systems, where multiple autonomous
processing units execute different programs at the same time. Typically
Master/Worker like management methods of parallel programs are associated with
this class.

1Wikipedia: http://en.wikipedia.org/wiki/SPMD

Jens Saak Scientific Computing II 20/349

http://en.wikipedia.org/wiki/SPMD

Flynn’s Taxonomy of Parallel Architectures
Multiple-Instruction, Multiple-Data (MIMD)

in
st

ru
ct

io
n

p
o

ol

d
at

a
p

o
ol

PU

PU

PU

Figure: Multiple-Instruction, Multiple-Data (MIMD) machine model

Jens Saak Scientific Computing II 21/349

Memory Hierarchies in Parallel Computers
Repetition Sequential Processor

L3 Cache

L2 Cache

L1 Cache

Registers

Main Random Access Memory (RAM)

Network Storage

Local Storage

Tape
Hard Disk Drive (HDD)
Solid State Disk (SSD)

Cloud

fast

medium

slow and
very slow

Figure: Basic memory hierarchy on a single processor system.

Jens Saak Scientific Computing II 22/349

Memory Hierarchies in Parallel Computers
Shared Memory: UMA

Machine (6042MB)

Socket P#0

L3 (4096KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L2 (256KB)

L1 (32KB)

Core P#2

PU P#1

Host: pc812

Indexes: physical

Date: Mo 09 Jul 2012 13:37:17 CEST

Figure: A sample dual core Xeon® setup

Jens Saak Scientific Computing II 23/349

Memory Hierarchies in Parallel Computers
Shared Memory: UMA + GPU

Machine (7992MB)

Socket P#0

L2 (4096KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (4096KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#2

L1d (32KB)

L1i (32KB)

Core P#2

PU P#3

PCI 10de:0402

PCI 8086:10c0

eth0

PCI 8086:2922

sda sr0

sdb sr1

Figure: A sample Core™ 2 Quad setup

Jens Saak Scientific Computing II 24/349

Memory Hierarchies in Parallel Computers
Shared Memory: NUMA

Machine (1024GB)

NUMANode P#0 (256GB)

Socket P#0

L3 (24MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L2 (256KB)

L1 (32KB)

Core P#1

PU P#4

L2 (256KB)

L1 (32KB)

Core P#2

PU P#8

L2 (256KB)

L1 (32KB)

Core P#8

PU P#12

L2 (256KB)

L1 (32KB)

Core P#17

PU P#16

L2 (256KB)

L1 (32KB)

Core P#18

PU P#20

L2 (256KB)

L1 (32KB)

Core P#24

PU P#24

L2 (256KB)

L1 (32KB)

Core P#25

PU P#28

NUMANode P#1 (256GB)

Socket P#1

L3 (24MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#1

L2 (256KB)

L1 (32KB)

Core P#1

PU P#5

L2 (256KB)

L1 (32KB)

Core P#2

PU P#9

L2 (256KB)

L1 (32KB)

Core P#8

PU P#13

L2 (256KB)

L1 (32KB)

Core P#17

PU P#17

L2 (256KB)

L1 (32KB)

Core P#18

PU P#21

L2 (256KB)

L1 (32KB)

Core P#24

PU P#25

L2 (256KB)

L1 (32KB)

Core P#25

PU P#29

NUMANode P#2 (256GB)

Socket P#2

L3 (24MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#2

L2 (256KB)

L1 (32KB)

Core P#1

PU P#6

L2 (256KB)

L1 (32KB)

Core P#2

PU P#10

L2 (256KB)

L1 (32KB)

Core P#8

PU P#14

L2 (256KB)

L1 (32KB)

Core P#17

PU P#18

L2 (256KB)

L1 (32KB)

Core P#18

PU P#22

L2 (256KB)

L1 (32KB)

Core P#24

PU P#26

L2 (256KB)

L1 (32KB)

Core P#25

PU P#30

NUMANode P#3 (256GB)

Socket P#3

L3 (24MB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#3

L2 (256KB)

L1 (32KB)

Core P#1

PU P#7

L2 (256KB)

L1 (32KB)

Core P#2

PU P#11

L2 (256KB)

L1 (32KB)

Core P#8

PU P#15

L2 (256KB)

L1 (32KB)

Core P#17

PU P#19

L2 (256KB)

L1 (32KB)

Core P#18

PU P#23

L2 (256KB)

L1 (32KB)

Core P#24

PU P#27

L2 (256KB)

L1 (32KB)

Core P#25

PU P#31

Host: editha

Indexes: physical

Date: Mo 09 Jul 2012 13:38:22 CEST

Figure: A four processor octa-core Xeon® system

Jens Saak Scientific Computing II 25/349

Memory Hierarchies in Parallel Computers
Shared Memory: NUMA + 2 GPUs

Machine (32GB)

NUMANode P#0 (16GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#14

PCI 14e4:165f

eth2

PCI 14e4:165f

eth3

PCI 14e4:165f

eth0

PCI 14e4:165f

eth1

PCI 1000:005b

sda

PCI 10de:1094

PCI 102b:0534

PCI 8086:1d02

sr0

NUMANode P#1 (16GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

PCI 10de:1094

Host: adelheid

Indexes: physical

Date: Mon Nov 19 16:37:29 2012

Figure: A dual processor octa-core Xeon® system

Jens Saak Scientific Computing II 26/349

Memory Hierarchies in Parallel Computers
General Memory Setting

system bus

Main Memory

P1

cache

. . . Pn

cache

Interconnect

I/O

Figure: Schematic of a general parallel system

Jens Saak Scientific Computing II 27/349

Memory Hierarchies in Parallel Computers
General Memory Setting

system bus

Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

Interconnect

I/O

Figure: Schematic of a general parallel system

Jens Saak Scientific Computing II 27/349

Memory Hierarchies in Parallel Computers
General Memory Setting

system bus

Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

InterconnectI/O

Figure: Schematic of a general parallel system

Jens Saak Scientific Computing II 27/349

Communication Networks

The Interconnect in the last figure stands for any kind of Communication grid.

This can be implemented either as

local hardware interconnect,

or in the form of

network interconnect.

In classical supercomputers the first was mainly used, whereas in today’s cluster
based systems often the network solution is used in the one form or the other.

Jens Saak Scientific Computing II 28/349

Communication Networks I
Hardware

MyriNet

shipping since 2005

transfer rates up to 10Gbit/s

lost significance (2005 28.2% TOP500 down to 0.8% in 2011)

Infiniband

transfer rates up to 300Gbit/s

most relevant implementation driven by OpenFabrics Alliance2, usable on
Linux, BSD, Windows systems.

features remote direct memory access (RDMA) reduced CPU overhead

can also be used for TCP/IP communication

Omni-Path

Jens Saak Scientific Computing II 29/349

Communication Networks II
Hardware

transfer rates up to 100Gbit/s

introduced by Intel® in 2015/2016

rising significance

Intel®’s approach to address cluster of > 10 000 nodes

2http://www.openfabrics.org/

Jens Saak Scientific Computing II 30/349

http://www.openfabrics.org/

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Communication Networks
Topologies

1. Linear array:
nodes aligned on a string each being connected to at most two neighbors.

2. Ring:
nodes are aligned in a ring each being connected to exactly two neighbors

3. Complete graph:
every node is connected to all other nodes

4. Mesh and Torus:
Every node is connected to a number of neighbors (2–4 in 2d mesh, 4 in 2d torus).

5. k-dimensional cube / hypercube:
Recursive construction of a well connected network of 2k nodes each connected to k
neighbors. Line for two, square for four, cube fore eight.

6. Tree:
Nodes are arranged in groups, groups of groups and so forth until only one large group is

left, which represents the root of the tree.

Jens Saak Scientific Computing II 31/349

Chapter 2

Performance Measures: Part
I

Jens Saak Scientific Computing II 32/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process.

There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
The Single Processor Case

Definition

In general we call the time elapsed between issuing a command and receiving its
results the runtime, or execution time of the corresponding process. Some authors
also call it elapsed time, or wall clock time.

In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

user CPU time: Time spent in execution of instructions of the process.

system CPU time: Time spent in execution of operating system routines
called by the process.

waiting time: Time spent waiting for time slices, completion of I/O,
memory fetches. . .

That means the time we have to wait for a response of the program includes the
waiting times besides the CPU time.

Jens Saak Scientific Computing II 33/349

Time Measurement and Operation Counts
Instructions: Timings and Counts

clock rate and cycle time

The clock rate of a processor tells us how often it can switch instructions per
second. Closely related is the (clock) cycle time, i.e., the time elapsed between
two subsequent clock ticks.

Example

A CPU with a clock rate of 3.5 GHz = 3.5 · 109 1/s executes 3.5 · 109 clock ticks
per second. The length of a clock cycle thus is

1/(3.5 · 109) s = 1/3.5 · 10−9 · s ≈ 0.29 ns

Jens Saak Scientific Computing II 34/349

Time Measurement and Operation Counts
Instructions: Timings and Counts

clock rate and cycle time

The clock rate of a processor tells us how often it can switch instructions per
second. Closely related is the (clock) cycle time, i.e., the time elapsed between
two subsequent clock ticks.

Example

A CPU with a clock rate of 3.5 GHz = 3.5 · 109 1/s executes 3.5 · 109 clock ticks
per second. The length of a clock cycle thus is

1/(3.5 · 109) s = 1/3.5 · 10−9 · s ≈ 0.29 ns

Jens Saak Scientific Computing II 34/349

Time Measurement and Operation Counts
Instructions: Timings and Counts

Different instructions require different times to get executed. This is represented
by the so called cycles per instruction (CPI) of the corresponding instruction. An
average CPI is connected to a process A via CPI (A).

This number determines the total user CPU time together with the number of
instructions and cycle time via

TU CPU(A) = ninstr (A) · CPI (A) · tcycle

Clever choices of the instructions can influence the values of ninstr (A) and CPI (A).
 compiler optimization.

Jens Saak Scientific Computing II 35/349

Time Measurement and Operation Counts
Instructions: Timings and Counts

Different instructions require different times to get executed. This is represented
by the so called cycles per instruction (CPI) of the corresponding instruction. An
average CPI is connected to a process A via CPI (A).

This number determines the total user CPU time together with the number of
instructions and cycle time via

TU CPU(A) = ninstr (A) · CPI (A) · tcycle

Clever choices of the instructions can influence the values of ninstr (A) and CPI (A).
 compiler optimization.

Jens Saak Scientific Computing II 35/349

Time Measurement and Operation Counts
Instructions: Timings and Counts

Different instructions require different times to get executed. This is represented
by the so called cycles per instruction (CPI) of the corresponding instruction. An
average CPI is connected to a process A via CPI (A).

This number determines the total user CPU time together with the number of
instructions and cycle time via

TU CPU(A) = ninstr (A) · CPI (A) · tcycle

Clever choices of the instructions can influence the values of ninstr (A) and CPI (A).
 compiler optimization.

Jens Saak Scientific Computing II 35/349

Time Measurement and Operation Counts
MIPS versus FLOPS

A common performance measure of CPU manufacturers is the Million instructions
per second (MIPS) rate.

It can be expressed as

MIPS(A) =
ninstr (A)

TU CPU(A) · 106
=

rcycle
CPI (A) · 106

,

where rcycle is the cycle rate of the CPU.

This measure can be misleading in high performance computing, since higher
instruction throughput does not necessarily mean shorter execution time.

Jens Saak Scientific Computing II 36/349

Time Measurement and Operation Counts
MIPS versus FLOPS

A common performance measure of CPU manufacturers is the Million instructions
per second (MIPS) rate.

It can be expressed as

MIPS(A) =
ninstr (A)

TU CPU(A) · 106
=

rcycle
CPI (A) · 106

,

where rcycle is the cycle rate of the CPU.

This measure can be misleading in high performance computing, since higher
instruction throughput does not necessarily mean shorter execution time.

Jens Saak Scientific Computing II 36/349

Time Measurement and Operation Counts
MIPS versus FLOPS

More common for the comparison in scientific computing is the rate of floating
point operations (FLOPS) executed. The MFLOPS rate of a program A can be
expressed as

MFLOPS(A) =
nFLOPS(A)

TU CPU(A) · 106
[1/s],

with nFLOPS(A) the total number of FLOPS issued by the program A.

Note that not all FLOPS (see also Chapter 4 winter term) take the same time to
execute. Usually divisions and square roots are much slower. The MFLOPS rate,
however, does not take this into account.

Jens Saak Scientific Computing II 37/349

Time Measurement and Operation Counts
MIPS versus FLOPS

More common for the comparison in scientific computing is the rate of floating
point operations (FLOPS) executed. The MFLOPS rate of a program A can be
expressed as

MFLOPS(A) =
nFLOPS(A)

TU CPU(A) · 106
[1/s],

with nFLOPS(A) the total number of FLOPS issued by the program A.

Note that not all FLOPS (see also Chapter 4 winter term) take the same time to
execute. Usually divisions and square roots are much slower. The MFLOPS rate,
however, does not take this into account.

Jens Saak Scientific Computing II 37/349

Time Measurement and Operation Counts
CPU Time versus Execution Time

Example (A simple MATLAB® test)
Input:

ct0=0;
A=randn(1500);

tic
ct0=cputime;
pause(2)
toc
cputime-ct0

tic
ct0=cputime;
[Q,R]=qr(A);
toc
cputime-ct0

Output:

Elapsed time is 2.000208 seconds.

ans =

0.0300

Elapsed time is 0.733860 seconds.

ans =

21.6800

Executed on a 4×8core Xeon® system.

Jens Saak Scientific Computing II 38/349

Time Measurement and Operation Counts
CPU Time versus Execution Time

Example (A simple MATLAB test)
Input:

ct0=0;
A=randn(1500);

tic
ct0=cputime;
pause(2)
toc
cputime-ct0

tic
ct0=cputime;
[Q,R]=qr(A);
toc
cputime-ct0

Output:

Elapsed time is 2.000208 seconds.

ans =

0.0300

Elapsed time is 0.733860 seconds.

ans =

21.6800

Executed on a 4×8core Xeon® system.

Jens Saak Scientific Computing II 38/349

Time Measurement and Operation Counts
CPU Time versus Execution Time

Obviously, in a parallel environment the CPU time can be much higher than the
actual execution time elapsed between start and end of the process.

In any case, it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time into
user/system CPU time and waiting time. The process is mainly waiting for the
sleep system call to return whilst basically accumulating no active CPU time.

The second result is due to the fact that the activity is distributed to several
cores. Each activity accumulates its own CPU time and these are summed up to
the total CPU time of the process.

Jens Saak Scientific Computing II 39/349

Time Measurement and Operation Counts
CPU Time versus Execution Time

Obviously, in a parallel environment the CPU time can be much higher than the
actual execution time elapsed between start and end of the process.

In any case, it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time into
user/system CPU time and waiting time. The process is mainly waiting for the
sleep system call to return whilst basically accumulating no active CPU time.

The second result is due to the fact that the activity is distributed to several
cores. Each activity accumulates its own CPU time and these are summed up to
the total CPU time of the process.

Jens Saak Scientific Computing II 39/349

Time Measurement and Operation Counts
CPU Time versus Execution Time

Obviously, in a parallel environment the CPU time can be much higher than the
actual execution time elapsed between start and end of the process.

In any case, it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time into
user/system CPU time and waiting time. The process is mainly waiting for the
sleep system call to return whilst basically accumulating no active CPU time.

The second result is due to the fact that the activity is distributed to several
cores. Each activity accumulates its own CPU time and these are summed up to
the total CPU time of the process.

Jens Saak Scientific Computing II 39/349

Parallel Cost and Optimality

Definition (Parallel cost and cost-optimality)

The cost of a parallel program with data size n is defined as

Cp(n) = p ∗ Tp(n).

Here Tp(n) is the parallel runtime of the process, i.e., its execution time on p
processors.

The parallel program is called cost-optimal if

Cp = T ∗(n).

Here, T ∗(n) represents the execution time of the fastest sequential program
solving the same problem.

In practice T ∗(n) is often approximated by T1(n).

Jens Saak Scientific Computing II 40/349

Speedup

The speedup of a parallel program

Sp(n) =
T ∗(n)

Tp(n)
,

is a measure for the acceleration, in terms of execution time, we can expect from
a parallel program.

The speedup is strictly limited from above by p since otherwise the parallel
program would motivate a faster sequential algorithm. See [Rauber/Rünger

’10] for details.

In practice often the speedup is computed with respect to the sequential version
of the code, i.e.,

Sp(n) ≈ T1(n)

Tp(n)
.

Jens Saak Scientific Computing II 41/349

Parallel Efficiency

Usually, the parallel execution of the work a program has to perform comes at the
cost of certain management of subtasks. Their distribution, organization and
interdependence leads to a fraction of the total execution, that has to be done
extra.

Definition

The fraction of work that has to be performed by a sequential algorithm as well is
described by the parallel efficiency of a program. It is computed as

Ep(n) =
T ∗(n)

Cp(n)
=

Sp(n)

p
=

T ∗

p · Tp(n)
.

The parallel efficiency obviously is limited from above by Ep(n) = 1 representing
the perfect speedup of p.

Jens Saak Scientific Computing II 42/349

Amdahl’s Law

In many situations it is impossible to parallelize the entire program. Certain
fractions remain that need to be performed sequentially. When a (constant)
fraction f of the program needs to be executed sequentially, Amdahl’s law
describes the maximum attainable speedup.

The total parallel runtime Tp(n) then consists of

f · T ∗(n) the time for the sequential fraction and

(1− f)/p · T ∗(n) the time for the fully parallel part.

The best attainable speedup can thus be expressed as

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.

Jens Saak Scientific Computing II 43/349

Amdahl’s Law

In many situations it is impossible to parallelize the entire program. Certain
fractions remain that need to be performed sequentially. When a (constant)
fraction f of the program needs to be executed sequentially, Amdahl’s law
describes the maximum attainable speedup.

The total parallel runtime Tp(n) then consists of

f · T ∗(n) the time for the sequential fraction and

(1− f)/p · T ∗(n) the time for the fully parallel part.

The best attainable speedup can thus be expressed as

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.

Jens Saak Scientific Computing II 43/349

Amdahl’s Law

In many situations it is impossible to parallelize the entire program. Certain
fractions remain that need to be performed sequentially. When a (constant)
fraction f of the program needs to be executed sequentially, Amdahl’s law
describes the maximum attainable speedup.

The total parallel runtime Tp(n) then consists of

f · T ∗(n) the time for the sequential fraction and

(1− f)/p · T ∗(n) the time for the fully parallel part.

The best attainable speedup can thus be expressed as

Sp(n) =
T ∗(n)

f · T ∗(n) + 1−f
p T ∗(n)

=
1

f + 1−f
p

≤ 1

f
.

Jens Saak Scientific Computing II 43/349

Scalability of Parallel Programs

Question

Is the parallel efficiency of a parallel program independent of the number of
processors p used?

The question is answered by the concept of parallel scalability. Scientific
computing and HPC distinguish two forms of scalability:

strong scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed total problem size.

weak scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed problem size per processor.

Jens Saak Scientific Computing II 44/349

Scalability of Parallel Programs

Question

Is the parallel efficiency of a parallel program independent of the number of
processors p used?

The question is answered by the concept of parallel scalability. Scientific
computing and HPC distinguish two forms of scalability:

strong scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed total problem size.

weak scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed problem size per processor.

Jens Saak Scientific Computing II 44/349

Scalability of Parallel Programs

Question

Is the parallel efficiency of a parallel program independent of the number of
processors p used?

The question is answered by the concept of parallel scalability. Scientific
computing and HPC distinguish two forms of scalability:

strong scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed total problem size.

weak scalability
captures the dependence of the parallel runtime on the number of processors
for a fixed problem size per processor.

Jens Saak Scientific Computing II 44/349

Chapter 3

Multicore and Multiprocessor
Systems: Part I

Jens Saak Scientific Computing II 45/349

Symmetric Multiprocessing

Definition (Symmetric Multiprocessing (SMP))

The situation where two or more identical processing elements access a shared
periphery (i.e., memory, I/O,. . .) is called symmetric multiprocessing or simply
(SMP).

The most common examples are

Multiprocessor systems,

Multicore CPUs.

Jens Saak Scientific Computing II 46/349

Memory Hierarchy
Basic Memory Layout

system bus

Main Memory

P1

cache

. . . Pn

cache

Interconnect

I/O

Figure: Schematic of a general parallel system

Jens Saak Scientific Computing II 47/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Uniform Memory Access (UMA)

UMA is a shared memory computer model, where

one physical memory resource,

is shared among all processing units,

all having uniform access to it.

Especially that means that all memory locations can be requested by all processors
at the same time scale, independent of which processor performs the request and
which chip in the memory holds the location.

Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.

Jens Saak Scientific Computing II 48/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Contrasting the UMA model in NUMA the system consists of

one logical shared memory unit,

gathered from two or more physical resources,

each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.

Examples are current multiprocessor systems with multicore processors per socket
and a separate portion of the memory controlled by each socket. Also recent
“cluster on a chip” design processors like AMDs bulldozer

Jens Saak Scientific Computing II 49/349

Memory Hierarchy
Non-Uniform Memory Access (NUMA)

Figure: AMDs Bulldozer layout is a NUMA example.

Jens Saak Scientific Computing II 50/349

Memory Hierarchy
Cache Coherence

Definition (cache coherence)

The problem of keeping multiple copies of a single piece of data in the local
caches of the different processors that hold it consistent is called cache coherence
problem.

Cache coherence protocols:

guarantee a consistent view of the main memory at any time.

Several protocols exist.

Basic idea is to invalidate all other copies whenever one of them is updated.

Jens Saak Scientific Computing II 51/349

Processes and Threads
Multiprocessing

Definition (Process)

A computer program in execution is called a process.

A process consists of:

the programs machine code,

the program data worked on,

the current execution state, i.e., the context of the process, register and
cache contents, . . .

Each process has a separate address space in the main memory.

Execution time slices are assigned to the active processes by the operating
system’s (OS’s) scheduler. A switch of processes requires exchanging the process
context, i.e., a short execution delay.

Jens Saak Scientific Computing II 52/349

Processes and Threads
Multiprocessing

Multiple processes may be used for the parallel execution of compute tasks.

On Unix/Linux systems the fork() system call can be used to generate child
processes. Each child process is generated as a copy of the calling parent process.
It receives an exact copy of the address space of the parent and a new unique
process ID (PID).

Communication between parent and child processes can be implemented via
sockets or files, which usually leads to large overhead for data exchange.

Jens Saak Scientific Computing II 53/349

Processes and Threads
Threading

Definition (Thread)

In the thread model a process may consist of several execution sub-entities, i.e
control flows, progressing at the same time. These are usually called threads, or
lightweight processes.

All threads of a process share the same address space.

Jens Saak Scientific Computing II 54/349

Processes and Threads
Threading

Two types of implementations exist:

user level threads:

administration and scheduling in user space,
threading library maps the threads into the parent process,
quick task switches avoiding the OS.

kernel threads:

administration and scheduling by OS kernel and scheduler,
different threads of the same process may run on different processors,
blocking of single threads does not block the entire process,
thread switches require OS context switches.

Here we concentrate on POSIX threads, or Pthreads. These are available on all
major OSes. The actual implementations range from user space wrappers
(pthreads-w32 mapping pthreads to windows threads) to lightweight process
type implementations (e.g. Solaris 2).

Jens Saak Scientific Computing II 55/349

Processes and Threads
Threading

Two types of implementations exist:

user level threads:

administration and scheduling in user space,
threading library maps the threads into the parent process,
quick task switches avoiding the OS.

kernel threads:

administration and scheduling by OS kernel and scheduler,
different threads of the same process may run on different processors,
blocking of single threads does not block the entire process,
thread switches require OS context switches.

Here we concentrate on POSIX threads, or Pthreads. These are available on all
major OSes. The actual implementations range from user space wrappers
(pthreads-w32 mapping pthreads to windows threads) to lightweight process
type implementations (e.g. Solaris 2).

Jens Saak Scientific Computing II 55/349

Processes and Threads
Mapping of user level threads to kernel threads or processes

UT

UT

UT

UT

UT

UT

UT

OSP

OSP

OSP

OSP

OSP

OSP

OSP

PU

PU

PU

PU

Figure: N:1 mapping for OS incapable of kernel threads

Jens Saak Scientific Computing II 56/349

Processes and Threads
Mapping of user level threads to kernel threads or processes

UT

UT

UT

UT

UT

UT

UT

OST

OST

OST

OST

OST

OST

OST

OST

PU

PU

PU

PU

Figure: 1:1 mapping of user threads to kernel threads

Jens Saak Scientific Computing II 57/349

Processes and Threads
Mapping of user level threads to kernel threads or processes

UT

UT

UT

UT

UT

UT

UT

OST

OST

OST

OST

OST

OST

OST

PU

PU

PU

PU

Figure: N:M mapping of user threads to kernel threads with library thread scheduler

Jens Saak Scientific Computing II 58/349

Processes and Threads
Properties and Problems

Parallel versus concurrent execution

1. Often the two notions parallel and concurrent execution are used as
synonyms of each other. In fact concurrent is more general.

2. The parallel execution of a set of tasks requires parallel hardware on which
they can be executed simultaneously.

3. The concurrent execution only requires a quasi parallel environment that
allows all tasks to be in progress at the same time.

4. That means “parallel” execution defines a subset of “concurrent” execution.

Jens Saak Scientific Computing II 59/349

Processes and Threads
Properties and Problems

Parallel versus concurrent execution

1. Often the two notions parallel and concurrent execution are used as
synonyms of each other. In fact concurrent is more general.

2. The parallel execution of a set of tasks requires parallel hardware on which
they can be executed simultaneously.

3. The concurrent execution only requires a quasi parallel environment that
allows all tasks to be in progress at the same time.

4. That means “parallel” execution defines a subset of “concurrent” execution.

Jens Saak Scientific Computing II 59/349

Processes and Threads
Properties and Problems

Parallel versus concurrent execution

1. Often the two notions parallel and concurrent execution are used as
synonyms of each other. In fact concurrent is more general.

2. The parallel execution of a set of tasks requires parallel hardware on which
they can be executed simultaneously.

3. The concurrent execution only requires a quasi parallel environment that
allows all tasks to be in progress at the same time.

4. That means “parallel” execution defines a subset of “concurrent” execution.

Jens Saak Scientific Computing II 59/349

Processes and Threads
Properties and Problems

Parallel versus concurrent execution

1. Often the two notions parallel and concurrent execution are used as
synonyms of each other. In fact concurrent is more general.

2. The parallel execution of a set of tasks requires parallel hardware on which
they can be executed simultaneously.

3. The concurrent execution only requires a quasi parallel environment that
allows all tasks to be in progress at the same time.

4. That means “parallel” execution defines a subset of “concurrent” execution.

Jens Saak Scientific Computing II 59/349

Processes and Threads
Properties and Problems

Definition (race condition)

When several threads/processes of a parallel program have read and write access
to a common piece of data, access needs to be mutually exclusive. Failure to
ensure this, leads to a race condition, where the final value depends on the
sequence of uncontrollable/random events. Usually data corruption is then
unavoidable.

Example

Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1
write 2

Thread 1 Thread 2 value

0
read 0

read 0
increment 0
write 1

increment 1
write 1

Jens Saak Scientific Computing II 60/349

Processes and Threads
Properties and Problems

Definition (race condition)

When several threads/processes of a parallel program have read and write access
to a common piece of data, access needs to be mutually exclusive. Failure to
ensure this, leads to a race condition, where the final value depends on the
sequence of uncontrollable/random events. Usually data corruption is then
unavoidable.

Example

Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1
write 2

Thread 1 Thread 2 value

0
read 0

read 0
increment 0
write 1

increment 1
write 1

Jens Saak Scientific Computing II 60/349

Processes and Threads
Properties and Problems

Definition (race condition)

When several threads/processes of a parallel program have read and write access
to a common piece of data, access needs to be mutually exclusive. Failure to
ensure this, leads to a race condition, where the final value depends on the
sequence of uncontrollable/random events. Usually data corruption is then
unavoidable.

Example

Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1

write 2

Thread 1 Thread 2 value

0
read 0

read 0
increment 0
write 1

increment 1
write 1

Jens Saak Scientific Computing II 60/349

Processes and Threads
Properties and Problems

Definition (race condition)

When several threads/processes of a parallel program have read and write access
to a common piece of data, access needs to be mutually exclusive. Failure to
ensure this, leads to a race condition, where the final value depends on the
sequence of uncontrollable/random events. Usually data corruption is then
unavoidable.

Example

Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1

write 2

Thread 1 Thread 2 value

0
read 0

read 0
increment 0
write 1

increment 1
write 1

Jens Saak Scientific Computing II 60/349

Processes and Threads
Protection of critical regions

Definition (semaphore)

A semaphore is a simple flag (binary semaphore) or a counter (counting semaphore)
indicating the availability of shared resources in a critical region.

Definition (mutual exclusion variable (mutex))

The mutual exclusion variable, or shortly mutex variable, implements a simple locking
mechanism regarding the critical region. Each process/thread checks the lock upon entry
to the region. If it is open the process/thread enters and locks it behind. Thus, all other
processes/threads are prevented from entering and the process in the critical region has
exclusive access to the shared data. When exiting the region the lock is opened.

Both the above definitions introduce the programming models. Actual implementations
may be more or less complete. For example the pthreads-implementation lacks
counting semaphores.

Jens Saak Scientific Computing II 61/349

Processes and Threads
Protection of critical regions

Definition (semaphore)

A semaphore is a simple flag (binary semaphore) or a counter (counting semaphore)
indicating the availability of shared resources in a critical region.

Definition (mutual exclusion variable (mutex))

The mutual exclusion variable, or shortly mutex variable, implements a simple locking
mechanism regarding the critical region. Each process/thread checks the lock upon entry
to the region. If it is open the process/thread enters and locks it behind. Thus, all other
processes/threads are prevented from entering and the process in the critical region has
exclusive access to the shared data. When exiting the region the lock is opened.

Both the above definitions introduce the programming models. Actual implementations
may be more or less complete. For example the pthreads-implementation lacks
counting semaphores.

Jens Saak Scientific Computing II 61/349

Processes and Threads
Protection of critical regions

Definition (semaphore)

A semaphore is a simple flag (binary semaphore) or a counter (counting semaphore)
indicating the availability of shared resources in a critical region.

Definition (mutual exclusion variable (mutex))

The mutual exclusion variable, or shortly mutex variable, implements a simple locking
mechanism regarding the critical region. Each process/thread checks the lock upon entry
to the region. If it is open the process/thread enters and locks it behind. Thus, all other
processes/threads are prevented from entering and the process in the critical region has
exclusive access to the shared data. When exiting the region the lock is opened.

Both the above definitions introduce the programming models. Actual implementations
may be more or less complete. For example the pthreads-implementation lacks
counting semaphores.

Jens Saak Scientific Computing II 61/349

Processes and Threads
Protection of critical regions

deadlock

A deadlock describes the unfortunate situation, when semaphores, or mutexes
have not, or have inappropriately been applied such that no process/thread is able
to enter the critical region anymore and the parallel program is unable to proceed.

Jens Saak Scientific Computing II 62/349

Processes and Threads
Dining Philosophers

Example (dining philosophers)

Figure: The dining philosophers
problem

Each philosopher alternatingly eats or thinks,

to eat the left and right forks are both required,

every fork can only be used by one philosopher
at a time,

forks must be put back after eating.

Image by Benjamin D. Esham / Wikimedia Commons [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

Jens Saak Scientific Computing II 63/349

http://creativecommons.org/licenses/by-sa/3.0

Processes and Threads
Dining Philosophers

simple solution attempt

think until the left fork is available; when it is, pick it up;

think until the right fork is available; when it is, pick it up;

when both forks are held, eat for a fixed amount of time;

then, put the right fork down;

then, put the left fork down;

repeat from the beginning.

All philosophers decide to eat at the same time ⇒ deadlock.

More sophisticated solutions avoiding the deadlocks have been found since
[Dijkstra ’65]. Three of them are also available on Wikipedia3.

3http://en.wikipedia.org/wiki/Dining_philosophers_problem

Jens Saak Scientific Computing II 64/349

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Processes and Threads
Dining Philosophers

simple solution attempt

think until the left fork is available; when it is, pick it up;

think until the right fork is available; when it is, pick it up;

when both forks are held, eat for a fixed amount of time;

then, put the right fork down;

then, put the left fork down;

repeat from the beginning.

All philosophers decide to eat at the same time ⇒ deadlock.

More sophisticated solutions avoiding the deadlocks have been found since
[Dijkstra ’65]. Three of them are also available on Wikipedia3.

3http://en.wikipedia.org/wiki/Dining_philosophers_problem

Jens Saak Scientific Computing II 64/349

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Processes and Threads
Dining Philosophers

simple solution attempt

think until the left fork is available; when it is, pick it up;

think until the right fork is available; when it is, pick it up;

when both forks are held, eat for a fixed amount of time;

then, put the right fork down;

then, put the left fork down;

repeat from the beginning.

All philosophers decide to eat at the same time ⇒ deadlock.

More sophisticated solutions avoiding the deadlocks have been found since
[Dijkstra ’65]. Three of them are also available on Wikipedia3.

3http://en.wikipedia.org/wiki/Dining_philosophers_problem

Jens Saak Scientific Computing II 64/349

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Chapter 3

Multicore and Multiprocessor
Systems: Part II

Jens Saak Scientific Computing II 65/349

POSIX Threads
Basics

Common to all the following commands:

Compiling and linking needs to be performed with
-pthread.

The pthread functions and related data types are made
available in a C program using:
#include <pthread.h>

Jens Saak Scientific Computing II 66/349

POSIX Threads
Creation of threads

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

thread unique identifier to distinguish from other threads,

attr attributes for determining thread properties. NULL means default
properties,

start routine pointer to the function to be started in the newly created
thread,

arg the argument of the above function.

Note that only a single argument can be passed to the threads start function.

Jens Saak Scientific Computing II 67/349

POSIX Threads
Creation of threads

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

thread unique identifier to distinguish from other threads,

attr attributes for determining thread properties. NULL means default
properties,

start routine pointer to the function to be started in the newly created
thread,

arg the argument of the above function.

Note that only a single argument can be passed to the threads start function.

Jens Saak Scientific Computing II 67/349

POSIX Threads
Creation of threads: multiple arguments of the start function

The argument of the start function is a void pointer. We can thus define:

struct point3d{ double x,y,z; };
struct norm_args{
struct point3d *P;
double norm;

};
struct norm_args args;

and upon thread creation pass

err=pthread_create(tid, NULL, norm, (void *) &args);

to a start function

void *norm(void *arg) {
struct norm_args *args=(struct norm_args *)arg;
struct point3d *P;
P = args->P;
args->norm = P->x * P->x + P->y * P->y + P->z * P->z;
return NULL;

};

Jens Saak Scientific Computing II 68/349

POSIX Threads
Creation of threads: Possible race conditions

int main(int argc, char* argv[]){
pthread_t tid1,tid2;

struct point3d point;
struct norm_args args;

args.P = &point;

point.x=10; point.y=10; point.z=0;
pthread_create(&tid1, NULL, norm, &args);

point.x=20; point.y=20; point.z=-50;
pthread_create(&tid2, NULL, norm, &args);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

}

Depending on the execution of thread tid1 the argument point may get
overwritten before it has been fetched, the analogue holds for the norm argument
inside the function.

Jens Saak Scientific Computing II 69/349

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an exit()
call.

Jens Saak Scientific Computing II 70/349

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an exit()
call.

Jens Saak Scientific Computing II 70/349

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an exit()
call.

Jens Saak Scientific Computing II 70/349

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an exit()
call.

Jens Saak Scientific Computing II 70/349

POSIX Threads
Exiting threads and waiting for their termination

Pthreads can exit in different forms:

they return from their start function,

they call pthread exit() to cleanly exit,

they are aborted by a call to pthread cancel(),

the process they are associated to is terminated by an exit()
call.

Jens Saak Scientific Computing II 70/349

POSIX Threads
Exiting threads and waiting for their termination

int pthread_exit(void *retval);

retval return value of the exiting thread to the calling thread,

threads exit implicitly when their start function is exited,

the return value may be evaluated from another thread of the same process
via the pthread join() function,

after the last thread in a process exits the process terminates calling exit()
with a zero return value. Only then shared resources are released
automatically.

Jens Saak Scientific Computing II 71/349

POSIX Threads
Exiting threads and waiting for their termination

int pthread_join(pthread_t thread, void **retval);

Waits for a thread to terminate and fetches its return value.

thread the identifier of the thread to wait for,

retval destination to copy the return value (if not NULL) to.

Jens Saak Scientific Computing II 72/349

Pthread coordination mechanisms
Mutex and condition variables

The Pthread standard supports four types of synchronization and coordination
facilities:

1. pthread join(); we have seen this function above

2. Mutex variable functions for handling mutexes as defined above

3. Condition variable functions treat a condition variable that can be used to
indicate a certain event in which the threads are interested. Condition
variables may be used to implement semaphore like structures and triggers
for special more complex situation that require the threads to act in a certain
way.

4. pthread once() can be used to make sure that certain initializations are
performed by one and only one thread when called by multiple ones.

Jens Saak Scientific Computing II 73/349

Pthread coordination mechanisms
Mutex and condition variables

The Pthread standard supports four types of synchronization and coordination
facilities:

1. pthread join(); we have seen this function above

2. Mutex variable functions for handling mutexes as defined above

3. Condition variable functions treat a condition variable that can be used to
indicate a certain event in which the threads are interested. Condition
variables may be used to implement semaphore like structures and triggers
for special more complex situation that require the threads to act in a certain
way.

4. pthread once() can be used to make sure that certain initializations are
performed by one and only one thread when called by multiple ones.

Jens Saak Scientific Computing II 73/349

Pthread coordination mechanisms
Mutex and condition variables

The Pthread standard supports four types of synchronization and coordination
facilities:

1. pthread join(); we have seen this function above

2. Mutex variable functions for handling mutexes as defined above

3. Condition variable functions treat a condition variable that can be used to
indicate a certain event in which the threads are interested. Condition
variables may be used to implement semaphore like structures and triggers
for special more complex situation that require the threads to act in a certain
way.

4. pthread once() can be used to make sure that certain initializations are
performed by one and only one thread when called by multiple ones.

Jens Saak Scientific Computing II 73/349

Pthread coordination mechanisms
Mutex and condition variables

The Pthread standard supports four types of synchronization and coordination
facilities:

1. pthread join(); we have seen this function above

2. Mutex variable functions for handling mutexes as defined above

3. Condition variable functions treat a condition variable that can be used to
indicate a certain event in which the threads are interested. Condition
variables may be used to implement semaphore like structures and triggers
for special more complex situation that require the threads to act in a certain
way.

4. pthread once() can be used to make sure that certain initializations are
performed by one and only one thread when called by multiple ones.

Jens Saak Scientific Computing II 73/349

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the pthreads NULL
gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing features
and guiding compilers and aiding in the caching optimization.

initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

Jens Saak Scientific Computing II 74/349

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the pthreads NULL
gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing features
and guiding compilers and aiding in the caching optimization.

initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

Jens Saak Scientific Computing II 74/349

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the pthreads NULL
gives the default attributes,

restrict is a C99-standard keyword limiting the pointer aliasing features
and guiding compilers and aiding in the caching optimization.

initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

Jens Saak Scientific Computing II 74/349

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the pthreads NULL
gives the default attributes,

restrict4 is a C99-standard keyword limiting the pointer aliasing features
and guiding compilers and aiding in the caching optimization.

initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

4See also https://en.wikipedia.org/wiki/Restrict

Jens Saak Scientific Computing II 74/349

https://en.wikipedia.org/wiki/Restrict

Pthread coordination mechanisms
Mutex variables

Dynamic initialization:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Static/Macro initialization:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

mutex is the mutex variable to be initialized

attr can be used to adapt the mutex properties, as for the pthreads NULL
gives the default attributes,

restrict4 is a C99-standard keyword limiting the pointer aliasing features
and guiding compilers and aiding in the caching optimization.

initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

4See also https://en.wikipedia.org/wiki/Restrict

Jens Saak Scientific Computing II 74/349

https://en.wikipedia.org/wiki/Restrict

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked state,

If mutex is already locked the execution is blocked until the lock is released
and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should again be
locked by the same thread or a thread tries to unlock a previously unlocked
mutex and similar unintended situations. This especially regards error
handling and deadlock detection.

Jens Saak Scientific Computing II 75/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked state,

If mutex is already locked the execution is blocked until the lock is released
and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should again be
locked by the same thread or a thread tries to unlock a previously unlocked
mutex and similar unintended situations. This especially regards error
handling and deadlock detection.

Jens Saak Scientific Computing II 75/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_lock(pthread_mutex_t *mutex);

If mutex is unlocked the function returns with the mutex in locked state,

If mutex is already locked the execution is blocked until the lock is released
and it can proceed as above,

Four types of mutexes are defined:

PTHREAD MUTEX NORMAL
PTHREAD MUTEX ERRORCHECK
PTHREAD MUTEX RECURSIVE
PTHREAD MUTEX DEFAULT

All of them show different behavior when locked mutexes should again be
locked by the same thread or a thread tries to unlock a previously unlocked
mutex and similar unintended situations. This especially regards error
handling and deadlock detection.

Jens Saak Scientific Computing II 75/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(),except that it
returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count is
increased by one and the function returns success.

Jens Saak Scientific Computing II 76/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(),except that it
returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count is
increased by one and the function returns success.

Jens Saak Scientific Computing II 76/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The function is equivalent to pthread mutex lock(),except that it
returns immediately in any case.

Success or failure are determined from the return value.

If the mutex type is PTHREAD MUTEX RECURSIVE the lock count is
increased by one and the function returns success.

Jens Saak Scientific Computing II 76/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the mutex
variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that the
counter is decreased by one and they become available once it reaches zero

if the mutex becomes available, i.e., unlocked by the function call and there
are blocked threads waiting for it, the threading policy decides which thread
acquires mutex next.

Jens Saak Scientific Computing II 77/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the mutex
variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that the
counter is decreased by one and they become available once it reaches zero

if the mutex becomes available, i.e., unlocked by the function call and there
are blocked threads waiting for it, the threading policy decides which thread
acquires mutex next.

Jens Saak Scientific Computing II 77/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the mutex
variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that the
counter is decreased by one and they become available once it reaches zero

if the mutex becomes available, i.e., unlocked by the function call and there
are blocked threads waiting for it, the threading policy decides which thread
acquires mutex next.

Jens Saak Scientific Computing II 77/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_unlock(pthread_mutex_t *mutex);

the function releases the lock

what exactly “release” means, depends on the properties of the mutex
variable

e.g., for type PTHREAD MUTEX RECURSIVE mutexes it means that the
counter is decreased by one and they become available once it reaches zero

if the mutex becomes available, i.e., unlocked by the function call and there
are blocked threads waiting for it, the threading policy decides which thread
acquires mutex next.

Jens Saak Scientific Computing II 77/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex variable
again

if mutex is locked or referenced, pthread mutex destroy() fails with
error code EBUSY

Jens Saak Scientific Computing II 78/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex variable
again

if mutex is locked or referenced, pthread mutex destroy() fails with
error code EBUSY

Jens Saak Scientific Computing II 78/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex variable
again

if mutex is locked or referenced, pthread mutex destroy() fails with
error code EBUSY

Jens Saak Scientific Computing II 78/349

Pthread coordination mechanisms
Mutex variables

int pthread_mutex_destroy(pthread_mutex_t *mutex);

destroys the mutex referenced by mutex

the destroyed mutex then becomes uninitialized

pthread mutex init() can be used to initialize the same mutex variable
again

if mutex is locked or referenced, pthread mutex destroy() fails with
error code EBUSY

Jens Saak Scientific Computing II 78/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1 and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

If T1 is interrupted by the scheduler after locking ma, but before locking mb
and in the meantime T2 succeeds in locking it, then the classical deadlock
occurs.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1 and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

If T1 is interrupted by the scheduler after locking ma, but before locking mb
and in the meantime T2 succeeds in locking it, then the classical deadlock
occurs.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1 and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

If T1 is interrupted by the scheduler after locking ma, but before locking mb
and in the meantime T2 succeeds in locking it, then the classical deadlock
occurs.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Problem:

Consider two mutex variables ma and mb, as well as two threads T1 and T2.

T1 locks ma first and then mb,

T2 locks mb first and then ma,

If T1 is interrupted by the scheduler after locking ma, but before locking mb
and in the meantime T2 succeeds in locking it, then the classical deadlock
occurs.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in the
same order. This can easily be guaranteed by hierarchically ordering the mutexes.

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

after the back off it starts over from the first one.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in the
same order. This can easily be guaranteed by hierarchically ordering the mutexes.

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

after the back off it starts over from the first one.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in the
same order. This can easily be guaranteed by hierarchically ordering the mutexes.

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

after the back off it starts over from the first one.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in the
same order. This can easily be guaranteed by hierarchically ordering the mutexes.

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

after the back off it starts over from the first one.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Avoiding mutex triggered deadlocks

Example (A deadlock situation when locking multiple mutexes)

Locking hierarchy solution:
The basic idea here is that all threads need to lock the critical mutexes in the
same order. This can easily be guaranteed by hierarchically ordering the mutexes.

Back off strategy solution:
When we want to keep the differing locking orders, we may use
pthread mutex trylock() with a back off strategy.

Locking is tried in the desired order,

when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

after the back off it starts over from the first one.

Jens Saak Scientific Computing II 79/349

Pthread coordination mechanisms
Condition variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the pthreads
NULL gives the default attributes,

restrict: see pthread mutex init()

every condition variable is associated to a mutex.

Jens Saak Scientific Computing II 80/349

Pthread coordination mechanisms
Condition variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the pthreads
NULL gives the default attributes,

restrict: see pthread mutex init()

every condition variable is associated to a mutex.

Jens Saak Scientific Computing II 80/349

Pthread coordination mechanisms
Condition variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the pthreads
NULL gives the default attributes,

restrict: see pthread mutex init()

every condition variable is associated to a mutex.

Jens Saak Scientific Computing II 80/349

Pthread coordination mechanisms
Condition variables

Dynamic initialization:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Static/Macro initialization:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

cond the condition to be initialized

attr can be used to adapt the condition properties, as for the pthreads
NULL gives the default attributes,

restrict: see pthread mutex init()

every condition variable is associated to a mutex.

Jens Saak Scientific Computing II 80/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition variable

if cond is blocking threads when destroyed the standard does not specify the
behavior of pthread cond destroy().

Jens Saak Scientific Computing II 81/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition variable

if cond is blocking threads when destroyed the standard does not specify the
behavior of pthread cond destroy().

Jens Saak Scientific Computing II 81/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition variable

if cond is blocking threads when destroyed the standard does not specify the
behavior of pthread cond destroy().

Jens Saak Scientific Computing II 81/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_destroy(pthread_cond_t *cond);

destroys the condition variable referenced by cond

the destroyed condition then becomes uninitialized

pthread cond init() can reinitialize the same condition variable

if cond is blocking threads when destroyed the standard does not specify the
behavior of pthread cond destroy().

Jens Saak Scientific Computing II 81/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time (atomically)
releasing mutex

another thread may evaluate this to wake up the now blocked thread (see
pthread cond signal())

upon waking up the thread automatically tries to gain access to mutex
again,

if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

Jens Saak Scientific Computing II 82/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time (atomically)
releasing mutex

another thread may evaluate this to wake up the now blocked thread (see
pthread cond signal())

upon waking up the thread automatically tries to gain access to mutex
again,

if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

Jens Saak Scientific Computing II 82/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time (atomically)
releasing mutex

another thread may evaluate this to wake up the now blocked thread (see
pthread cond signal())

upon waking up the thread automatically tries to gain access to mutex
again,

if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

Jens Saak Scientific Computing II 82/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time (atomically)
releasing mutex

another thread may evaluate this to wake up the now blocked thread (see
pthread cond signal())

upon waking up the thread automatically tries to gain access to mutex
again,

if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

Jens Saak Scientific Computing II 82/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

assumes that mutex was locked before by the calling thread,

results in the thread getting blocked and at the same time (atomically)
releasing mutex

another thread may evaluate this to wake up the now blocked thread (see
pthread cond signal())

upon waking up the thread automatically tries to gain access to mutex
again,

if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

Jens Saak Scientific Computing II 82/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_signal(pthread_cond_t *cond);

if no thread is blocked on the condition variable cond there is no effect,

otherwise, one of the waiting threads is woken up and proceeds as described
above.

int pthread_cond_broadcast(pthread_cond_t *cond);

wakes up all threads blocking on cond,

all of them try to acquire the associated mutex,

only one of them can succeed,

the others get blocked on the mutex now.

Jens Saak Scientific Computing II 83/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

equivalent to pthread cond wait() except that it only blocks for the
period specified by abstime,

if the thread did not get signaled or broadcast before abstime expires it
returns with error code ETIMEDOUT.

Jens Saak Scientific Computing II 84/349

Pthread coordination mechanisms
Condition variables

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

equivalent to pthread cond wait() except that it only blocks for the
period specified by abstime,

if the thread did not get signaled or broadcast before abstime expires it
returns with error code ETIMEDOUT.

Jens Saak Scientific Computing II 84/349

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes and
conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1. A signal operation increments the counter and wakes up a task blocked on
the semaphore if one exists.

2. A wait operation simply decrements the counter if it is positive. If it was zero
already the thread is blocking on the semaphore.

Jens Saak Scientific Computing II 85/349

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes and
conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1. A signal operation increments the counter and wakes up a task blocked on
the semaphore if one exists.

2. A wait operation simply decrements the counter if it is positive. If it was zero
already the thread is blocking on the semaphore.

Jens Saak Scientific Computing II 85/349

Pthread coordination mechanisms
A counting semaphore for Pthreads

Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes and
conditions.

A counting semaphore should be a data type that acts like a counter with
non-negative values and for which two operations are defined:

1. A signal operation increments the counter and wakes up a task blocked on
the semaphore if one exists.

2. A wait operation simply decrements the counter if it is positive. If it was zero
already the thread is blocking on the semaphore.

Jens Saak Scientific Computing II 85/349

Pthread coordination mechanisms
A counting semaphore for Pthreads: Data type, Init and Cleanup

data structure for the semaphore:

typedef struct _sema_t{
int count;
pthread_mutex_t m;
pthread_cond_t c;

} sema_t;

the initialization

void InitSema(sema_t *ps){
pthread_mutex_init(&ps->m,NULL);
pthread_cond_init(&ps->c,NULL);

}

and the cleanup

void CleanupSema(void *arg){
pthread_mutex_unlock((pthread_mutex_t *) arg);

}

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 86/349

Pthread coordination mechanisms
A counting semaphore for Pthreads: Operation realization

void ReleaseSema(sema_t *ps){ // signal operation
pthread_mutex_lock(&ps->m) ;
pthread_cleanup_push(CleanupSema,&ps->m);
{
ps->count++;
pthread_cond_signal(&ps->c) ;

}
pthread_cleanup_pop (1) ;

}

void AcquireSema(sema_t *ps){ // wait operation
pthread_mutex_lock(&ps->mutex);
pthread_cleanup_push(CleanupSema,&ps->m);
{
while(ps->count==0)
pthread_cond_wait(&ps->c,&ps->m) ;

ps->count--;
}
pthread_cleanup_pop(1);

}

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 87/349

Pthread coordination mechanisms
A typical application example for semaphores

Example (Producer/Consumer queue buffer protection)

A buffer of fixed size n is shared by

a producer thread generating entries and storing them in the buffer if it is not
full,

a consumer thread removing entries from the same buffer for further
processing unless it is empty.

For the realization of the protected access two semaphores are required:

1. Number of entries occupied (initialized by 0),

2. Number of free entries (initialized by n).

The Mechanism works for an arbitrary number of producers and consumers.
(Details will be worked out on exercise sheet 2.)

Jens Saak Scientific Computing II 88/349

Pthread coordination mechanisms
Coordination models for the cooperation of threads

1. Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2. Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3. Pipeline model:

Every thread (except for the first and last in line) produces output that serves
as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is achieved.

4. Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example next.

Jens Saak Scientific Computing II 89/349

Pthread coordination mechanisms
Coordination models for the cooperation of threads

1. Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2. Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3. Pipeline model:

Every thread (except for the first and last in line) produces output that serves
as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is achieved.

4. Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example next.

Jens Saak Scientific Computing II 89/349

Pthread coordination mechanisms
Coordination models for the cooperation of threads

1. Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2. Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3. Pipeline model:

Every thread (except for the first and last in line) produces output that serves
as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is achieved.

4. Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example next.

Jens Saak Scientific Computing II 89/349

Pthread coordination mechanisms
Coordination models for the cooperation of threads

1. Master/Slave model:

A master thread is controlling the execution of the program,
the slave threads are executing the work.

2. Client/Server model:

Client threads produce requests,
Server threads execute the corresponding work.

3. Pipeline model:

Every thread (except for the first and last in line) produces output that serves
as input for another thread,
after a startup phase (filling the pipeline) the parallel execution is achieved.

4. Worker model:

equally privileged workers organize their workload,
an important variant is the task pool treated as detailed example next.

Jens Saak Scientific Computing II 89/349

Task Pools
Basic idea of the task pool

Idea:

Creation of a parallel threaded program that can dynamically schedule tasks on
the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a dynamic
assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Jens Saak Scientific Computing II 90/349

Task Pools
Basic idea of the task pool

Idea:

Creation of a parallel threaded program that can dynamically schedule tasks on
the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a dynamic
assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Jens Saak Scientific Computing II 90/349

Task Pools
Basic idea of the task pool

Idea:

Creation of a parallel threaded program that can dynamically schedule tasks on
the available processors.

Key ingredients in the approach are:

usage of a fixed number of threads

organization of the pending tasks in a task pool,

threads fetch the tasks from the pool and execute them leading to a dynamic
assignment of the work load.

Main advantages

automatic dynamic load balancing among the threads

comparably small overhead for the administration of threads

Jens Saak Scientific Computing II 90/349

Task Pools
Implementation of a basic task pool: Data structures

data strucutre for one task:

typedef struct _work_t{
void (*routine) (void*); //worker function to call
void* arg ;
struct _work_t *next;

} work_t ;

data structure for the task pool:

typedef struct _tpool_t{
int num_threads ; // number of threads
int max_size, curr_size; // max./cur. number of tasks in pool
pthread_t *threads; //array of threads
work_t *head , *tail; // start/end of the task queue
pthread_mutex_t lock; //access control for the task pool
pthread_cond_t not_empty ; // tasks are available
pthread_cond_t not_full ; // tasks may be added

} tpool_t ;

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 91/349

Task Pools
Implementation of a basic task pool: Initialization

tpool_t *tpool_init(int num_threads , int max_size){
int i;
tpool_t *tpl;

tpl=(tpool_t *) malloc (sizeof(tpool_t));
tpl->num_threads=num_threads ;
tpl->max_size=max_size ;
tpl->cur_size=0;
tpl->head=tpl->tail=NULL;

pthread_mutex_init(&tpl->lock, NULL);
pthread_cond_init(&tpl->not_empty, NULL);
pthread_cond_init(&tpl->not_full, NULL);
tpl->threads=(pthread_t *) malloc(num_threads *sizeof(pthread_t));
for(i=0; i<num_threads; i++)
pthread_create(tpl->threads+i, NULL, tpool_thread, (void *)tpl) ;

return tpl;
}

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 92/349

Task Pools
Implementation of a basic task pool: Worker Threads

void *tpool_thread(void *vtpl){
tpool_t *tpl=(tpool_t *) vtpl;
work_t *wl ;

for (; ;) {
pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==0)
pthread_cond_wait(&tpl->not_empty , &tpl->lock);

wl=tpl->head; tpl->cur_size--;
if(tpl->cur_size==0)
tpl->head=tpl->tail=NULL;

else tpl->head = wl->next;
if (tpl->cur_size==tpl->max_size-1) // pool full
pthread_cond_signal(&tpl->not_full);

pthread_mutex_unlock(&tpl->lock);
(*(wl->routine)) (wl->arg);
free(wl);

}
}

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 93/349

Task Pools
Implementation of a basic task pool: Task insertion

void tpool_insert(tpool_t *tpl, void(*f) (void*), void *arg){
work_t *wl ;

pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==tpl->max_size)
pthread_cond_wait(&tpl->not_full, &tpl->lock);

wl=(work_t *) malloc(sizeof(work_t));
wl->routine=f; wl->arg=arg; wl->next=NULL ;
if(tpl->cur_size==0){
tpl->head=tpl->tail=wl;
pthread_cond_signal(&tpl->not_empty);

}
else{
tpl->tail->next=wl; tpl->tail=wl;

}
tpl->cur_size++;
pthread_mutex_unlock(&tpl->lock);

}

source: [Rauber/Rünger’10]

Jens Saak Scientific Computing II 94/349

Shared Memory Blocks
General shared memory blocks

In contrast to Threads, different processes do not share their address space.
Therefore, different ways to communicate in multiprocessing applications are
necessary.

One possible way are shared memory objects. Unix-like operating systems provide
at least one of:

old: System V Release 4 (SVR4) Shared Memory5

new: POSIX Shared Memory6.

Both techniques implement shared memory objects, like common memory,
semaphores and message queues, which are accessible from different applications
with different address spaces.

5System V Interface Definition, AT&T Unix System Laboratories, 1991
6IEEE Std 1003.1-2001Portable Operating System Interface System Interfaces

Jens Saak Scientific Computing II 95/349

Shared Memory Blocks
POSIX Shared Memory

Common Memory Locations

They are used to share data between applications.

They are managed by the kernel and not by the application.

Each location is represented as a file in /dev/shm/.

They are handled like normal files.

They are created using shm open and mapped to the memory using mmap.

Exist as long as no application deletes them.

Even when the creating program exits they stay available,

See manpage: man 7 shm overview.

Jens Saak Scientific Computing II 96/349

Shared Memory Blocks
POSIX Shared Memory

POSIX Semaphores

Counting semaphores are available form different address spaces.

They correspond to pthread mutex * in threaded applications.

They are represented as a file in /dev/shm/sem.*.

See manpage: man 7 sem overview.

Message Queues

They represent a generalized Signal concept which can transfer a small
payload (2 to 4 KiB).

They correspond to pthread cond * in threaded applications.

They can be represented as file in /dev/mqueue.

See manpage: man 7 mq overview.

Jens Saak Scientific Computing II 97/349

Chapter 3

Multicore and Multiprocessor
Systems: Part III

Jens Saak Scientific Computing II 98/349

Open Multi-Processing (OpenMP)
This is OpenMP: The Mission

Mission

“The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows NT platforms. Jointly defined by a group
of major computer hardware and software vendors, OpenMP is a portable, scal-
able model that gives shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms ranging from the desk-
top to the supercomputer.” a

aThe Mission statement from http://www.openmp.org/about/about-us/

The OpenMP Architecture Review Board (ARB)

The ARB is a non-profit enterprise owning the OpenMP brand and responsible for
overseeing, producing and approving the OpenMP standards.

Jens Saak Scientific Computing II 99/349

http://www.openmp.org/about/about-us/

Open Multi-Processing (OpenMP)
This is OpenMP: The Mission

Mission

“The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows NT platforms. Jointly defined by a group
of major computer hardware and software vendors, OpenMP is a portable, scal-
able model that gives shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms ranging from the desk-
top to the supercomputer.” a

aThe Mission statement from http://www.openmp.org/about/about-us/

The OpenMP Architecture Review Board (ARB)

The ARB is a non-profit enterprise owning the OpenMP brand and responsible for
overseeing, producing and approving the OpenMP standards.

Jens Saak Scientific Computing II 99/349

http://www.openmp.org/about/about-us/

Open Multi-Processing (OpenMP)
This is OpenMP: The Contributors

Permanent Members of the ARB: (status: April 23, 2017)7

AMD (Greg Stoner)

ARM (Chris Adeniyi-Jones)

Cray (Luiz DeRose)

Fujitsu (Eiji Yamanaka)

HP (Sujoy Saraswati)

IBM (Kelvin Li)

Intel (Xinmin Tian)

Micron (Kirby Collins)

NEC (Kazuhiro Kusano)

NVIDIA (Jeff Larkin)

Oracle Corporation (-TBD-)

redhat (Torvald Riegel)

Texas Instruments (Eric Stotzer)

7http://www.openmp.org/about/members/

Jens Saak Scientific Computing II 100/349

Open Multi-Processing (OpenMP)
This is OpenMP: The API standard

History

Oct. 1997 OpenMP 1.0 for Fortran,

Oct. 1998 OpenMP 1.0 for C/C++,

Nov. 2000 OpenMP 2.0 for Fortran,

March 2002 OpenMP 2.0 for C/C++,

May 2005 OpenMP 2.5 (first joint Fortran/C/C++ version),

May 2008 OpenMP 3.0,

Sept. 2011 OpenMP 3.1,

July 2013 OpenMP 4.0,

Nov. 2015 OpenMP 4.5,

Nov. 2018 OpenMP 5.0 (current standard).

Jens Saak Scientific Computing II 101/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Jens Saak Scientific Computing II 102/349

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for (data dependencies,) data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Jens Saak Scientific Computing II 103/349

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for (data dependencies,) data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Jens Saak Scientific Computing II 103/349

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for (data dependencies,) data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Jens Saak Scientific Computing II 103/349

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for (data dependencies,) data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Jens Saak Scientific Computing II 103/349

Open Multi-Processing (OpenMP)
The Structure of the Standard

OpenMP language
extensions

parallel control
structures

work sharing
data

environment
synchronization

runtime
functions, env.

variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

omp_set_num_threads()

Figure: Classification of the OpenMP extensions by tasks of the elements (Image Source:

https://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg).

Jens Saak Scientific Computing II 104/349

https://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1. Directives:
Basic control structures that initialize/end the parallel environments

2. Clauses:
Fine tuning parameters added to the directives.

3. Environment Variables:
Variables in the calling shell used to control the parallel environment

without recompilation.

4. Runtime Library Routines:
Runtime usable functions for the determination and modification of

parameters of the parallel environment.

Jens Saak Scientific Computing II 105/349

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1. Directives:
Basic control structures that initialize/end the parallel environments

2. Clauses:
Fine tuning parameters added to the directives.

3. Environment Variables:
Variables in the calling shell used to control the parallel environment

without recompilation.

4. Runtime Library Routines:
Runtime usable functions for the determination and modification of

parameters of the parallel environment.

Jens Saak Scientific Computing II 105/349

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1. Directives:
Basic control structures that initialize/end the parallel environments

2. Clauses:
Fine tuning parameters added to the directives.

3. Environment Variables:
Variables in the calling shell used to control the parallel environment

without recompilation.

4. Runtime Library Routines:
Runtime usable functions for the determination and modification of

parameters of the parallel environment.

Jens Saak Scientific Computing II 105/349

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1. Directives:
Basic control structures that initialize/end the parallel environments

2. Clauses:
Fine tuning parameters added to the directives.

3. Environment Variables:
Variables in the calling shell used to control the parallel environment

without recompilation.

4. Runtime Library Routines:
Runtime usable functions for the determination and modification of

parameters of the parallel environment.

Jens Saak Scientific Computing II 105/349

Open Multi-Processing (OpenMP)
OpenMP directives

The #pragma directive was introduced in C89 as the universal method for
extending the space of directives. It was further standardized in C99, where
especially the token STDC was reserved for standard C extensions.

Example (standard C #pragma usage)

In part 1 of the Scientific Computing lecture we have seen the floating point
environment for, e.g., checking the exception flags in IEEE arithmetic:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* starting here the compiler needs to assume we are accessing the
floating point status and mode registers*/

Jens Saak Scientific Computing II 106/349

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. The following
switches enable OpenMP support for your code:

GNU GCC -fopenmp
Intel ICC -qopenmp
LLVM CLANG -fopenmp
IBM XLC -qsmp
PGI -mp

Otherwise the omp pragmas are ignored and the sequential code version is
compiled.

A list of compilers supporting OpenMP can be found at
http://www.openmp.org/resources/openmp-compilers/

Jens Saak Scientific Computing II 107/349

http://www.openmp.org/resources/openmp-compilers/

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. The following
switches enable OpenMP support for your code:

GNU GCC -fopenmp
Intel ICC -qopenmp
LLVM CLANG -fopenmp
IBM XLC -qsmp
PGI -mp

Otherwise the omp pragmas are ignored and the sequential code version is
compiled.

A list of compilers supporting OpenMP can be found at
http://www.openmp.org/resources/openmp-compilers/

Jens Saak Scientific Computing II 107/349

http://www.openmp.org/resources/openmp-compilers/

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. The following
switches enable OpenMP support for your code:

GNU GCC -fopenmp
Intel ICC -qopenmp
LLVM CLANG -fopenmp
IBM XLC -qsmp
PGI -mp

Otherwise the omp pragmas are ignored and the sequential code version is
compiled.

A list of compilers supporting OpenMP can be found at
http://www.openmp.org/resources/openmp-compilers/

Jens Saak Scientific Computing II 107/349

http://www.openmp.org/resources/openmp-compilers/

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel

The parallel construct initializes a group of threads and starts parallel
execution:

#pragma omp parallel [clause[[,]clause]...]

The clauses can be used to influence the behavior of the parallel execution. They
will be explained later.

Available clauses for parallel:
if(scalar expression)

num threads(integer expression)

default(shared| none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(operation:list)

Jens Saak Scientific Computing II 108/349

Open Multi-Processing (OpenMP)
OpenMP directives

Example (A minimal OpenMP parallel “hello world” program)

#include <stdio.h>

int main(void)
{
#pragma omp parallel

printf("Hello, world.\n");
return 0;

}

The example automatically lets OpenMP tune the number of threads used to the
number of available processors. Afterward the parallel execution environment is
started and all threads execute the printf statement.

Jens Saak Scientific Computing II 109/349

Open Multi-Processing (OpenMP)
OpenMP directives: Loop

The loop construct specifies that the iterations of the loop should be distributed
among the active threads.

#pragma omp for [clause[[,]clause]...]
for loops

The for-loop construct needs to be used inside a structured code block of
parallel construct.

Available clauses for for:
private(list)

firstprivate(list)

lastprivate(list)

reduction(operator:list)

schedule(kind[,chunk size])

collapse(n)

ordered

nowait

Jens Saak Scientific Computing II 110/349

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Since often the parallel environment is used to introduce a for-loop
construction only, a shortcut parallel for exists for this special task

#pragma omp parallel for [clause[[,] clause]...]

With the exception of the nowait clause all clauses accepted by parallel and
for can be used with parallel for with the identically same behaviors and
restrictions.

Jens Saak Scientific Computing II 111/349

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Example (OpenMP parallel vector triad)

double triad(double *a, double *b, double *c, double *d, int length){
int i,j;
const int repeat=100;
double start, end;

get_walltime(&start);
for (j=0; j<repeat; j++){

#pragma omp parallel for
for (i=0 ; i<length; i++){
a[i]=b[i] + c[i] * d[i];

} /*end of parallel section*/
}
get_walltime(&end);
return repeat*length*2.0 / ((end-start) * 1.0e6); /* return MFLOPS */

}

Note that loop counters are protected automatically.

Jens Saak Scientific Computing II 112/349

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Example (OpenMP parallel vector triad)

double triad(double *a, double *b, double *c, double *d, int length){
int i,j;
const int repeat=100;
double start, end;

get_walltime(&start);
for (j=0; j<repeat; j++){

#pragma omp parallel for
for (i=0 ; i<length; i++){
a[i]=b[i] + c[i] * d[i];

} /*end of parallel section*/
}
get_walltime(&end);
return repeat*length*2.0 / ((end-start) * 1.0e6); /* return MFLOPS */

}

Note that loop counters are protected automatically.

Jens Saak Scientific Computing II 112/349

Open Multi-Processing (OpenMP)
OpenMP directives: Sections

When different tasks are to be distributed among the encountering team of
threads the sections construct can be used

#pragma omp sections [clause[[,] clause]...]
{
[#pragma omp section]
structured code block

[#pragma omp section]
structured code block

...
}

Available clauses for sections:
private(list)

firstprivate(list)

lastprivate(list)

reduction(operator:list)

nowait

Jens Saak Scientific Computing II 113/349

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Sections

Analogous to the for construct, also sections can be used only inside a
parallel construct. The parallel sections construct merges them for
easier use

#pragma omp parallel sections [clause[[,] clause]...]
{
[#pragma omp section]
structured code block

[#pragma omp section]
structured code block

...
}

Available clauses are those available for parallel and sections with the
exception of nowait, as in the case of for.

Jens Saak Scientific Computing II 114/349

Open Multi-Processing (OpenMP) I
OpenMP directives: Parallel Sections

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 50

int main (int argc, char *argv[]) {
int i, nthrd, tid;
float a[N], b[N], c[N], d[N];

/* Some initializations */
for (i=0; i<N; i++) {
a[i] = i * 1.5;
b[i] = i + 42.0;
c[i] = d[i] = 0.0;

}
/* Start 2 threads */

#pragma omp parallel shared(a,b,c,d,nthrd) private(i,tid) num_threads(2)
{
tid = omp_get_thread_num();
if (tid == 0) {
nthrd = omp_get_num_threads();
printf("Number of threads = %d\n", nthrd);

}
printf("Thread %d starting...\n",tid);

Jens Saak Scientific Computing II 115/349

Open Multi-Processing (OpenMP) II
OpenMP directives: Parallel Sections

#pragma omp sections
{

#pragma omp section
{
printf("Thread %d doing section 1\n",tid);
for (i=0; i<N; i++) {
c[i] = a[i] + b[i];

}
sleep(tid+2); /* Delay the thread for a few seconds */

} /* End of first section */

#pragma omp section
{
printf("Thread %d doing section 2\n",tid);
for (i=0; i<N; i++) {
d[i] = a[i] * b[i];

}
sleep(tid+2); /* Delay the thread for a few seconds */

} /* End of second section */
} /* end of sections */
printf("Thread %d done.\n",tid);

} /* end of omp parallel */

/* Print the results */
printf("c: ");

Jens Saak Scientific Computing II 116/349

Open Multi-Processing (OpenMP) III
OpenMP directives: Parallel Sections

for (i=0; i<N; i++) {
printf("%.2f ", c[i]);

}
printf("\n\nd: ");
for (i=0; i<N; i++) {
printf("%.2f ", d[i]);

}
printf("\n");
exit(0);

}

Jens Saak Scientific Computing II 117/349

Open Multi-Processing (OpenMP)
OpenMP directives: Single

A construct that makes sure that a structured code block is executed by only one
thread in a team of threads is given by the single directive.

#pragma omp single [clause[[,] clause]...]

Available clauses for the single construct are:
private(list)

firstprivate(list)

lastprivate(list)

nowait

Jens Saak Scientific Computing II 118/349

Open Multi-Processing (OpenMP)
OpenMP directives: Single

Example (OpenMP 4.5 Example 1.11 — single1.c)

#include <stdio.h>

void work1() {}
void work2() {}
void main()
{
#pragma omp parallel
{
#pragma omp single

printf("Beginning work1.\n");
work1();
#pragma omp single

printf("Finishing work1.\n");
#pragma omp single nowait

printf("Finished work1 and beginning work2.\n");
work2();
}

}

Jens Saak Scientific Computing II 119/349

Open Multi-Processing (OpenMP)
OpenMP directives: Master

The master construct specifies a structured block that is executed by the master
thread of the team.

#pragma omp master

The following structured block is only executed by the master thread of the parallel
team. There is no synchronization on entry or on exit with the other threads.

Jens Saak Scientific Computing II 120/349

Open Multi-Processing (OpenMP)
OpenMP directives: Master

Example (OpenMP 4.5 Example 1.13 — master1.c)

void master_example(float* x, float* xold, int n, float tol){
int c = 0, i, toobig; loat error, y;
#pragma omp parallel
{
do{
#pragma omp for private(i)
for(i = 1; i < n-1; ++i){ xold[i] = x[i]; }
#pragma omp single
toobig = 0;
#pragma omp for private(i,y,error) reduction(+:toobig)
for(i = 1; i < n-1; ++i){
y = x[i];
x[i] = average(xold[i-1], x[i], xold[i+1]);
error = y - x[i];
if(error > tol || error < -tol) ++toobig;

}
#pragma omp master
{ printf("iteration %d, toobig=%d\n", ++c, toobig); }

}while(toobig > 0);
}

}

Jens Saak Scientific Computing II 121/349

Open Multi-Processing (OpenMP)
OpenMP directives: Tasks

The OpenMP task construct (introduced with OpenMP 3.0) allows to parallelize
irregular algorithms. The task construct inserts a piece of work into a thread pool
running in the background.

#pragma omp task [clause[[,] clause]...]
structured code block

Available clauses for task (not complete):

if(scalar-expression)

final(scalar-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

priority(priority-value)

Jens Saak Scientific Computing II 122/349

Open Multi-Processing (OpenMP)
OpenMP directives: Tasks

Using the taskwait directive:

#pragma omp taskwait

one can wait for the completion of all previously created tasks at any position
inside a parallel region in order to synchronize the parallel execution.

Due to the fact that tasks are running in the background they are mostly emitted
by a single thread or a sequential code block. Therefore, mostly the single and
master directives are used.

Tasks have to be defined inside an OpenMP parallel region. The end of the
parallel region, unless it is used with the nowait clause, is an implicit
synchronization point and the program waits until all tasks created inside the
parallel region are finished.

Jens Saak Scientific Computing II 123/349

Open Multi-Processing (OpenMP)
OpenMP directives: Task Dependencies

The support to describe data dependencies between tasks is one of the most
beneficial features of the OpenMP 4 standard. For scientific computing this
means that algorithms relying on dependency-graphs can be parallelized without
using other third-party code or libraries.

“Although we expect to see DAG-based models widely adopted, changes in
other parts of the software ecosystem will inevitably affect the way that that
model is implemented. The appearance of DAG scheduling constructs in the
OpenMP 4.0 standard offers a particularly important example of this point.
[. . .] However, the inclusion of DAG scheduling constructs in the OpenMP
standard, along with the rapid implementation of support for them (with
excellent multithreading performance) in the GNU compiler suite, throws
open the doors to widespread adoption of this model in academic and
commercial applications for shared memory.” a

aJack Dongarra et. al., Numerical Algorithms and Libraries at Exascale

Jens Saak Scientific Computing II 124/349

https://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Open Multi-Processing (OpenMP)
OpenMP directives: Task Dependencies

The data dependencies are defined using the depend clause during the task
creation:

#pragma omp task depend(direction:list) [depend(direction:list)] [clauses...]
structured code block

Each depend clause consists of a data-flow direction and a list of identifiers.
Possible directions are:

in — The identifiers are input dependencies.

out — The identifiers are output dependencies.

inout — The identifiers are input and output dependencies.

The list of identifiers is a comma separated list of variables from which a pointer
can be created.

Tasks with a common inout or output dependencies are executed in the order
as they are created.

Jens Saak Scientific Computing II 125/349

Open Multi-Processing (OpenMP)
OpenMP directives: Task Dependencies

Example (OpenMP 4.5 Example 3.3.4 — task dep4.c)

#include <stdio.h>
int main() {
int x = 1;
#pragma omp parallel
#pragma omp single

{
#pragma omp task shared(x) depend(out: x)
x = 2;
#pragma omp task shared(x) depend(in: x)
printf("x + 1 = %d. ", x+1);
#pragma omp task shared(x) depend(in: x)
printf("x + 2 = %d\n", x+2);

}
return 0;

}

Array elements, e.g. y[i] or A[i+ldA*j], are also valid identifiers in the
depend clause. Intervals on arrays, like A[i:j], are also allowed.

Jens Saak Scientific Computing II 126/349

Open Multi-Processing (OpenMP)
OpenMP directives: Task Dependencies

Example (OpenMP 4.5 Example 3.3.5 — task dep5.c)

// Assume BS divides N perfectly
void matmul_depend(int N, int BS, float A[N][N], float B[N][N], float C[N][N])
{
int i, j, k, ii, jj, kk;
for (i = 0; i < N; i+=BS) {
for (j = 0; j < N; j+=BS) {
for (k = 0; k < N; k+=BS) {
#pragma omp task private(ii, jj, kk) firstprivate(i,j,k) \

depend (in: A[i][k], B[k][j]) \
depend (inout: C[i][j])

for (ii = i; ii < i+BS; ii++)
for (jj = j; jj < j+BS; jj++)
for (kk = k; kk < k+BS; kk++)
C[ii][jj] = C[ii][jj] + A[ii][kk] * B[kk][jj];

}
}

}
}

Jens Saak Scientific Computing II 127/349

Open Multi-Processing (OpenMP)
OpenMP directives: Barrier

A synchronization construct that makes the threads wait until all threads in the
team have reached this point and only then continues execution.

#pragma omp barrier

Note that all constructs that allow the nowait clause have an implicit barrier at
their end. Still sometimes explicit synchronization is desirable.

Jens Saak Scientific Computing II 128/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Classification

The OpenMP clauses we have seen above can be divided into two classes

1. attribute clauses related to data sharing

2. clauses controlling data copying

clauses usually take a list of arguments

lists are comma separated and enclosed by ().

all list items must be visible to the clause

Jens Saak Scientific Computing II 129/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Classification

The OpenMP clauses we have seen above can be divided into two classes

1. attribute clauses related to data sharing

2. clauses controlling data copying

clauses usually take a list of arguments

lists are comma separated and enclosed by ().

all list items must be visible to the clause

Jens Saak Scientific Computing II 129/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct can be
one of

predetermined, e.g., loop counters in for or parallel for constructs
are always private, const qualified variables are shared, more can be
found in Section 2.9.1 of the OpenMP standard

explicitly determined are those attributes where variables are referenced in
a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a given
construct but are neither predetermined nor explicitly specified

Jens Saak Scientific Computing II 130/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct can be
one of

predetermined, e.g., loop counters in for or parallel for constructs
are always private, const qualified variables are shared, more can be
found in Section 2.9.1 of the OpenMP standard

explicitly determined are those attributes where variables are referenced in
a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a given
construct but are neither predetermined nor explicitly specified

Jens Saak Scientific Computing II 130/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct can be
one of

predetermined, e.g., loop counters in for or parallel for constructs
are always private, const qualified variables are shared, more can be
found in Section 2.9.1 of the OpenMP standard

explicitly determined are those attributes where variables are referenced in
a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a given
construct but are neither predetermined nor explicitly specified

Jens Saak Scientific Computing II 130/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

default(shared|none)

determines the default attributes of variables in the context of a task or
parallel construct.

defaults to shared when not explicitly given in a parallel construct

all other (except task) constructs inherit the default from the enclosing
construct if no default clause is given explicitly.

shared(list)

Sets the data sharing attributes of all variables in list to be of shared type.
That means the variable is considered to be in the shared memory of the team of
threads.

Jens Saak Scientific Computing II 131/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

default(shared|none)

determines the default attributes of variables in the context of a task or
parallel construct.

defaults to shared when not explicitly given in a parallel construct

all other (except task) constructs inherit the default from the enclosing
construct if no default clause is given explicitly.

shared(list)

Sets the data sharing attributes of all variables in list to be of shared type.
That means the variable is considered to be in the shared memory of the team of
threads.

Jens Saak Scientific Computing II 131/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)

Each variable of the list is declared to be a private copy of the thread and not
accessible from other threads in the team. It can not be applied to variables that
are part of other variables(elements in arrays or members of a structure).

firstprivate(list)

As above but additionally the value of the item in the list is initialized from the
corresponding original item when the construct is encountered. The clause has a
few more restrictions found in the standard.

lastprivate(list)

As private but causes the original item to be updated after the end of the
region from the last iterate of the enclosed loop or the lexically last section in a
sections region.

Jens Saak Scientific Computing II 132/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)

Each variable of the list is declared to be a private copy of the thread and not
accessible from other threads in the team. It can not be applied to variables that
are part of other variables(elements in arrays or members of a structure).

firstprivate(list)

As above but additionally the value of the item in the list is initialized from the
corresponding original item when the construct is encountered. The clause has a
few more restrictions found in the standard.

lastprivate(list)

As private but causes the original item to be updated after the end of the
region from the last iterate of the enclosed loop or the lexically last section in a
sections region.

Jens Saak Scientific Computing II 132/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)

Each variable of the list is declared to be a private copy of the thread and not
accessible from other threads in the team. It can not be applied to variables that
are part of other variables(elements in arrays or members of a structure).

firstprivate(list)

As above but additionally the value of the item in the list is initialized from the
corresponding original item when the construct is encountered. The clause has a
few more restrictions found in the standard.

lastprivate(list)

As private but causes the original item to be updated after the end of the
region from the last iterate of the enclosed loop or the lexically last section in a
sections region.

Jens Saak Scientific Computing II 132/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

reduction(operator:list)

Accumulates all items of the list into a private copy according to the given
operator and then combines it with the original instance.

+ (0) | (0)
* (1) ˆ (0)
- (0) && (1)
& (˜0) || (0)
max (Least number in reduction list item type)
min (Largest number in reduction list item type)

Table: Operators for reduction with initialization values in ()

Jens Saak Scientific Computing II 133/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Example (OpenMP reduction minimal example)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
a[i] = b[i] = i * 1.0;

sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);
}

Jens Saak Scientific Computing II 134/349

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Copying

The following are cited from OpenMP 3.1 API C/C++ Syntax Quick Reference
Card:
“These clauses support the copying of data values from private or threadprivate
variables on one implicit task or thread to the corresponding variables on other
implicit tasks or threads in the team.”

copyin(list)

“Copies the value of the master thread’s threadprivate variable to the
threadprivate variable of each other member of the team executing the
parallel region.”

copyprivate(list)

“Broadcasts a value from the data environment of one implicit task to the data
environments of the other implicit tasks belonging to the parallel region.”

Jens Saak Scientific Computing II 135/349

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.

OMP SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.

OMP NUM THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.

OMP PROC BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP standard.

Jens Saak Scientific Computing II 136/349

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.

OMP SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.

OMP NUM THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.

OMP PROC BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP standard.

Jens Saak Scientific Computing II 136/349

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.

OMP SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.

OMP NUM THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.

OMP PROC BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP standard.

Jens Saak Scientific Computing II 136/349

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.

OMP SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.

OMP NUM THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.

OMP PROC BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP standard.

Jens Saak Scientific Computing II 136/349

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.

OMP SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.

OMP NUM THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.

OMP PROC BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP standard.

Jens Saak Scientific Computing II 136/349

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

We only treat thread and processor number related functions

void omp_set_num_threads(int num_threads)

Determines the number of threads in subsequent parallel regions that do not
specify a num threads clause.

int omp_get_num_threads(void)

Returns the number of threads in the current team.

Jens Saak Scientific Computing II 137/349

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

int omp_get_max_threads(void)

Provides the maximum number of threads that could be used in a subsequent
parallel construct.

int omp_get_thread_num(void)

Returns the thread ID of the current thread. IDs are integers from zero (the
master thread) to the number of threads in the team minus one.

int omp_get_num_procs(void)

returns the number of processors available to the program.

More runtime library functions and detailed descriptions can be found in Section 3
of the OpenMP standard.

Jens Saak Scientific Computing II 138/349

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Example (Hello World revisited)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int th_id, nthreads;

#pragma omp parallel private(th_id)
{

th_id = omp_get_thread_num();

printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}
return EXIT_SUCCESS;

}

Jens Saak Scientific Computing II 139/349

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Two important rules of thumb:

In case of nested loops it is usually best to apply the parallelization to
the outermost possible loop.

It is in general a good idea to first optimize the sequential code and
only then add parallelism to further increase the speed of execution.

Jens Saak Scientific Computing II 140/349

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Two important rules of thumb:

In case of nested loops it is usually best to apply the parallelization to
the outermost possible loop.

It is in general a good idea to first optimize the sequential code and
only then add parallelism to further increase the speed of execution.

Jens Saak Scientific Computing II 140/349

Chapter 3

Multicore and Multiprocessor
Systems: Part IV

Jens Saak Scientific Computing II 141/349

Tree Reduction
The OpenMP reduction minimal example revisited: Data Sharing

Example (OpenMP reduction minimal example)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
a[i] = b[i] = i * 1.0;

sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);
}

Jens Saak Scientific Computing II 142/349

Tree Reduction
The OpenMP reduction minimal example revisited

The main properties of the reduction are

accumulation of data via a binary operator (here +)

intrinsically sequential operation causing a race condition in multi-thread
based implementations (since every iteration step depends on the result of its
predecessor.)

Jens Saak Scientific Computing II 143/349

Tree Reduction
Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]

+ + s[5]

+ s[5]

+

Figure: Tree reduction basic idea.

ideally the number of elements is a power of 2

best splitting of the actual data depends on the hardware used

Jens Saak Scientific Computing II 144/349

Tree Reduction
Basic idea of tree reduction

s[1] s[2] s[3] s[4] s[5]

+ + s[5]

+ s[5]

+

Figure: Tree reduction basic idea.

ideally the number of elements is a power of 2

best splitting of the actual data depends on the hardware used

Jens Saak Scientific Computing II 144/349

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal cores. How
do we compute the accumulation in parallel?

Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up. The
reduction is then performed on the results of the threads.

Jens Saak Scientific Computing II 145/349

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up. The
reduction is then performed on the results of the threads.

Jens Saak Scientific Computing II 145/349

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up. The
reduction is then performed on the results of the threads.

Jens Saak Scientific Computing II 145/349

Tree Reduction
Practical tree reduction on multiple cores

Example (Another approach for the dot example)

Consider the setting as before a, b ∈ R100. Further we have four equal cores. How
do we compute the accumulation in parallel? Basically 2 choices

1. Task pool approach: define a task pool and feed it with n/2 = 50 work
packages accumulating 2 elements into 1. When these are done, schedule the
next 25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up. The
reduction is then performed on the results of the threads.

Jens Saak Scientific Computing II 145/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 1: Gaussian elimination — row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
3 for i = k + 1 : n do
4 for j = k + 1 : n do
5 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.

Jens Saak Scientific Computing II 146/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 1: Gaussian elimination — row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
3 for i = k + 1 : n do
4 for j = k + 1 : n do
5 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.

Jens Saak Scientific Computing II 146/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 2: Gaussian elimination — Outer product formulation

Input: A ∈ Rn×n allowing LU decomposition
Output: L,U ∈ Rn×n such that A = LU stored in A stored in A

1 for k = 1 : n − 1 do
2 rows= k + 1 : n;
3 A(rows, k) = A(rows, k)/A(k , k);
4 A(rows,rows) = A(rows,rows)− A(rows, k)A(k ,rows);

Idea of the blocked version

Replace the rank-1 update by a rank-r update ,

Thus replace the O(n2) / O(n2) operation per data ratio the more desirable
O(n3) / O(n2) ratio,

Therefore exploit the fast local caches of modern CPUs more optimally.

Jens Saak Scientific Computing II 147/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 2: Gaussian elimination — Outer product formulation

Input: A ∈ Rn×n allowing LU decomposition
Output: L,U ∈ Rn×n such that A = LU stored in A stored in A

1 for k = 1 : n − 1 do
2 rows= k + 1 : n;
3 A(rows, k) = A(rows, k)/A(k , k);
4 A(rows,rows) = A(rows,rows)− A(rows, k)A(k ,rows);

Idea of the blocked version

Replace the rank-1 update by a rank-r update ,

Thus replace the O(n2) / O(n2) operation per data ratio the more desirable
O(n3) / O(n2) ratio,

Therefore exploit the fast local caches of modern CPUs more optimally.

Jens Saak Scientific Computing II 147/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 3: Gaussian elimination — Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve WŨ = A(`+ 1 : n, k : `) and store W in A;

7 Perform the rank-r update:
A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;

8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and the rank-r
update. It is used to optimize the data portions for the cache.

Jens Saak Scientific Computing II 148/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Algorithm 3: Gaussian elimination — Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve WŨ = A(`+ 1 : n, k : `) and store W in A;
7 Perform the rank-r update:

A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;
8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and the rank-r
update. It is used to optimize the data portions for the cache.

Jens Saak Scientific Computing II 148/349

Dense Linear Systems of Equations
Repetition blocked algorithms

A

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

A11

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

A(1 : `, ` + 1 : n)

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

A(` + 1 : n, 1 : `)

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

W

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Z

W A(` + 1 : n, ` + 1 : n)−WZ

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

A22

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Repetition blocked algorithms

1

3/4

5/6

2

4

2 4

3

3

Jens Saak Scientific Computing II 149/349

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the block outer
product elimination in Algorithm 6.

Threaded BLAS available

Compute line 4 with the sequential version of the LU

Exploite the threaded BLAS for the block operations in lines 5–7

Netlib BLAS

Compute line 4 with the sequential version of the LU

Employ OpenMP/PThreads to perform the BLAS calls for the block
operations in lines 5–7 in parallel.

Jens Saak Scientific Computing II 150/349

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

We have basically two ways to implement naive parallel versions of the block outer
product elimination in Algorithm 6.

Threaded BLAS available

Compute line 4 with the sequential version of the LU

Exploite the threaded BLAS for the block operations in lines 5–7

Netlib BLAS

Compute line 4 with the sequential version of the LU

Employ OpenMP/PThreads to perform the BLAS calls for the block
operations in lines 5–7 in parallel.

Jens Saak Scientific Computing II 150/349

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

Both these approaches fall into the class of parallel codes described by the
following paradigm.

Definition (Fork-Join Parallelism)

An algorithm that performs certain parts sequentially between others that are
executed in parallel is called fork-join-parallel.

...· · · · · ·

Figure: A sketch of the fork-join execution model.

Jens Saak Scientific Computing II 151/349

Dense Linear Systems of Equations
Fork-Join parallel implementation for multicore machines

Advantages

Easy to achieve.

Many threaded BLAS implementations available.

Basically usable from any user code that requires linear system
solves.

Disadvantages

Very naive implementation.

Sequential fraction limits the speedup (Amdahl’s law).

Therefore, only useful for small numbers of cores.

Jens Saak Scientific Computing II 152/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires a certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not appear by
construction.

Jens Saak Scientific Computing II 153/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires a certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not appear by
construction.

Jens Saak Scientific Computing II 153/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires a certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not appear by
construction.

Jens Saak Scientific Computing II 153/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Definition (Directed Acyclic Graph (DAG))

A directed acyclic graph is a graph where

all edges have one distinct direction,

directions are such that no cycles are possible for any path in the graph.

Where is the connection to parallel mathematical algorithms?

Consider every node in the graph a task in the computation.

Every task requires a certain number of previous tasks to have finished.

Also none of the previous tasks depend on the later ones.

Thus, the dependencies give us the directions and cycles can not appear by
construction.

Jens Saak Scientific Computing II 153/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Jens Saak Scientific Computing II 154/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Title Suppressed Due to Excessive Length 13

Fig. 3. The dependency graph of Algorithm 2 on a matrix with p = q = 3.

critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQRT subroutine have the highest priority and
then three other priority levels can be defined for DTSQRT, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle time
is almost completely eliminated since only very loose synchronization is required
between the threads. Figure 4 shows part of the execution flow of Algorithm 2 on
a 8-cores machine (2-way Quad Clovertown) when tasks are dynamically sched-
uled based on dependencies in the DAG. Each line in the execution flow shows
which tasks are performed by one of the threads involved in the factorization.

Figure 4 shows that all the idle times, which represent the major scalability
limit of the fork-join approach, can be removed thanks to the very low synchro-
nization requirements of the graph driven execution. The graph driven execution
also provides some degree of adaptivity since tasks are scheduled to threads de-
pending on the availability of execution units.

5 Performance Results

The performance of the tiled algorithms for Cholesky, QR ad LU factorizations
with dynamic scheduling of tasks has been measured on the system described in
Table 2 and compared to the performance of the MKL-9.1 implementations and
to the fork-join approach, i.e., the standard algorithm for block factorizations of
LAPACK associated with multithreaded BLAS (MKL-9.1).

Figures 5, 6, 7 report the performance of the Cholesky, QR and LU factor-
izations for the tiled algorithms with dynamic scheduling, the MKL-9.1 imple-

Figure: Dependency graph of Algorithm 6 for a 3× 3 block subdivision.

Jens Saak Scientific Computing II 155/349

Dense Linear Systems of Equations
DAG scheduling of block operations aiming at manycore systems

Figure: The superiority of DAG scheduling of tasks over fork-join parallelism.

Jens Saak Scientific Computing II 156/349

Chapter 3

Multicore and Multiprocessor
Systems: Part V

Jens Saak Scientific Computing II 157/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one matrix vector product (performing the main work),

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one dot,

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

two axpy,

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

one nrm2,

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
The Conjugate Gradient (CG) Method (a prototype iterative solver)

Algorithm 4: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

CG uses

and a nonstandard axpy operation with result in x.

Jens Saak Scientific Computing II 158/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The key ingredient in the CG method is the sparse matrix vector product
(SpMVP).

We learned in part 1 of the lecture that sparse matrix operations are bandwidth
limited, i.e., the crucial point is always the data transfer for matrix pattern and
entries to the processing units.

On the other hand, the SpMVP is trivially parallel due to data parallelism. On
multicore architectures the obvious questions are:

What is the optimal number of threads to use?

How should the data be distributed among the threads?

First question treated in the exercises.

Jens Saak Scientific Computing II 159/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The second questions is investigated a lot in the literature. We will only sketch a
small selection of approaches considering x = Ab for x , b ∈ Rn and A ∈ Rn×n

sparse with properties specified separately in the method descriptions.

Naive row blocking. (e.g., using OpenMP parallel for)

If the matrix A is banded with moderate bandwidth and the number of entries per
row is almost the same for all rows, simply grouping the rows in blocks of rows
will likely do a good job.

The bandwidth limitations guarantee data locality on b.

Furthermore, the similar lengths of the sparse rows will automatically provide a
proper load balancing.

This provides the easiest form of 1d-partitioning.

Jens Saak Scientific Computing II 160/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The second questions is investigated a lot in the literature. We will only sketch a
small selection of approaches considering x = Ab for x , b ∈ Rn and A ∈ Rn×n

sparse with properties specified separately in the method descriptions.

Naive row blocking. (e.g., using OpenMP parallel for)

If the matrix A is banded with moderate bandwidth and the number of entries per
row is almost the same for all rows, simply grouping the rows in blocks of rows
will likely do a good job.

The bandwidth limitations guarantee data locality on b.

Furthermore, the similar lengths of the sparse rows will automatically provide a
proper load balancing.

This provides the easiest form of 1d-partitioning.

Jens Saak Scientific Computing II 160/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The simplest form of 2d-partitioning of the matrix A uses (blocks of) columns and
(blocks of) rows at the same time. It is usually referred to as hypergraph
partitioning since the choice fits the following definition.

Definition (Hypergraph)

A hypergraph is an ordered pair (V, E) of sets. It is a generalization of a graph
that consists of vertices (in the set V) and hyperedges in the set E . In contrast to
an edge in a graph a hyperedge can be an arbitrary subset of V and not just a pair.

Jens Saak Scientific Computing II 161/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

Example

Schematic representation of a hypergraph with seven vertices and four hyperedges.

v1

e 1 v2 v3

v5
v6

v7

v4

e 2

e 4
e 3

Image source: https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

Jens Saak Scientific Computing II 162/349

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

The idea of hypergraph partitioning is to use the hyperedges to find the optimal
partitioning of the vertices into k equal sets for optimal balancing of the workload
and data communication.

The problem of finding the optimal
partition is however np-hard. Therefore
cheap heuristics are employed to
approximate the optimal partition.

An interesting variant especially for
symmetric patterns is the corner
symmetric partitioning.

13

“Corner” Symmetric Partitioning

• 1-D partitions reflected across diagonalFigure: Corner symmetric partitioning of
the arrowhead matrix with 2 partitions.

Jens Saak Scientific Computing II 163/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

8

1 2

7

435

6

Figure: arrowhead matrix pattern and connectivity graph.

The central node 8 is called vertex separator. The identification of such a (group of) node(s) is the central
question in the graph model based partitioning. Successive application of this idea leads to the nested
dissection scheme.

Jens Saak Scientific Computing II 164/349

Sparse Linear Systems of Equations
Sparse Matrix Vector Products

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

8

1 2

7

435

6

Figure: arrowhead matrix pattern and connectivity graph.

The central node 8 is called vertex separator. The identification of such a (group of) node(s) is the central
question in the graph model based partitioning. Successive application of this idea leads to the nested
dissection scheme.

Jens Saak Scientific Computing II 164/349

Sparse Linear Systems of Equations
Preconditioning

Recall:

A preconditioner is an invertible linear operator P that approximates the action of
A−1 for a linear system Ax = b.

Invertibility required to ensure proper preservation of solution,

preconditioner need not be formed as a matrix, as long as its action on a
vector can be provided as a function,

main purpose of the preconditioner is the grouping of eigenvalues, ideally in a
single cluster at +1.

Jens Saak Scientific Computing II 165/349

Sparse Linear Systems of Equations
Preconditioned CG

Algorithm 5: Preconditioned Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, A−1 ≈ P ∈ Rn×n

Output: x = A−1b
1 r0 = b − Ax0, p0 = z0 = Pr0,α0 = (r0, p0);
2 for m = 0 : n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)2
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;
8 zm+1 = Prm+1;
9 αm+1 = (rm+1, zm+1)2;

10 pm+1 = zm+1 +
αm+1
αm

pm;

11 else
12 STOP;

Jens Saak Scientific Computing II 166/349

Sparse Linear Systems of Equations
Diagonal/Jacobi Preconditioner

Let D ∈ Rn×n be a diagonal matrix containing the diagonal of A. Then P = D−1

is called Jacobi or diagonal preconditioner.

Properties

+ embarrassingly parallel in computation and application,

+ storage requirement n double numbers,

− only useful for diagonally dominant systems.

Jens Saak Scientific Computing II 167/349

Sparse Linear Systems of Equations
Sparse Approximate Inverse (SPAI) Preconditioning

The basic idea of SPAI is to find the best matrix P approximating A−1, while
maintaining the sparsity pattern of A.

min
P(P)=P(A)

‖AP − I‖2
F = min

P(P)=P(A)

n∑
j=1

‖Apj − ej‖2
F︸ ︷︷ ︸

n independent least squares problems

+ only SpMVP needed for the application,

+ n independent least squares problems allow two multicore approaches:

rely on threaded BLAS when solving the least squares problems sequentially
via dgeqrs() from LAPACK,
use sequential BLAS with OpenMP for parallel solution of the least squares
problems.

− efficient preconditioning requires additional fill-in, which leads to extra storage demands
and increased computational complexity.

Jens Saak Scientific Computing II 168/349

Sparse Linear Systems of Equations
Sparse Approximate Inverse (SPAI) Preconditioning

The basic idea of SPAI is to find the best matrix P approximating A−1, while
maintaining the sparsity pattern of A.

min
P(P)=P(A)

‖AP − I‖2
F = min

P(P)=P(A)

n∑
j=1

‖Apj − ej‖2
F︸ ︷︷ ︸

n independent least squares problems

+ only SpMVP needed for the application,

+ n independent least squares problems allow two multicore approaches:

rely on threaded BLAS when solving the least squares problems sequentially
via dgeqrs() from LAPACK,
use sequential BLAS with OpenMP for parallel solution of the least squares
problems.

− efficient preconditioning requires additional fill-in, which leads to extra storage demands
and increased computational complexity.

Jens Saak Scientific Computing II 168/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

1

2

34

6 5

(a) initial graph G0

H0 =

1 ∗ ∗
∗ 2 ∗ ∗
∗ 3 ∗
∗ 4
∗ 5 ∗

∗ ∗ 6

(b) corresponding submatrix 0

Figure: Basic graph elimination procedure for a symmetric matrix and the Cholesky
decomposition

Jens Saak Scientific Computing II 169/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

2

34

6 5

(a) elimination graph G1

H1 =

2 ∗ ∗ ∗
∗ 3 ∗
∗ 4
∗ 5 ∗

∗ ∗ 6

(b) corresponding submatrix 1

Figure: Basic graph elimination procedure for a symmetric matrix and the Cholesky
decomposition

Jens Saak Scientific Computing II 169/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

34

6 5

(a) elimination graph G2

H2 =

3 ∗ ∗ ∗
∗ 4 ∗
∗ 5 ∗
∗ ∗ ∗ 6

(b) corresponding submatrix 2

Figure: Basic graph elimination procedure for a symmetric matrix and the Cholesky
decomposition

Jens Saak Scientific Computing II 169/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

4

6 5

(a) elimination graph G3

H3 =

4 ∗ ∗
∗ 5 ∗
∗ ∗ 6

(b) corresponding submatrix 3

Figure: Basic graph elimination procedure for a symmetric matrix and the Cholesky
decomposition

Jens Saak Scientific Computing II 169/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

1

2

34

6 5

(a) The filled graph G+(A) = G(F)

F =

1 ∗ ∗
∗ 2 ∗ ∗ ∗
∗ 3 ∗ ∗ ∗
∗ ∗ 4 ∗ ∗
∗ ∗ 5 ∗

∗ ∗ ∗ ∗ ∗ 6

(b) The final matrix F = L + LT with fill.

Figure: The filled graph and matrix of a Cholesky decomposition example.

Jens Saak Scientific Computing II 170/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Now

L =

1
∗ 2
∗ 3
∗ ∗ 4
∗ ∗ 5

∗ ∗ ∗ ∗ ∗ 6

and thus, the forward elimination is purely sequential. Are we lost?

Jens Saak Scientific Computing II 171/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =

1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

Jens Saak Scientific Computing II 172/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =

1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

Jens Saak Scientific Computing II 172/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Consider the Cholesky factor:

L =

1
∗ 2

3
∗ 4
∗ ∗ 5

6
∗ ∗ ∗ 7

∗ ∗ ∗ ∗ ∗ 8
∗ 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

Jens Saak Scientific Computing II 172/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Definition (column pattern)

The j-th column pattern P∗j is the set of row indices of all non-diagonal nonzero
entries in the j-th column.

Definition (Supernode)

A supernode is a set of contiguous column indices

I(p) = {p, p + 1, . . . , p + q − 1},

such that for all columns i ∈ I(p) we have

P∗i = P∗(p+q−1) ∪ {i + 1, ,̇p + q − 1}

Jens Saak Scientific Computing II 173/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal blocks
that have the identically same pattern in each column
below the diagonal block.

Column modifications in forward substitution can be
expressed in terms of supernodes rather than single
diagonal entries.
Inside the supernode block operations we can exploit
parallelism.

Jens Saak Scientific Computing II 174/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal blocks
that have the identically same pattern in each column
below the diagonal block.
Column modifications in forward substitution can be
expressed in terms of supernodes rather than single
diagonal entries.

Inside the supernode block operations we can exploit
parallelism.

Jens Saak Scientific Computing II 174/349

Sparse Linear Systems of Equations
Issues of Sparse Direct Solvers

Supernodes, thus are special dense diagonal blocks
that have the identically same pattern in each column
below the diagonal block.
Column modifications in forward substitution can be
expressed in terms of supernodes rather than single
diagonal entries.
Inside the supernode block operations we can exploit
parallelism.

Jens Saak Scientific Computing II 174/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

Consider the Cholesky factor and corresponding elimination tree

L =

1
2

3
4

∗ 5
6

∗ 7
8

∗ ∗ ∗ ∗ 9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10

2

3

4

5

6

7

89

10

1

Jens Saak Scientific Computing II 175/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed independently

+ a simple task pool scheduling the independent tasks enables
parallel execution and load balancing

− elimination tree must be computed to enable proper scheduling
and identification of independent tasks

Remark

Note that elimination trees can be computed without computing the
filled graph or the Cholesky factor first.

Jens Saak Scientific Computing II 176/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed independently
+ a simple task pool scheduling the independent tasks enables

parallel execution and load balancing

− elimination tree must be computed to enable proper scheduling
and identification of independent tasks

Remark

Note that elimination trees can be computed without computing the
filled graph or the Cholesky factor first.

Jens Saak Scientific Computing II 176/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed independently
+ a simple task pool scheduling the independent tasks enables

parallel execution and load balancing
− elimination tree must be computed to enable proper scheduling

and identification of independent tasks

Remark

Note that elimination trees can be computed without computing the
filled graph or the Cholesky factor first.

Jens Saak Scientific Computing II 176/349

Sparse Linear Systems of Equations
A Task Pool Approach to Parallel Triangular Solves

+ many elimination steps can be executed independently
+ a simple task pool scheduling the independent tasks enables

parallel execution and load balancing
− elimination tree must be computed to enable proper scheduling

and identification of independent tasks

Remark

Note that elimination trees can be computed without computing the
filled graph or the Cholesky factor first.

Jens Saak Scientific Computing II 176/349

Relevant Software and Libraries

Dense Linear Algebra

1. OpenBLAS based on the earlier GotoBLAS project OpenBLAS implements a
complete set of optimized BLAS routines. On a machine with a single socket
it is likely the fastest BLAS implementation one can get.8

2. Intel® Math Kernel Library (MKL) is Intel®s optimized implementation
of BLAS and LAPACK. It is the strongest opponent of OpenBLAS on single
socket systems. On a system with several sockets no other BLAS library
outperforms MKL.9

3. PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of the linear
algebra subsystem on multicore architectures.10

8http://xianyi.github.io/OpenBLAS/
9http://software.intel.com/en-us/intel-mkl

10http://icl.cs.utk.edu/plasma/software/

Jens Saak Scientific Computing II 177/349

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Relevant Software and Libraries

Dense Linear Algebra

1. OpenBLAS based on the earlier GotoBLAS project OpenBLAS implements a
complete set of optimized BLAS routines. On a machine with a single socket
it is likely the fastest BLAS implementation one can get.8

2. Intel® Math Kernel Library (MKL) is Intel®s optimized implementation
of BLAS and LAPACK. It is the strongest opponent of OpenBLAS on single
socket systems. On a system with several sockets no other BLAS library
outperforms MKL.9

3. PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of the linear
algebra subsystem on multicore architectures.10

8http://xianyi.github.io/OpenBLAS/
9http://software.intel.com/en-us/intel-mkl

10http://icl.cs.utk.edu/plasma/software/

Jens Saak Scientific Computing II 177/349

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Relevant Software and Libraries

Dense Linear Algebra

1. OpenBLAS based on the earlier GotoBLAS project OpenBLAS implements a
complete set of optimized BLAS routines. On a machine with a single socket
it is likely the fastest BLAS implementation one can get.8

2. Intel® Math Kernel Library (MKL) is Intel®s optimized implementation
of BLAS and LAPACK. It is the strongest opponent of OpenBLAS on single
socket systems. On a system with several sockets no other BLAS library
outperforms MKL.9

3. PLASMA The Parallel Linear Algebra Subroutines for Multicore
Architectures employs DAG scheduling to increase performance of the linear
algebra subsystem on multicore architectures.10

8http://xianyi.github.io/OpenBLAS/
9http://software.intel.com/en-us/intel-mkl

10http://icl.cs.utk.edu/plasma/software/

Jens Saak Scientific Computing II 177/349

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
http://icl.cs.utk.edu/plasma/software/

Relevant Software and Libraries

Sparse Linear Algebra

1. UMFPACK comes as part of the SuiteSparse package of software libraries
for sparse linear systems of equations. Uses thread parallel multifrontal
techniques to solve linear systems of equations.11

2. Boost uBLAS “is a C++ template class library that provides BLAS level 1,
2, 3 functionality for dense, packed and sparse matrices.”12

3. MTL the Matrix Template Library provides an easy to use template based
C++ interface to linear algebra operations. It relies on Boost for fast and
efficient codes.13

4. SuperLU MT Supernode based multithreaded LU decomposition.14

11http://faculty.cse.tamu.edu/davis/suitesparse.html
12http:

//www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
13http://www.simunova.com/en/mtl4
14http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Jens Saak Scientific Computing II 178/349

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/mtl4
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Relevant Software and Libraries

Sparse Linear Algebra

1. UMFPACK comes as part of the SuiteSparse package of software libraries
for sparse linear systems of equations. Uses thread parallel multifrontal
techniques to solve linear systems of equations.11

2. Boost uBLAS “is a C++ template class library that provides BLAS level 1,
2, 3 functionality for dense, packed and sparse matrices.”12

3. MTL the Matrix Template Library provides an easy to use template based
C++ interface to linear algebra operations. It relies on Boost for fast and
efficient codes.13

4. SuperLU MT Supernode based multithreaded LU decomposition.14

11http://faculty.cse.tamu.edu/davis/suitesparse.html
12http:

//www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
13http://www.simunova.com/en/mtl4
14http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Jens Saak Scientific Computing II 178/349

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/mtl4
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Relevant Software and Libraries

Sparse Linear Algebra

1. UMFPACK comes as part of the SuiteSparse package of software libraries
for sparse linear systems of equations. Uses thread parallel multifrontal
techniques to solve linear systems of equations.11

2. Boost uBLAS “is a C++ template class library that provides BLAS level 1,
2, 3 functionality for dense, packed and sparse matrices.”12

3. MTL the Matrix Template Library provides an easy to use template based
C++ interface to linear algebra operations. It relies on Boost for fast and
efficient codes.13

4. SuperLU MT Supernode based multithreaded LU decomposition.14

11http://faculty.cse.tamu.edu/davis/suitesparse.html
12http:

//www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
13http://www.simunova.com/en/mtl4
14http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Jens Saak Scientific Computing II 178/349

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/mtl4
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Relevant Software and Libraries

Sparse Linear Algebra

1. UMFPACK comes as part of the SuiteSparse package of software libraries
for sparse linear systems of equations. Uses thread parallel multifrontal
techniques to solve linear systems of equations.11

2. Boost uBLAS “is a C++ template class library that provides BLAS level 1,
2, 3 functionality for dense, packed and sparse matrices.”12

3. MTL the Matrix Template Library provides an easy to use template based
C++ interface to linear algebra operations. It relies on Boost for fast and
efficient codes.13

4. SuperLU MT Supernode based multithreaded LU decomposition.14

11http://faculty.cse.tamu.edu/davis/suitesparse.html
12http:

//www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
13http://www.simunova.com/en/mtl4
14http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/

Jens Saak Scientific Computing II 178/349

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/mtl4
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Relevant Software and Libraries

PThreads and Scheduling/Memory Control

1. nptl is the Native POSIX Linux Thread library that currently provides
PThread support on most Linux platforms.15

2. likwid (Like I Knew What I Do) is a light weight library that supports
software developers to design high performance scientific computing
programs with little overhead.16

3. numactl referred to as libnuma by several Linux distributions, numactl is a
small program/library that can be used to control placement of process
memory in NUMA environments. The library version seems to be preferred by
the Linux kernel policies.17

15http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
16http://code.google.com/p/likwid/
17http://oss.sgi.com/projects/libnuma/

Jens Saak Scientific Computing II 179/349

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

Relevant Software and Libraries

PThreads and Scheduling/Memory Control

1. nptl is the Native POSIX Linux Thread library that currently provides
PThread support on most Linux platforms.15

2. likwid (Like I Knew What I Do) is a light weight library that supports
software developers to design high performance scientific computing
programs with little overhead.16

3. numactl referred to as libnuma by several Linux distributions, numactl is a
small program/library that can be used to control placement of process
memory in NUMA environments. The library version seems to be preferred by
the Linux kernel policies.17

15http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
16http://code.google.com/p/likwid/
17http://oss.sgi.com/projects/libnuma/

Jens Saak Scientific Computing II 179/349

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

Relevant Software and Libraries

PThreads and Scheduling/Memory Control

1. nptl is the Native POSIX Linux Thread library that currently provides
PThread support on most Linux platforms.15

2. likwid (Like I Knew What I Do) is a light weight library that supports
software developers to design high performance scientific computing
programs with little overhead.16

3. numactl referred to as libnuma by several Linux distributions, numactl is a
small program/library that can be used to control placement of process
memory in NUMA environments. The library version seems to be preferred by
the Linux kernel policies.17

15http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
16http://code.google.com/p/likwid/
17http://oss.sgi.com/projects/libnuma/

Jens Saak Scientific Computing II 179/349

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/

Chapter 4

GPU Computing and
Accelerators: Part I

Jens Saak Scientific Computing II 180/349

Why use accelerators?

(a) Floating point operations

(b) Memory bandwidth

Figure: Throughput comparison of Multicore CPUs and CUDA enabled GPUs (taken
from CUDA C Programming Guide)

Jens Saak Scientific Computing II 181/349

Why use accelerators?

Architecture GFLOPS GFLOPS/Watt Utilization

Core i7-960 96 1.14 95%

Nvidia® GTX280 410 2.6 66%
Cell 200 5.0 88%

Nvidia® GTX480 940 5.4 70%
TI C66x DSP 74 7.4 57%

Table: Power efficieny comparison of Multicore CPUs and accelerator chips (taken from
Conference Poster by F. Igual and M. Ali)

Jens Saak Scientific Computing II 182/349

Memory Hierarchy with Accelerators
Common Features

system bus

Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

Interconnect

I/O

Figure: Schematic of a general parallel system

Jens Saak Scientific Computing II 183/349

Memory Hierarchy with Accelerators
Graphics Processing Units (GPUs)

Memory Optimizations

www.nvidia.com
CUDA C Best Practices Guide DG-05603-001_v5.0 | 23

bit of metadata (or as hard-coded information in the program) for each pointer.
Using UVA, on the other hand, the physical memory space to which a pointer
points can be determined simply by inspecting the value of the pointer using
cudaPointerGetAttributes().

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical
host and device pointers, so it is not necessary to call cudaHostGetDevicePointer()
for such allocations. Host memory allocations pinned after-the-fact via
cudaHostRegister(), however, will continue to have different device pointers than
their host pointers, so cudaHostGetDevicePointer() remains necessary in that case.

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data
directly across the PCIe bus for supported GPUs in supported configurations, bypassing
host memory.

See the CUDA C Programming Guide for further explanations and software requirements
for UVA and P2P.

6.2 Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include global,
local, shared, texture, and registers, as shown in Figure 2 Memory spaces on a CUDA
device.

Figure 2 Memory spaces on a CUDA deviceFigure: Memory configuration of a CUDA Device (taken from CUDA C Programming
Guide)

Jens Saak Scientific Computing II 184/349

Memory Hierarchy with Accelerators
Field Programmable Gate Arrays (FPGAs)

Figure: Comparison of CPUs and FPGA execution models.

Jens Saak Scientific Computing II 185/349

Chapter 4

GPU Computing and
Accelerators: Part II

Jens Saak Scientific Computing II 186/349

Compute Unified Device Architecture (CUDA)
What is CUDA?

CUDA is two things at the same time:

1. platform model
for the hardware implementation of general purpose
graphics processing units made by the Nvidia®

Corporation.

2. programming model
realizing the software implementation and scheduling of
tasks of the parallel programs on the above hardware.

Jens Saak Scientific Computing II 187/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are executing
several threads simultaneously. The GPU-threads are therefore grouped in so
called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds mostly
32 threads per warp which in turn is the smallest number of tasks executed in
SIMD style.

Jens Saak Scientific Computing II 188/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are executing
several threads simultaneously. The GPU-threads are therefore grouped in so
called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds mostly
32 threads per warp which in turn is the smallest number of tasks executed in
SIMD style.

Jens Saak Scientific Computing II 188/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are executing
several threads simultaneously. The GPU-threads are therefore grouped in so
called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds mostly
32 threads per warp which in turn is the smallest number of tasks executed in
SIMD style.

Jens Saak Scientific Computing II 188/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are executing
several threads simultaneously. The GPU-threads are therefore grouped in so
called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds mostly
32 threads per warp which in turn is the smallest number of tasks executed in
SIMD style.

Jens Saak Scientific Computing II 188/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is a larger group of threads that can contain 64–512 threads.

Ideally it contains a multiple of 32 threads so it can be split optimally into warps
by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed to a one
or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Jens Saak Scientific Computing II 189/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is a larger group of threads that can contain 64–512 threads.

Ideally it contains a multiple of 32 threads so it can be split optimally into warps
by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed to a one
or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Jens Saak Scientific Computing II 189/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is a larger group of threads that can contain 64–512 threads.

Ideally it contains a multiple of 32 threads so it can be split optimally into warps
by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed to a one
or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Jens Saak Scientific Computing II 189/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is a larger group of threads that can contain 64–512 threads.

Ideally it contains a multiple of 32 threads so it can be split optimally into warps
by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed to a one
or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Jens Saak Scientific Computing II 189/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Figure: Grids of Thread Blocks (taken from CUDA C programming guide)

Jens Saak Scientific Computing II 190/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program are
those of host and device. Here host refers to the computer that hosts the GPU.
Especially the CPU and memory of the host are relevant. The device then is the
GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple CPUs,
each GPU is connected to a single CPU representing a single NUMA node of the
host system.

The host CPU controls the execution of the program. However host and device
may execute their tasks asynchronously. When not specified differently data
transfers between them serve as implicit synchronization points.

Jens Saak Scientific Computing II 191/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program are
those of host and device. Here host refers to the computer that hosts the GPU.
Especially the CPU and memory of the host are relevant. The device then is the
GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple CPUs,
each GPU is connected to a single CPU representing a single NUMA node of the
host system.

The host CPU controls the execution of the program. However host and device
may execute their tasks asynchronously. When not specified differently data
transfers between them serve as implicit synchronization points.

Jens Saak Scientific Computing II 191/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program are
those of host and device. Here host refers to the computer that hosts the GPU.
Especially the CPU and memory of the host are relevant. The device then is the
GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple CPUs,
each GPU is connected to a single CPU representing a single NUMA node of the
host system.

The host CPU controls the execution of the program. However host and device
may execute their tasks asynchronously. When not specified differently data
transfers between them serve as implicit synchronization points.

Jens Saak Scientific Computing II 191/349

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (kernel)

The kernel is the core element of a CUDA parallel program. It represents the
function that specifies the work a certain thread in a block on a grid has to
execute.

We will see in the course of this Chapter how the thread executing the kernel
knows which part of the global problem it has to perform.

Jens Saak Scientific Computing II 192/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

We will next introduce the most basic elements of the CUDA C language
extension. These consist of two important things.

1. qualifiers that apply to functions and specify where the function should be
executed,

2. launch size specifiers that control the grid and block sizes that are used to
run a kernel.

An extensive API, defining C-style functions and data types to be used in CUDA
programs, together with a handful of libraries for several kinds of tasks (e.g., a
BLAS implementation) complete the picture.

Jens Saak Scientific Computing II 193/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

Figure: The CUDA GPU computing applications framework (taken from CUDA C
programming guide)

Jens Saak Scientific Computing II 194/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to indicate that it
in fact represents a kernel.

device The qualifier that specifies functions that should be run on the
device, but are not kernels. It can be useful for subtasks called in a kernel. It
also applies to variables determining them to reside on the device.

host Being basically redundant this qualifier can be used to explicitly
state that a function is to be executed on the host. It is therefore optional.

shared applies to a variable declaring that it should reside in the shared
memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the constant
memory.

Note that global and device functions are not allowed to be recursive.

Jens Saak Scientific Computing II 195/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

The basic launch size specification for a kernel takes the form

<<< grid , block size >>>

where grid specifies the block distribution and block size indicates the
number of threads per block in the grid.

Example

<<<1,1>>> launches 1 block with 1 thread

<<<N,1>>> launches N blocks with 1 thread each

<<<1,N>>> launches 1 block with N threads

<<<N,M>>> launches a 1d grid of N blocks running M threads each

Jens Saak Scientific Computing II 196/349

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

Both the arguments can be two dimensional distributions. CUDA defines special
tuple hiding types for these declarations. Using

dim3 grid(3,2)
dim3 threads(16,16)

one defines a 3× 2 grid of blocks for running 256 threads arranged in a 16× 16
local grid. These are then used in the launch specification as

<<< grid, threads>>>

Launch size specifications are simply appended to the kernel function name upon
calling it.

Jens Saak Scientific Computing II 197/349

Compute Unified Device Architecture (CUDA)
Introductory Examples

The following examples are taken from the “CUDA by Example” book.

Example

#include "../common/book.h"

__global__ void kernel(void) { }

int main(void) {
kernel<<<1,1>>>();
printf("Hello, World!\n");
return 0;

}

Jens Saak Scientific Computing II 198/349

Compute Unified Device Architecture (CUDA)
Introductory Examples

Example

#include "../common/book.h"

__global__ void add(int a, int b, int *c) {

*c = a + b;
}

int main(void) {
int c;
int *dev_c;
HANDLE_ERROR(cudaMalloc((void**)&dev_c, sizeof(int)));

add<<<1,1>>>(2, 7, dev_c);

HANDLE_ERROR(cudaMemcpy(&c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost));

printf("2 + 7 = %d\n", c);
HANDLE_ERROR(cudaFree(dev_c));

return 0;
}

Jens Saak Scientific Computing II 199/349

Compute Unified Device Architecture (CUDA)
Introductory Examples

Example

#include "../common/book.h"

__device__ int addem(int a, int b) {
return a + b;

}

__global__ void add(int a, int b, int *c) {

*c = addem(a, b);
}

int main(void) {
int c;
int *dev_c;
HANDLE_ERROR(cudaMalloc((void**)&dev_c, sizeof(int)));

add<<<1,1>>>(2, 7, dev_c);

HANDLE_ERROR(cudaMemcpy(&c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost));

printf("2 + 7 = %d\n", c);
HANDLE_ERROR(cudaFree(dev_c));

return 0;
}

Jens Saak Scientific Computing II 200/349

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

In order to be able to compile the previous examples, one needs to check a few
prerequisites:

Nvidia® device drivers and hardware,

Nvidia® CUDA toolkit installation,

compiler for the host code.

Jens Saak Scientific Computing II 201/349

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda.

The Toolkit and all the information on the
included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.

Regarding the hardware, basically every Nvidia® GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows: Visual Studio

Linux: Gnu Compiler Collection (GCC)

MacOS: GCC as well via Apple’s Xcode

Jens Saak Scientific Computing II 202/349

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the information on the
included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.

Regarding the hardware, basically every Nvidia® GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows: Visual Studio

Linux: Gnu Compiler Collection (GCC)

MacOS: GCC as well via Apple’s Xcode

Jens Saak Scientific Computing II 202/349

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the information on the
included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.

Regarding the hardware, basically every Nvidia® GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows: Visual Studio

Linux: Gnu Compiler Collection (GCC)

MacOS: GCC as well via Apple’s Xcode

Jens Saak Scientific Computing II 202/349

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the information on the
included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.

Regarding the hardware, basically every Nvidia® GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows: Visual Studio

Linux: Gnu Compiler Collection (GCC)

MacOS: GCC as well via Apple’s Xcode

Jens Saak Scientific Computing II 202/349

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

We will in the following restrict ourselves to the Linux world again.

Consider our basic “Hello World!” example is stored in a text file called
hello world.cu. Using the nvcc compiler provided in the CUDA Toolkit we
can compile it by

nvcc hello_world.cu

Since on Linux nvcc uses gcc to compile the host code this will also generate a
binary called a.out. As for gcc we can specify the output filename, i.e. name of
the resulting executable via

nvcc hello_world.cu -o hello_world

The file extension .cu is used to indicate that we have a C file with CUDA C
extensions.

Jens Saak Scientific Computing II 203/349

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Among the further compiler options we meet many old friends:

-c for generating object files of single .c or .cu files

-g for generating debug information in the host code

-pg the same for profiling information

-O for specifying the optimization level for the host code

-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.

-G generates debug information for the device code

-arch specifies the GPU architecture to be assumed, i.e. the compute capabilities of
the device (e.g. -arch=sm 20)

Jens Saak Scientific Computing II 204/349

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Among the further compiler options we meet many old friends:

-c for generating object files of single .c or .cu files

-g for generating debug information in the host code

-pg the same for profiling information

-O for specifying the optimization level for the host code

-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.

-G generates debug information for the device code

-arch specifies the GPU architecture to be assumed, i.e. the compute capabilities of
the device (e.g. -arch=sm 20)

Jens Saak Scientific Computing II 204/349

Chapter 4

GPU Computing and
Accelerators: Part III

Jens Saak Scientific Computing II 205/349

Compute Unified Device Architecture (CUDA)
Compute Capabilities

Feature Support Compute Capability

(Features differently supported) 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Atomic functions on 32-bit integer values in global memory No Yes

atomicExch() on 32-bit floating point values in global memory No Yes

Atomic functions on 32-bit integer values in shared memory No Yes

atomicExch() on 32-bit floating point values in shared memory No Yes

Atomic functions on 64-bit integer values in global memory No Yes

Warp vote functions No Yes

Double-precision floating-point numbers No Yes

Atomic functions operating on 64-bit integer values in shared memory No Yes

Atomic addition operating on 32-bit floating point values in global and shared
memory

No Yes

ballot() (Warp Vote Functions) No Yes

threadfence system() No Yes

syncthreads count() No Yes

syncthreads and() No Yes

syncthreads or() No Yes

Surface functions No Yes

3D grid of thread blocks No Yes

Funnel shift (see reference manual) No Yes

Table: Compute Capabilities: Features by Compute Capability Version (from CUDA C
Programming Guide version 5.0)

For the latest version see the CUDA C Programming Guide online.

Jens Saak Scientific Computing II 206/349

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Compute Unified Device Architecture (CUDA)
Compute Capabilities

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum dimensionality of grid of thread blocks 2 3

Maximum x-dimension of a grid of thread blocks 65535 = 216 − 1 231 − 1

Maximum y- or z-dimension of a grid of thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per multiprocessor 8 16

Maximum number of resident warps per multiprocessor 24 32 48 64

Maximum number of resident threads per multiprocessor 768 1024 1536 2048

Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 64 K

Maximum number of 32-bit registers per thread 128 63 255

Maximum amount of shared memory per multiprocessor 16 KB 48 KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Cache working set per multiprocessor for constant memory 8 KB

Cache working set per multiprocessor for texture memory Device dependent, between 6 KB and 8 KB

Maximum number of instructions per kernel 2 million 512 million

Table: Compute Capabilities: Selected Technical Specifications (from CUDA C
Programming Guide version 5.0)

For the latest version see the CUDA C Programming Guide online.

Jens Saak Scientific Computing II 207/349

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Compute capabilities 1.3

We have learned from Table 3 that double precision floating point numbers have
been added in Version 1.3 of the CUDA compute capabilities. It additionally
provides a fused multiply add operation merging multiplication and addition to be
faster and more accurate, but non IEEE 754 compliant.

Compute Capabilities 2.0 and above

Compute capabilities 2.0 introduces IEEE 754 compliance for most parts of the
standard as the default. The compiler switches -ftz=false|true,
-prec-div=true|false, -prec-sqrt= true|false influence IEEE
compliance of the computation. If the second option is used everywhere one
switches to fast mode. The first options are the default though.

Jens Saak Scientific Computing II 208/349

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

IEEE 754 Rounding Modes

IEEE 754 defines four rounding modes

round to nearest,

round towards zero,

round towards +∞,

round towards −∞,

all of which are supported by CUDA. However in contrast to x86 CPUs where they
can be dynamically switched, CUDA uses them statically.

Compiler intrinsics can be used to change the mode for individual operations,
though.

Jens Saak Scientific Computing II 209/349

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially all
NaNs are silent)

no status flags indicating the exceptions exist

Jens Saak Scientific Computing II 210/349

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially all
NaNs are silent)

no status flags indicating the exceptions exist

Jens Saak Scientific Computing II 210/349

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially all
NaNs are silent)

no status flags indicating the exceptions exist

Jens Saak Scientific Computing II 210/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Local versus Remote memory

Viewing from the host perspective, the device memory is remote memory that can
only be accessed via the comparably slow system bus.

Looking at things from the device perspective the same hold for the hosts
memory. Going even further, already the device memory may be considered slow
from the view of the streaming multiprocessors. The local memory of the
multiprocessors should be used to implement a user controlled cache.

Jens Saak Scientific Computing II 211/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Figure: The CUDA memory hierarchy (taken from CUDA C programming guide)

Jens Saak Scientific Computing II 212/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as possible

Jens Saak Scientific Computing II 213/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as possible

If they are necessary, try to overlap communication and
computations

(a) bad pattern causing waiting times
due to communication.

GPU task

transfer to host

(b) good pattern.

Figure: Execution patterns for CUDA programs

Jens Saak Scientific Computing II 213/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as possible

If they are necessary, try to overlap communication and
computations

Make use of multiprocessors local shared memory to cache buffer
kernel operations and avoid frequent access to global device
memory

Jens Saak Scientific Computing II 213/349

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Example

../Material/CUDAbyExample/chapter05/dot.cu
Note:

automatic scaling of blocksPerGrid

usage of local shared buffer cache

synchronization in reduction block

Jens Saak Scientific Computing II 214/349

../Material/CUDAbyExample/chapter05/dot.cu

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We have seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared , constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x, blockDim.x,
gridDim.x

memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we will go into
some more detail now.

Jens Saak Scientific Computing II 215/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the device and
associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the source and
destination memory locations. The direction of operation is specified by
kind and can be either cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to specify the
number of data items to be copied.

Jens Saak Scientific Computing II 216/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the device and
associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the source and
destination memory locations. The direction of operation is specified by
kind and can be either cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to specify the
number of data items to be copied.

Jens Saak Scientific Computing II 216/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the device and
associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the source and
destination memory locations. The direction of operation is specified by
kind and can be either cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to specify the
number of data items to be copied.

Jens Saak Scientific Computing II 216/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDeviceCount (int* count)

Returns the number of compute-capable devices available in the system.

cudaError_t cudaChooseDevice (int* device, const cudaDeviceProp* prop)

Select compute-device which best matches criteria specified in prop. These
can, e.g., be int major, int minor version numbers of the compute
capabilities, or whether the chip is int integrated in the chipset or a
plugged in device, but also simply the char name[256] of the device, and
many more.

Jens Saak Scientific Computing II 217/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDeviceCount (int* count)

Returns the number of compute-capable devices available in the system.

cudaError_t cudaChooseDevice (int* device, const cudaDeviceProp* prop)

Select compute-device which best matches criteria specified in prop. These
can, e.g., be int major, int minor version numbers of the compute
capabilities, or whether the chip is int integrated in the chipset or a
plugged in device, but also simply the char name[256] of the device, and
many more.

Jens Saak Scientific Computing II 217/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently used by the program.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was set, the
host thread will block until the device has finished its work.

Jens Saak Scientific Computing II 218/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently used by the program.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was set, the
host thread will block until the device has finished its work.

Jens Saak Scientific Computing II 218/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently used by the program.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was set, the
host thread will block until the device has finished its work.

Jens Saak Scientific Computing II 218/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t error)

Returns the message string for the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime calls in
the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but does not reset the error code.

Jens Saak Scientific Computing II 219/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t error)

Returns the message string for the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime calls in
the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but does not reset the error code.

Jens Saak Scientific Computing II 219/349

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t error)

Returns the message string for the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime calls in
the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but does not reset the error code.

Jens Saak Scientific Computing II 219/349

Compute Unified Device Architecture (CUDA)

The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream = 0)

Record event. The record may take some time so before evaluation it is
recommended to use cudaEventSynchronize() to make sure it has
terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).

Jens Saak Scientific Computing II 220/349

Compute Unified Device Architecture (CUDA)

The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream = 0)

Record event. The record may take some time so before evaluation it is
recommended to use cudaEventSynchronize() to make sure it has
terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).

Jens Saak Scientific Computing II 220/349

Compute Unified Device Architecture (CUDA)

The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream = 0)

Record event. The record may take some time so before evaluation it is
recommended to use cudaEventSynchronize() to make sure it has
terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).

Jens Saak Scientific Computing II 220/349

Compute Unified Device Architecture (CUDA)

The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream = 0)

Record event. The record may take some time so before evaluation it is
recommended to use cudaEventSynchronize() to make sure it has
terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).

Jens Saak Scientific Computing II 220/349

Compute Unified Device Architecture (CUDA)

The CUDA Application Programmers Interface: Events and Performance Measures

Example

A minimal performance measurement configuration:

cudaEvent_t start, stop;
cudaEventCreate(start);
cudaEventCreate(stop);
cudaEventRecord(start, 0);

// complete some tasks

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

float etime;
cudaEventElapsedTime(&etime, start, stop);

Jens Saak Scientific Computing II 221/349

Chapter 4

GPU Computing and
Accelerators: Part IV

Jens Saak Scientific Computing II 222/349

Compute Unified Device Architecture (CUDA)
Streams

Definition (Stream)

Streams are a mechanism that introduces an additional level of parallelism into
the CUDA framework. While the basic setup, we have seen until here, is SIMD or
more precisely SIMT, using streams one can have the GPU do different things at
the same time. Streams are not as flexible and “general purpose” as tasks on the
host CPU, though.

The basic power of streams is to have memory transfers and computational
operations overlap in an asynchronous way. Note, however, that not all CUDA
enabled devices support overlapping these operations. On top of that, not all
CUDA enabled devices that do support the overlapping execution do so in the
same way.

Jens Saak Scientific Computing II 223/349

Compute Unified Device Architecture (CUDA)
Page-Locked Memory on the Host

Asynchronous data transfers in CUDA are not only performed without
synchronization to the actual computation, they are also intended to interact with
the computation as little as possible. Especially, they should not interrupt the
CPU from performing useful work in the program. They are therefore set up to
use direct memory access (DMA) circumventing CPU interaction.

However, in order to do this, we need to use a special portion of host memory,
that is guaranteed to stay in place during the operation. The default portion of
host memory that we allocate using malloc() is paged memory. It can be
anywhere in the virtual memory of the host and is allowed to move around, e.g.,
to get swapped to disk when more space is required.

Jens Saak Scientific Computing II 224/349

Compute Unified Device Architecture (CUDA)
Page-Locked Memory on the Host

Definition (page-locked memory)

Page-locked memory is a portion of memory that is guaranteed to keep its position
in the virtual memory. It is not available for any kind of paging operations, such
as swapping. Therefore, it is sometimes also called pinned memory.

Advantages of pinned memory:

can be used for DMA safely

transfer speeds can be up to 2× faster than to/from pageable memory

Disadvantages:

memory fragmentation increases and thus the usability deteriorates.

Jens Saak Scientific Computing II 225/349

Compute Unified Device Architecture (CUDA)
Streams and Compute Capabilities

Over the years, Nvidia® has changed the way things are implemented. This is not
only regarding the API in the CUDA toolkit, but also the underlying device
hardware. The very first CUDA enabled devices could not overlap transfers and
executions at all. Then, some devices used separate engines for copy and kernel
executions. Modern hardware usually has even two engines for performing
transfers in direction to the host and to the device separately. Basically, we can
classify the devices as follows:

Comp. Capab. Properties

1.0 No overlap
1.1- 1 copy engine and 1 kernel execution engine
2.x- 1 kernel execution engine, 1 copy to host engine and 1

copy to device engine
3.5- eliminates the differences in asynchronous execution

Table: classification of CUDA enabled devices with respect to the ability of overlapping
memory transfers and computations.

Jens Saak Scientific Computing II 226/349

Compute Unified Device Architecture (CUDA)
Streams and Compute Capabilities

How can I know what my device can do?

The cudaDeviceProp structure can be used to find out whether a device
supports overlapped operation and how many execution engines are available. The
important members are

int deviceOverlap indicating the availability of overlapped operations

int asyncEngineCount storing the number of asynchronous execution
engines available.

The important information, which type of asynchronous execution model is
implemented in the hardware can thus be fetched with the
cudaGetDeviceProperties() function.

Jens Saak Scientific Computing II 227/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example

We are following an Nvidia® developer’s blog.18 What we want to do is

copy data to the device

perform some task (kernel) on it

get the result back to the host

Example

The the critical portion of the code would look like

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a)
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

according to what we have learned until now. This is regarding the default
execution stream.

18https:
//developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc

Jens Saak Scientific Computing II 228/349

https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc
https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Non-Default Streams

Example (Creation and Destruction of Streams)

Consider we have the two variables

cudaStream_t stream1;
cudaError_t result;

Then we can create a new stream using

result = cudaStreamCreate(&stream1);

and later get rid of it via

result = cudaStreamDestroy(stream1);

Jens Saak Scientific Computing II 229/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Non-Default Streams

Example (Memory transfers)

Once we have acquired a new stream we have to tell the asynchronous copy
routines to use it. The basic command cudaMemcpyAsync() takes the same
arguments as cudaMemcpy. Only, it has an additional argument specifying the
stream to use:

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, stream1);

Example (Kernel Execution)

We need to use the extended launch size specification here:

<<< block distr., thread distr., dyn. mem. per block, associated stream >>>

The third argument can be used to allocate additional dynamic shared memory
per block. We will use 0 here.

kernel<<<1,N,0,stream1>>>(d_a);

Jens Saak Scientific Computing II 230/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

The influence of the number of engines (especially for copying data) is best
displayed in a simple example.

Consider we have a group of streams cooperating on kernel(). Think of a
situation where splitting the problem data into chunks is necessary to fit the data
into the device memory. We basically have two ways to implement the
cooperation,

1. loop over the entire copy-work-copy block

2. loop over the work and copies separately

Note that the asynchronous copy acts different on the control flow than the
cudaMemcpy(). While in the default stream, using cudaMemcpy(), we can
rely on the fact that as soon as the command returns, all data has been
transferred, in the case of cudaMemcpyAsync() it does not even guarantee
that the copy operation has started at all. It will only have scheduled the
operation in a first in first out (FIFO) list of pending operations on the
corresponding asynchronous execution engine.

Jens Saak Scientific Computing II 231/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Example (Asynchronous Execution Version 1)

Looping over the entire block of copy-work-copy operations is described by the
following code fragment

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes,

cudaMemcpyHostToDevice, stream[i]);
kernel<<>>(d_a, offset);
cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,

cudaMemcpyDeviceToHost, stream[i]);
}

Jens Saak Scientific Computing II 232/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Example (Asynchronous Execution Version 2)

Looping over the single tasks in contrast looks like

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset],

streamBytes, cudaMemcpyHostToDevice, stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&a[offset], &d_a[offset],

streamBytes, cudaMemcpyDeviceToHost, stream[i]);
}

Jens Saak Scientific Computing II 233/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Figure: Execution time line on a device with a single copy engine.

Jens Saak Scientific Computing II 234/349

Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Figure: Execution time line on a device with separate copy engines for device to host
(D2H) and host to device (H2D) operations.

Jens Saak Scientific Computing II 235/349

Compute Unified Device Architecture (CUDA)

Interoperability with Graphics

Using the same GPU for computations and graphical display of results is possible.
See, e.g. CUDA by Example (Chapter 8), or CUDA C Programming Guide.

Usage of Multiple GPUs

Usage of multiple GPUs in a single program requires the concepts of zero-copy
host memory, and portable pinned memory. An introduction can be found in
CUDA by Example (Chapter 11).

Jens Saak Scientific Computing II 236/349

Compute Unified Device Architecture (CUDA)

Interoperability with Graphics

Using the same GPU for computations and graphical display of results is possible.
See, e.g. CUDA by Example (Chapter 8), or CUDA C Programming Guide.

Usage of Multiple GPUs

Usage of multiple GPUs in a single program requires the concepts of zero-copy
host memory, and portable pinned memory. An introduction can be found in
CUDA by Example (Chapter 11).

Jens Saak Scientific Computing II 236/349

Chapter 4

GPU Computing and
Accelerators: Part V

Jens Saak Scientific Computing II 237/349

Open Computing Language (OpenCL)

Main Message

The abstraction for the programming and hardware models are very similar to the
CUDA concepts. Mainly OpenCL delivers slightly more flexible implementations
due to vendor independence and uses slightly different vocabulary for the single
ingredients of the concept.

CUDA OpenCL

thread (Work) item
block (Work) group
streaming multiprocessor compute unit
(CUDA) processor processing unit

Table: A short CUDA to OpenCL dictionary

Jens Saak Scientific Computing II 238/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Algorithm 6: Gaussian elimination — Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve WŨ = A(`+ 1 : n, k : `) and store W in A;

7 Perform the rank-r update:
A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;

8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and the rank-r
update. It is used to optimize the data portions for the cache.

Jens Saak Scientific Computing II 239/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

A

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

A11

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

A(1 : `, ` + 1 : n)

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Z

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Z

A(` + 1 : n, 1 : `)

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Z

W

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Z

W A(` + 1 : n, ` + 1 : n)−WZ

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

A22

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

1

3/4

5/6

2

4

2 4

3

3

Jens Saak Scientific Computing II 240/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

The central question for the hybrid CPU/GPU version of the algorithm now is
where to execute the single steps of the algorithm compared to the DAG
scheduled version.

Requirements

Keep data transfers between host and device limited

optimize usage of both host and device features

assume that the entire matrix fits into the device memory.

The assumption on the matrix size may be loosened but will then lead to a
completely different algorithm.

Jens Saak Scientific Computing II 241/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

1

3/4

5/6

2

4

2 4

3

3

Jens Saak Scientific Computing II 242/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

CPU

CPU

CPU

GPU

GPU

GPU GPU

GPU

GPU

Jens Saak Scientific Computing II 242/349

Hybrid CPU-GPU Linear System Solvers
The block outer product LU decomposition revisited

In each outer iteration step perform the leading r × r blocks LU decomposition

Jens Saak Scientific Computing II 243/349

Hybrid CPU-GPU Linear System Solvers
Iterative Linear System Solvers

Algorithm 6: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ‖r0‖2

2;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ‖rm+1‖2
2;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

Jens Saak Scientific Computing II 244/349

Hybrid CPU-GPU Linear System Solvers
Iterative Linear System Solvers

There are mainly two observations we can draw from the algorithm.

1. The single steps need to be executed mainly sequentially

2. basically all operations are vector operations.

There is not much to distribute between host and device. To exploit the devices
vector features all operations should be executed on the device. In case the matrix
can not be stored in device memory completely it may be beneficial to use streams
to split the operation into chunks that can be stored and operate on those
streams in a round robin fashion.

Jens Saak Scientific Computing II 245/349

Hybrid CPU-GPU Linear System Solvers
Sparse Iterative Eigenvalue Approximation

Basic Idea

Very similar to iterative linear solvers based on Krylov subspaces.

Main ingredient is to use the basis of the subspace to project the eigenvalue
problem to a much smaller space and solve it with dense methods there, i.e.
A ∈ Rn×n large and sparse U ∈ Rm×n, m� n orthogonal, then

UAUT︸ ︷︷ ︸
m×m

x = λx

is an m-dimensional dense eigenproblem.

Here one can offload the solution of the small eigenvalue problem to the host,
while the device keeps extending the basis further. The host can then decide
whether the approximation is good enough, or the extension is required and the
computation needs to continue.

Jens Saak Scientific Computing II 246/349

Relevant Software and Libraries
The CUDA Related Libraries

CUDA Math provides basically all math functions in math.h as device
functions.

CUBLAS the CUDA device based implementation of BLAS

CUFFT CUDA based Fast Fourier Transforms, i.e., divide and conquer based
computation of Fourier transforms of complex and real valued data sets.

CURAND The CURAND library provides facilities that focus on the simple
and efficient generation of high-quality pseudorandom and quasirandom
numbers.

CUSPARSE Vector-vector and matrix-vector operations where at least one
participant is sparse.

Thrust A C++ template library based on the Standard Template library
(STL) for minimal effort implementation of parallel programs.

CUSOLVER Solvers for Ax = b, or x = argminz ‖Az − b‖ and sequences
thereof. (both sparse and dense)

Jens Saak Scientific Computing II 247/349

Relevant Software and Libraries

Matrix Algebra on GPU and Multicore Architectures (MAGMA)19

“The MAGMA project aims to develop a dense linear algebra library similar to
LAPACK but for heterogeneous/hybrid architectures, starting with current
“Multicore+GPU” systems.
The MAGMA research is based on the idea that, to address the complex
challenges of the emerging hybrid environments, optimal software solutions will
themselves have to hybridize, combining the strengths of different algorithms
within a single framework. Building on this idea, we aim to design linear algebra
algorithms and frameworks for hybrid manycore and GPU systems that can enable
applications to fully exploit the power that each of the hybrid components offers.”

19http://icl.cs.utk.edu/magma/index.html

Jens Saak Scientific Computing II 248/349

http://icl.cs.utk.edu/magma/index.html

Relevant Software and Libraries

Formal Linear Algebra Methodology Environment (FLAME)20

“The objective of the FLAME project is to transform the development of dense
linear algebra libraries from an art reserved for experts to a science that can be
understood by novice and expert alike. Rather than being only a library, the
project encompasses a new notation for expressing algorithms, a methodology for
systematic derivation of algorithms, Application Program Interfaces (APIs) for
representing the algorithms in code, and tools for mechanical derivation,
implementation and analysis of algorithms and implementations.”

20http://www.cs.utexas.edu/˜flame/web/

Jens Saak Scientific Computing II 249/349

http://www.cs.utexas.edu/~flame/web/

Relevant Software and Libraries

CUSP21

“Cusp is a library for sparse linear algebra and graph computations on CUDA.
Cusp provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Get Started with Cusp today!”

21https://github.com/cusplibrary

Jens Saak Scientific Computing II 250/349

https://github.com/cusplibrary

Relevant Software and Libraries

CUSP21

“Cusp is a library for sparse linear algebra and graph computations on CUDA.
Cusp provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Get Started with Cusp today!”

Matrix formats:

Coordinate (COO)

Compressed Sparse Row (CSR)

Diagonal (DIA)

ELL (ELL)

Hybrid (HYB)

21https://github.com/cusplibrary

Jens Saak Scientific Computing II 250/349

https://github.com/cusplibrary

Relevant Software and Libraries

CUSP21

“Cusp is a library for sparse linear algebra and graph computations on CUDA.
Cusp provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Get Started with Cusp today!”

More Features:

Format conversion

Dense Arrays

File I/O (Matrix Market format)

21https://github.com/cusplibrary

Jens Saak Scientific Computing II 250/349

https://github.com/cusplibrary

Relevant Software and Libraries

CUSP21

“Cusp is a library for sparse linear algebra and graph computations on CUDA.
Cusp provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Get Started with Cusp today!”

Supported Iterative Solvers:

Conjugate-Gradient (CG)

Biconjugate Gradient (BiCG)

Biconjugate Gradient Stabilized (BiCGstab)

Generalized Minimum Residual (GMRES)

Multi-mass Conjugate-Gradient (CG-M)

Multi-mass Biconjugate Gradient stabilized (BiCGstab-M)

21https://github.com/cusplibrary

Jens Saak Scientific Computing II 250/349

https://github.com/cusplibrary

Relevant Software and Libraries

CUSP21

“Cusp is a library for sparse linear algebra and graph computations on CUDA.
Cusp provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Get Started with Cusp today!”

Preconditioners:

Algebraic Multigrid (AMG) based on Smoothed Aggregation

Approximate Inverse (AINV)

Diagonal

21https://github.com/cusplibrary

Jens Saak Scientific Computing II 250/349

https://github.com/cusplibrary

Relevant Software and Libraries

CULA tools22

“CULA is a set of GPU-accelerated linear algebra libraries utilizing the NVIDIA
CUDA parallel computing architecture to dramatically improve the computation
speed of sophisticated mathematics.”

They have separate packages for sparse and dense operation. The libraries are
however commercial.

Besides those, there are many scientific computing packages that support GPU
operations in one way or the other. Also python has packages for both CUDA
(pyCUDA) and OpenCL (pyOpenCL) and MATLAB supports (basically dense
only) operation on CUDA devices.

22http://www.culatools.com

Jens Saak Scientific Computing II 251/349

http://www.culatools.com

Relevant Software and Libraries

Ginkgo23

“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++
(you will need at least C++11 compliant compiler to build it), with GPU kernels
implemented in CUDA.”

23https://github.com/ginkgo-project/ginkgo

Jens Saak Scientific Computing II 252/349

https://github.com/ginkgo-project/ginkgo

Relevant Software and Libraries

Ginkgo23

“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++
(you will need at least C++11 compliant compiler to build it), with GPU kernels
implemented in CUDA.”

Matrix formats:

Coordinate (COO)

Compressed Sparse Row (CSR)

hybrid

dense

ELL-P

SELL-P

23https://github.com/ginkgo-project/ginkgo

Jens Saak Scientific Computing II 252/349

https://github.com/ginkgo-project/ginkgo

Relevant Software and Libraries

Ginkgo23

“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++
(you will need at least C++11 compliant compiler to build it), with GPU kernels
implemented in CUDA.”

More Features:

Format conversion

Dense Arrays

File I/O (Matrix Market format)

UFL Collection

23https://github.com/ginkgo-project/ginkgo

Jens Saak Scientific Computing II 252/349

https://github.com/ginkgo-project/ginkgo

Relevant Software and Libraries

Ginkgo23

“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++
(you will need at least C++11 compliant compiler to build it), with GPU kernels
implemented in CUDA.”

Supported Iterative Solvers:

Conjugate-Gradient (CG)

Biconjugate Gradient (BiCG)

Biconjugate Gradient Stabilized (BiCGstab)

Conjugate-Gradient squared (CGS)

flexible CG (FCG)

Generalized Minimum Residual (GMRES)

23https://github.com/ginkgo-project/ginkgo

Jens Saak Scientific Computing II 252/349

https://github.com/ginkgo-project/ginkgo

Relevant Software and Libraries

Ginkgo23

“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++
(you will need at least C++11 compliant compiler to build it), with GPU kernels
implemented in CUDA.”

Preconditioners:

Jacobi type

23https://github.com/ginkgo-project/ginkgo

Jens Saak Scientific Computing II 252/349

https://github.com/ginkgo-project/ginkgo

Chapter 5

Distributed Memory
Systems: Part I

Jens Saak Scientific Computing II 253/349

Distributed Memory Hierarchy

host 1 host 2 . . . host n

interconn. interconn. interconn.

Communication Network

Figure: Distributed memory computer schematic

Jens Saak Scientific Computing II 254/349

Distributed Memory Hierarchy

host 1 host 2 . . . host n

memory memory memory

interconn. interconn. interconn.

Communication Network

Figure: Distributed memory computer schematic

Jens Saak Scientific Computing II 254/349

Distributed Memory Hierarchy

host 1 host 2 . . . host n

memory memory memory

interconn. interconn. interconn.

Communication Network

Figure: Distributed memory computer schematic

Jens Saak Scientific Computing II 254/349

Comparison of Distributed Memory Systems
Rankings

1. TOP50024:
List of the 500 fastest HPC machines in the world sorted by their maximal

LINPACK25 performance (in TFlops) achieved.

2. Green500:
Taking into account the energy consumption the Green500 is basically a resorting of

the TOP500 according to TFlops/Watt as the ranking measure.

3. (Green) Graph500:
Designed for data intensive computations it uses a graph algorithm based

benchmark to rank the supercomputers with respect to GTEPS (109 Traversed

edges per second). As for the TOP500 a resorting of the systems by an energy

measure is provided, as the Green Graph 500 list.

24http://www.top500.org/
25http://www.netlib.org/benchmark/hpl/

Jens Saak Scientific Computing II 255/349

http://www.top500.org/
http://www.netlib.org/benchmark/hpl/

Comparison of Distributed Memory Systems
Rankings

1. TOP500:
List of the 500 fastest HPC machines in the world sorted by their maximal

LINPACK performance (in TFlops) achieved.

2. Green50024:
Taking into account the energy consumption the Green500 is basically a resorting of

the TOP500 according to TFlops/Watt as the ranking measure.

3. (Green) Graph500:
Designed for data intensive computations it uses a graph algorithm based

benchmark to rank the supercomputers with respect to GTEPS (109 Traversed

edges per second). As for the TOP500 a resorting of the systems by an energy

measure is provided, as the Green Graph 500 list.

24http://www.green500.org/

Jens Saak Scientific Computing II 255/349

http://www.green500.org/

Comparison of Distributed Memory Systems
Rankings

1. TOP500:
List of the 500 fastest HPC machines in the world sorted by their maximal

LINPACK performance (in TFlops) achieved.

2. Green500:
Taking into account the energy consumption the Green500 is basically a resorting of

the TOP500 according to TFlops/Watt as the ranking measure.

3. (Green) Graph50024:
Designed for data intensive computations it uses a graph algorithm based

benchmark to rank the supercomputers with respect to GTEPS (109 Traversed

edges per second). As for the TOP500 a resorting of the systems by an energy

measure is provided, as the Green Graph 500 list25.

24http://www.graph500.org/
25http://green.graph500.org/

Jens Saak Scientific Computing II 255/349

http://www.graph500.org/
http://green.graph500.org/

Comparison of Distributed Memory Systems
Architectural Streams Currently Pursued

The ten leading systems in the TOP500 list are currently (list of November 2018)
of three different types representing the main streams pursued in increasing the
performance of distributed HPC systems.

Mainly all HPC systems today consist of single hosts of one of the following three
types. The performance boost is achieved by connecting ever increasing numbers
of those hosts in large clusters.

1. Hybrid accelerator/CPU hosts,
Summit — IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA

Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM at DOE/SC/Oak Ridge

National Laboratory United States

Piz Daint — Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,

NVIDIA Tesla P100, Cray Inc. at Swiss National Supercomputing Centre (CSCS)

Switzerland

2. Manycore and embedded hosts
Sunway TaihuLight — Sunway MPP, Sunway SW26010 260C 1.45GHz,

Sunway NRCPC

Sequoia — BlueGene/Q, Power BQC 16C 1.60 GHz at DOE/NNSA/LLNL

United States

3. Multicore CPU powered hosts,
SuperMUC-NG — ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz, Intel

Omni-Path, Lenovo at Leibniz Rechenzentrum Germany

Jens Saak Scientific Computing II 256/349

Comparison of Distributed Memory Systems
Architectural Streams Currently Pursued

1. Hybrid accelerator/CPU hosts,
Summit — IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA

Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM at DOE/SC/Oak Ridge

National Laboratory United States

Piz Daint — Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,

NVIDIA Tesla P100, Cray Inc. at Swiss National Supercomputing Centre (CSCS)

Switzerland

2. Manycore and embedded hosts
Sunway TaihuLight — Sunway MPP, Sunway SW26010 260C 1.45GHz,

Sunway NRCPC

Sequoia — BlueGene/Q, Power BQC 16C 1.60 GHz at DOE/NNSA/LLNL

United States

3. Multicore CPU powered hosts,
SuperMUC-NG — ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz, Intel

Omni-Path, Lenovo at Leibniz Rechenzentrum Germany

Jens Saak Scientific Computing II 256/349

Comparison of Distributed Memory Systems
Architectural Streams Currently Pursued

1. Hybrid accelerator/CPU hosts,
Summit — IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA

Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM at DOE/SC/Oak Ridge

National Laboratory United States

Piz Daint — Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,

NVIDIA Tesla P100, Cray Inc. at Swiss National Supercomputing Centre (CSCS)

Switzerland

2. Manycore and embedded hosts
Sunway TaihuLight — Sunway MPP, Sunway SW26010 260C 1.45GHz,

Sunway NRCPC

Sequoia — BlueGene/Q, Power BQC 16C 1.60 GHz at DOE/NNSA/LLNL

United States

3. Multicore CPU powered hosts,
SuperMUC-NG — ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz, Intel

Omni-Path, Lenovo at Leibniz Rechenzentrum Germany

Jens Saak Scientific Computing II 256/349

Comparison of Distributed Memory Systems
Architectural Streams Currently Pursued

1. Hybrid accelerator/CPU hosts,
Summit — IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA

Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM at DOE/SC/Oak Ridge

National Laboratory United States

Piz Daint — Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,

NVIDIA Tesla P100, Cray Inc. at Swiss National Supercomputing Centre (CSCS)

Switzerland

2. Manycore and embedded hosts
Sunway TaihuLight — Sunway MPP, Sunway SW26010 260C 1.45GHz,

Sunway NRCPC

Sequoia — BlueGene/Q, Power BQC 16C 1.60 GHz at DOE/NNSA/LLNL

United States

3. Multicore CPU powered hosts,
SuperMUC-NG — ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz, Intel

Omni-Path, Lenovo at Leibniz Rechenzentrum Germany

Jens Saak Scientific Computing II 256/349

Comparison of Distributed Memory Systems
Hybrid Accelerator/CPU Hosts

We have elaborately studied these hosts in the previous chapter.

Compared to a standard desktop (as treated there) in the cluster version the
interconnect plays a more important role. Especially, Multi-GPU features may use
GPUs on remote hosts (as compared to remote NUMA nodes) more efficiently
due to the high speed interconnect.

Compared to CPU-only hosts, these systems usually benefit from the large
number of cores generating high flop-rates at comparably low energy costs.

Jens Saak Scientific Computing II 257/349

Comparison of Distributed Memory Systems
Manycore and Embedded Hosts

Manycore and embedded systems are designed to use low power processors to get
a good flop per Watt ratio. They make up for the lower per core flop counts by
using enormous numbers of cores.

BlueGene/Q

Base chip IBM PowerPC 64Bit based, 16(+2) cores, 1.6GHz

each core has a SIMD Quad-vector double precision FPU

16 user cores, 1 system assist core, 1 spare core

cores connected to 32MB eDRAM L2Cache (half core speed) via crossbar switch

crates of 512 chips arranged in 5d torus (4× 4× 4× 4× 2)

chip-to-chip communication at 2Gbit/s using on-chip logic

2 crates per rack 1024 compute nodes = 16,384 user cores

interconnect added in 2 drawers with 8 PCIe slots (e.g. for Infiniband, or 10Gig Ethernet.)

Jens Saak Scientific Computing II 258/349

Comparison of Distributed Memory Systems
Multicore CPU Hosts

Basically these clusters are a collection of standard processors. The actual
multicore processors, however, are not necessarily of x86 or amd64 type, e.g. many
employ IBM Power 9 processors.

Standard x86 or amd64 provide the obvious advantage of easy usability, since
software developed for standard desktops can be ported easily. The SPARC and
POWER processors overcome some of the x86 disadvantages (e.g. expensive task
switches) and thus often provide increased performance due to reduced latency.

Jens Saak Scientific Computing II 259/349

Comparison of Distributed Memory Systems
The 2020 vision: Exascale Computing

difference name meaning

(symbol)

Kilobyte (kB) 103 Byte = 1 000 Byte

2,40% Kibibyte (KiB) 210 Byte = 1 024 Byte

Megabyte (MB) 106 Byte = 1 000 000 Byte

4,86% Mebibyte (MiB) 220 Byte = 1 048 576 Byte

Gigabyte (GB) 109 Byte = 1 000 000 000 Byte

7,37% Gibibyte (GiB) 230 Byte = 1 073 741 824 Byte

Terabyte (TB) 1012 Byte = 1 000 000 000 000 Byte

9,95% Tebibyte (TiB) 240 Byte = 1 099 511 627 776 Byte

Petabyte (PB) 1015 Byte = 1 000 000 000 000 000 Byte

12,6% Pebibyte (PiB) 250 Byte = 1 125 899 906 842 624 Byte

Exabyte (EB) 1018 Byte = 1 000 000 000 000 000 000 Byte

15,3% Exbibyte (EiB) 260 Byte = 1 152 921 504 606 846 976 Byte

Table: decimal and binary prefixes

Jens Saak Scientific Computing II 260/349

Comparison of Distributed Memory Systems
The 2020 vision: Exascale Computing

The two standard prefixes in decimal and binary representations of memory sizes
are given in Table 7. The decimal prefixes are also used for displaying numbers of
floating point operations per second (flops) executed by a certain machine.

name (location) cores LINPACK perfomance
[TFlop/s]

Summit (USA) 2 397 824 143 500.0
Sunway TaihuLight(China) 10 649 600 93 014.6
Sequoia (USA) 1 572 864 16 324.8
Tianhe-2A (China) 4 981 760 61 444.5

Table: Petascale systems available

Jens Saak Scientific Computing II 261/349

Comparison of Distributed Memory Systems
The 2020 vision: Exascale Computing

Figure: Performance development of TOP500 HPC machines taken from TOP500 poster
November 2014

Jens Saak Scientific Computing II 262/349

Comparison of Distributed Memory Systems
State of the art (statistics)

Figure: TOP500 architectures taken from TOP500 poster November 2014

Jens Saak Scientific Computing II 263/349

Comparison of Distributed Memory Systems
State of the art (statistics)

Figure: Chip technologies of TOP500 HPC machines taken from TOP500 poster
November 2014

Jens Saak Scientific Computing II 264/349

Comparison of Distributed Memory Systems
State of the art (statistics)

Figure: Installation types of TOP500 HPC machines taken from TOP500 poster
November 2014

Jens Saak Scientific Computing II 265/349

Comparison of Distributed Memory Systems
State of the art (statistics)

Figure: Accelerators and Co-Processors employed in TOP500 HPC machines taken from
TOP500 poster November 2014

Jens Saak Scientific Computing II 266/349

Chapter 5

Distributed Memory
Systems: Part II

Jens Saak Scientific Computing II 267/349

Communication of Data
Communication Operations via Message Passing

Message passing

is the programming model commonly used for distributed memory systems, where
each node has its own exclusive memory and we have an overall distributed
address space. Exchange of data between the local memories of separate hosts is
realized by sending messages between the hosts.

Usually, the communication is (network) socket based, although the basic
principles can also be applied to multicore machines, e.g., by using shared memory
blocks to implement the communication.

Jens Saak Scientific Computing II 268/349

Communication of Data
Communication Operations via Message Passing: Blocking vs. Non-blocking

Communication operations in the Message Passing Interface (MPI) are belonging
to two global classes categorized by their local (process on host) behavior.

Definition (blocking operation)

A communication operation is called blocking if the return of the process control
to the calling process means that the operation has completed the entire transfer.

Definition (non-blocking operation)

In a non-blocking operation the process control is returned to the calling process
as soon as the communication has been initiated. The communication may be
ongoing while the calling process continues its program.

Jens Saak Scientific Computing II 269/349

Communication of Data

Communication Operations via Message Passing: Synchronous vs. Asynchronous

Looking at the same operations from a global perspective, i.e., not looking at the
local message but the global communication, they determine the two classes of

Definition (synchronous communication)

The synchronous communication between a sending and a receiving process is
implemented such that sending operations do not complete (i.e. return control to
the calling process) before the receiving counterpart has at least started the
execution.

Definition (asynchronous communication)

In asynchronous communication the sending and receiving process are not
coordinated, i.e., the sender can execute its operation without the receiving
counterpart waiting in its operation.

Jens Saak Scientific Computing II 270/349

Communication of Data

Communication Operations via Message Passing: Synchronous vs. Asynchronous

Example

oral or telephone chats are synchronous communications, since all partners
are engaged in the communication simultaneously.

classic mail or electronic mail are asynchronous communication, where the
sender never knows if, or when the message was actually received.

Jens Saak Scientific Computing II 271/349

Communication of Data
Communication Operations via Message Passing

Communication between MPI processes can not only be classified via their
influence on global or local process flow, but also with respect to the number of
partners involved. MPI is distinguishing between

point-to-point communication, where both ends are occupied
by a single process, and

collective communication where a single process sends out
messages to multiple receiving processes, or collects messages
from several sending processes.

Jens Saak Scientific Computing II 272/349

Communication of Data

Communication Operations via Message Passing: Point-to-Point Communication

Ps Pr

Figure: Point-to-Point Communication

Jens Saak Scientific Computing II 273/349

Communication of Data
Communication Operations via Message Passing: Collective Communication

Ps Pr

Pr

Pr

Pr

Pr

Figure: Broadcast Operation

Jens Saak Scientific Computing II 274/349

Communication of Data
Communication Operations via Message Passing: Collective Communication

Pr Ps

Ps

Ps

Ps

Ps

Figure: Reduction Operation

Jens Saak Scientific Computing II 275/349

Communication of Data
Communication Operations via Message Passing: Collective Communication

Ps Pr

Pr

Pr

Pr

Pr

Figure: Scatter Operation

Jens Saak Scientific Computing II 276/349

Communication of Data
Communication Operations via Message Passing: Collective Communication

Pr Ps

Ps

Ps

Ps

Ps

Figure: Gather Operation

Jens Saak Scientific Computing II 277/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies

Assumptions

All network links are bidirectional

All-Port-Communication: each node can send out messages on all outgoing
links simultaneously

The same holds for receiving messages

A messages consists of several bytes sent uninterruptedly

Jens Saak Scientific Computing II 278/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies

Assumptions

The time for transmission of a message of m bytes size is

T (m) = ts + mtb,

where ts is a startup time and tb is the time for sending a single byte.

The communication is such that the length of the path from source node to
destination node in the corresponding network graph determines the number
of time steps required.

Jens Saak Scientific Computing II 278/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies

Landau Θ-notation

The Θ(g(x)) notation describes a class of functions f for which roughly speaking
we have that “f is growing essentially as fast as g .”
More precisely we have,

Θ(g(x)) = {f (x) | ∃c1, c2 > 0 and x0, such that

∀x ≥ x0 c1|g(x)| ≤ f (x) ≤ c2|g(x)|}

This basically means f ∈ Θ(g) when f ∈ O(g) and g ∈ O(f).

Jens Saak Scientific Computing II 279/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies

Critical operations are the collective communication operations, since they
produce a notable load on the entire range of links in the network. We will
investigate the following in more detail:

1. broadcast

2. scatter

3. multi-broadcast (each node broadcasts)

4. total exchange (each node scatters)

In the following p specifies the number of nodes in the network.

Jens Saak Scientific Computing II 280/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Complete Graph

1

2 3

4

5

Figure: A complete graph network broadcast example

all nodes connected, i.e., path length is one,

by the assumptions all messages in all types of point to point and collective
communication operations can be sent simultaneously,

the operations can be performed in Θ(1).

Jens Saak Scientific Computing II 281/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

1 2 3 4 5

Figure: A linear array network example

Single Broadcast

The root node sends messages to its left and right neighbors starting with
the most distant recipients,

in all other steps each node forwards the message received from one neighbor
in the previous step to its other neighbor.

The minimal runtime is b p2 c (root is the center node)

The maximal runtime is p − 1 (root is an end node)

Thus the runtime class is Θ(p).

Jens Saak Scientific Computing II 282/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

1 2 3 4 5

Figure: A linear array network example

Single Broadcast

The root node sends messages to its left and right neighbors starting with
the most distant recipients,

in all other steps each node forwards the message received from one neighbor
in the previous step to its other neighbor.

The minimal runtime is b p2 c (root is the center node)

The maximal runtime is p − 1 (root is an end node)

Thus the runtime class is Θ(p).

Jens Saak Scientific Computing II 282/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

1 2 3 4 5

Figure: A linear array network example

Single Broadcast

The root node sends messages to its left and right neighbors starting with
the most distant recipients,

in all other steps each node forwards the message received from one neighbor
in the previous step to its other neighbor.

The minimal runtime is b p2 c (root is the center node)

The maximal runtime is p − 1 (root is an end node)

Thus the runtime class is Θ(p).

Jens Saak Scientific Computing II 282/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

Multi Broadcast

1 2 3 4

1 2 3

2 3 4

Step 1

1 2 3 4

1 2

3 4

Step 2

1 2 3 4

1

4

Step 3

Figure: A linear array network multi broadcast example

Jens Saak Scientific Computing II 283/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

Multi Broadcast

1 2 3 4

1 2 3

2 3 4

Step 1

1 2 3 4

1 2

3 4

Step 2

1 2 3 4

1

4

Step 3

Figure: A linear array network multi broadcast example

Jens Saak Scientific Computing II 283/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

Multi Broadcast

1 2 3 4

1 2 3

2 3 4

Step 1

1 2 3 4

1 2

3 4

Step 2

1 2 3 4

1

4

Step 3

Figure: A linear array network multi broadcast example

Jens Saak Scientific Computing II 283/349

Communication Networks (revisited)

Asymptotic Message runtimes in some Standard Network Topologies: Linear Array

Scatter

The basic idea is that of the single broadcast, only the contents of the messages
need to be treated more carefully. Therefore, the complexity is Θ(p) as well.

Total exchange

An upper bound to the runtime is given by p scatter operations, resulting in
basically p2 communication steps. In their book Rauber and Rünger present an

algorithm that can do it in p2

4 . Anyway the complexity is Θ(p2).

Jens Saak Scientific Computing II 284/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies: Ring

1

2 3

4

5

Figure: A ring network example

The ring is a prototype for the linear array where the root node is always in the
center. Thus, we get the same complexities as in the best case for the linear array.
Note, however, that we need to cut the transmission at half way around the ring.

Jens Saak Scientific Computing II 285/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies: Mesh

We consider the d-dimensional mesh with d
√
p nodes per direction, such that we

have p nodes in total as before. The diameter then is d(d
√
p − 1).

1 2

34

5 6

78

(a) A 3d cubic mesh network
with diameter 3 · 1

1 2 3

4 5 6

7 8 9

(b) A 2d square mesh network
with diameter 2 · 2

Figure: Two mesh network examples with diameter indications.

Jens Saak Scientific Computing II 286/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies: Mesh

Single Broadcast

The single broadcast time is obviously proportional to the diameter of the
network. This itself is proportional to the number of nodes in each direction.
Therefore, the complexity class is Θ(d

√
p).

Jens Saak Scientific Computing II 287/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies: Mesh

1 2 3

4 5 6

7 8 9

Figure: The linear array embedded in a 2d mesh.

Scatter

The picture shows clearly that the communication time is limited by that for the linear
array from above.

On the other hand, each node has d to 2d outgoing connections and p − 1 messages need
to be sent, i.e., b p−1

d
c is a lower limit.

a scatter is possible in Θ(p).

Jens Saak Scientific Computing II 288/349

Communication Networks (revisited)
Asymptotic Message runtimes in some Standard Network Topologies: Mesh

Multi Broadcast

The multi broadcast time is observed similarly to be part of the complexity class
Θ(d
√
p).

Total Exchange

Rauber and Rünger in their book show a method that provides Θ(p
d+1
d).

Jens Saak Scientific Computing II 289/349

Chapter 5

Distributed Memory
Systems: Part III

Jens Saak Scientific Computing II 290/349

Communication Networks (revisited)
Some Remarks on the Hypercube

(a) 1D hypercube (b) 2D hypercube

(c) 3D hypercube (d) 4D hypercube

Figure: The first four hypercubesJens Saak Scientific Computing II 291/349

Communication Networks (revisited)
Some Remarks on the Hypercube

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1101

1100

1010

1110

1011

1111

Figure: The hypercube network in 4d

Jens Saak Scientific Computing II 292/349

Communication Networks (revisited)
Some Remarks on the Hypercube

We denote the nodes in the d-dimensional hypercube by d-tuples of bits, i.e., we
use n1, . . . , np ∈ {0, 1}d . Let a, b, c ∈ {0, 1}d and ai , bi , ci the i-th bit positions.
We denote by ⊕ the bitwise exclusive or operation, i.e.,

a1 . . . ad ⊕ b1 . . . bd = c1 . . . cd

with

ci =

{
1 where ai 6= bi ,
0 otherwise

for 1 ≤ i ≤ d .

Note that ∀z ∈ {0, 1}d we have

00 . . . 0⊕ z = z ,

and if v ,w ∈ {0, 1}d differ in only a single bit, so do v ⊕ z and w ⊕ z .

Jens Saak Scientific Computing II 293/349

Communication Networks (revisited)
Some Remarks on the Hypercube

We denote the nodes in the d-dimensional hypercube by d-tuples of bits, i.e., we
use n1, . . . , np ∈ {0, 1}d . Let a, b, c ∈ {0, 1}d and ai , bi , ci the i-th bit positions.
We denote by ⊕ the bitwise exclusive or operation, i.e.,

a1 . . . ad ⊕ b1 . . . bd = c1 . . . cd

with

ci =

{
1 where ai 6= bi ,
0 otherwise

for 1 ≤ i ≤ d .

Note that ∀z ∈ {0, 1}d we have

00 . . . 0⊕ z = z ,

and if v ,w ∈ {0, 1}d differ in only a single bit, so do v ⊕ z and w ⊕ z .

Jens Saak Scientific Computing II 293/349

Communication Networks (revisited)
Some Remarks on the Hypercube

Properties of the Hypercube graph

nodes are bit d-tuples,

each node has d links to other nodes

neighbors differ in a single bit position

the diameter of the graph (i.e., the length of the longest path
between two nodes) is d = log(p).

Jens Saak Scientific Computing II 294/349

Communication Networks (revisited)
Some Remarks on the Hypercube

Properties of the Hypercube graph

nodes are bit d-tuples,

each node has d links to other nodes

neighbors differ in a single bit position

the diameter of the graph (i.e., the length of the longest path
between two nodes) is d = log(p).

Jens Saak Scientific Computing II 294/349

Communication Networks (revisited)
Some Remarks on the Hypercube

Properties of the Hypercube graph

nodes are bit d-tuples,

each node has d links to other nodes

neighbors differ in a single bit position

the diameter of the graph (i.e., the length of the longest path
between two nodes) is d = log(p).

Jens Saak Scientific Computing II 294/349

Communication Networks (revisited)
Some Remarks on the Hypercube

Properties of the Hypercube graph

nodes are bit d-tuples,

each node has d links to other nodes

neighbors differ in a single bit position

the diameter of the graph (i.e., the length of the longest path
between two nodes) is d = log(p).

Jens Saak Scientific Computing II 294/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Definition (Spanning tree)

A spanning tree of a graph is a tree that

picks one node of the graph as its root,

contains all other nodes as nodes or leaves once,

has only edges that represent valid links in the graph.

Jens Saak Scientific Computing II 295/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0

1. all root connections coincide with the links in the graph.

2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Jens Saak Scientific Computing II 296/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0

1. all root connections coincide with the links in the graph.

2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Jens Saak Scientific Computing II 296/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0

1. all root connections coincide with the links in the graph.

2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Jens Saak Scientific Computing II 296/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0

1. all root connections coincide with the links in the graph.

2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Jens Saak Scientific Computing II 296/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Construction Rules for root 00 . . . 0

1. all root connections coincide with the links in the graph.

2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply

that all leave nodes end on a 1 bit,

the depth of the tree is d + 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Jens Saak Scientific Computing II 296/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Root nodes other than 00 . . . 0

Spanning trees for other root nodes v are derived by replacing all nodes w by
w ⊕ v in the entire tree for root 00 . . . 0.

Why is this the case? We noted above the properties of ⊕ that

00 . . . 0 is the neutral element, and

v , w differ in only a single bit ⇒ v ⊕ z , w ⊕ z do so as well.

Thus, if (v ,w) is a hypercube link, then (v ⊕ z ,w ⊕ z) is one as well.

Single Broadcast

The single broadcast can be implemented in Θ(log p) = Θ(d) successively
descending through the spanning tree. It can also not be better than that since
the diameter of the hypercube is d .

Jens Saak Scientific Computing II 297/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Root nodes other than 00 . . . 0

Spanning trees for other root nodes v are derived by replacing all nodes w by
w ⊕ v in the entire tree for root 00 . . . 0.

Why is this the case? We noted above the properties of ⊕ that

00 . . . 0 is the neutral element, and

v , w differ in only a single bit ⇒ v ⊕ z , w ⊕ z do so as well.

Thus, if (v ,w) is a hypercube link, then (v ⊕ z ,w ⊕ z) is one as well.

Single Broadcast

The single broadcast can be implemented in Θ(log p) = Θ(d) successively
descending through the spanning tree. It can also not be better than that since
the diameter of the hypercube is d .

Jens Saak Scientific Computing II 297/349

Communication Networks (revisited)
Construction of Spanning Trees for Single Broadcasts

Root nodes other than 00 . . . 0

Spanning trees for other root nodes v are derived by replacing all nodes w by
w ⊕ v in the entire tree for root 00 . . . 0.

Why is this the case? We noted above the properties of ⊕ that

00 . . . 0 is the neutral element, and

v , w differ in only a single bit ⇒ v ⊕ z , w ⊕ z do so as well.

Thus, if (v ,w) is a hypercube link, then (v ⊕ z ,w ⊕ z) is one as well.

Single Broadcast

The single broadcast can be implemented in Θ(log p) = Θ(d) successively
descending through the spanning tree. It can also not be better than that since
the diameter of the hypercube is d .

Jens Saak Scientific Computing II 297/349

Communication Networks (revisited)
Communication Routing on the Hypercube

Scatter

A scatter operation needs to send out p − 1 different messages along the d links
of the root node. It can thus not be faster than d p−1

d e time steps.

We will see in the following that this is the time also needed for a multi-broadcast.
Since a single scatter can not be slower than that we immediately have that a
scatter is Θ(p−1

log(p)) = Θ(p−1
d).

Jens Saak Scientific Computing II 298/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Problem

The single broadcast spanning trees for the 2d nodes in the d-dimensional
hypercube are not disjoint in the sense that each link is only used by a single
operation in each time step if the multi-broadcast is treated as 2d isolated single
broadcasts.

Observation

It is mandatory to construct spanning trees such that all sets of edges used in a
single time step by the different single broadcasts are disjoint.

Jens Saak Scientific Computing II 299/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Definition

The spanning tree for root node t ∈ {0, 1}d is called Tt , and simply T0 for
t = 00 . . . 0.

The set of edges active in time step i for Tt is called Ai (t)

Construction

The sets of active edges for root node t ∈ {0, 1}d may be constructed such that
for any two edges (x , y) and (x ′, y ′) in Ai (0) x , y and x ′, y ′ do not differ in the
same bit position and the sets for the other root nodes are derived as

Ai (t) = {(x ⊕ t, y ⊕ t) | (x , y) ∈ Ai} ∀1 ≤ i ≤ m,

where m is the total number of time steps required.

Jens Saak Scientific Computing II 300/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

Observation

The set Ai of active edges in the i-th step can have at most d entries, since we
only have d bit positions available in the node labels.

Main Idea:

Construct the sets Ai such that |Ai | = d for 1 ≤ i < m and |Am| ≤ d .

What is m?
Since each of the p = 2d nodes in the tree has an incoming link, except the root,
we have 2d − 1 edges in total that are distributed among the Ai , i.e.,∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ = 2d − 1.

This immediately provides a first estimate for m:

m =

⌈
2d − 1

d

⌉
Note that we can also not get better than that, since each node in the hypercube
has to receive 2d − 1 messages from the other nodes across its d incoming links.

Jens Saak Scientific Computing II 301/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

What is m?
Since each of the p = 2d nodes in the tree has an incoming link, except the root,
we have 2d − 1 edges in total that are distributed among the Ai , i.e.,∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ = 2d − 1.

This immediately provides a first estimate for m:

m =

⌈
2d − 1

d

⌉
Note that we can also not get better than that, since each node in the hypercube
has to receive 2d − 1 messages from the other nodes across its d incoming links.

Jens Saak Scientific Computing II 301/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

What is m?
Since each of the p = 2d nodes in the tree has an incoming link, except the root,
we have 2d − 1 edges in total that are distributed among the Ai , i.e.,∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ = 2d − 1.

This immediately provides a first estimate for m:

m =

⌈
2d − 1

d

⌉

Note that we can also not get better than that, since each node in the hypercube
has to receive 2d − 1 messages from the other nodes across its d incoming links.

Jens Saak Scientific Computing II 301/349

Communication Networks (revisited)
Collision Avoiding Spanning Trees for Multi-Broadcast Operations

What is m?
Since each of the p = 2d nodes in the tree has an incoming link, except the root,
we have 2d − 1 edges in total that are distributed among the Ai , i.e.,∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ = 2d − 1.

This immediately provides a first estimate for m:

m =

⌈
2d − 1

d

⌉
Note that we can also not get better than that, since each node in the hypercube
has to receive 2d − 1 messages from the other nodes across its d incoming links.

Jens Saak Scientific Computing II 301/349

Communication Networks (revisited) I
Communication Routing on the Hypercube

Definition

We collect some further notation:

Nk := {t ∈ {0, 1}d | t has k unit bits and d − k zero bits.}
These sets have

nk := |Nk | =

(
d
k

)
=

d!

k!(d − k)!

elements.

The Nk are further subdivided into mk equivalence classes Rk1, . . . ,Rkmk with
respect to left rotation. They are ordered by rightmost concentration of the unit
bits, i.e., Rk1 is the class containing (0d−k1k).

The elements in the equivalence classes can be ordered by rightmost concentration
of unit bits as well.

n(t) is the global number of node t in this order.

m(t) = 1 + [n(t)− 1 mod d] is t’s local number of inside the equivalence class.

Jens Saak Scientific Computing II 302/349

Communication Networks (revisited)
Communication Routing on the Hypercube

Let us denote the sets of destination nodes in Ai by Ei . Then we set:

E0 = {00 . . . 0}

Ei = {t ∈ {0, 1}d | (i − 1)d + 1 ≤ n(t) ≤ id} 1 ≤ i < m

Em = {t ∈ {0, 1}d | (m − 1)d + 1 ≤ n(t) ≤ 2d − 1}

The set of active edges are then constructed by the rules:

1. connect t ∈ Ei to start node t ′ with the m(t)th bit inverted,

2. if t = 11 . . . 1 and m(t) = d connect to t ′ = 101 . . . 1 instead.

Jens Saak Scientific Computing II 303/349

Communication Networks (revisited)
Communication Routing on the Hypercube

By construction in each step the tree uses d edges and all sets Ai (t) for the
different t are disjoint. Thus, all 2d single broadcasts can be performed
simultaneously and the multi-broadcast can be done in Θ(p−1

d).

Note that although the d-hypercube has only d
2 · 2

d edges we can use d · 2d links
in the graph due to the assumption of bidirectional communication.

Jens Saak Scientific Computing II 304/349

Chapter 5

Distributed Memory
Systems: Part IV

Jens Saak Scientific Computing II 305/349

Message Passing Interface API

The Message Passing Interface is a standard for creation of parallel programs
using the message passing programming model. It describes

functionality,

behavior,

API syntax

of the required routines. It does, however, not prescribe any implementation
details. It is, e.g., completely open by what means a message is transferred.

Jens Saak Scientific Computing II 306/349

Message Passing Interface API

The MPI uses a specialized execution environment that spawns and administrates
the instances of a process. Relevant functions for

setup and destruction of the working environments context

grouping processes

actual message transmission

. . .

are collected in the mpi.h header file. We will see later for the case of the
Open MPI26 implementation of the standard how we can compile and run a
program using the MPI features.

26http://www.open-mpi.org/

Jens Saak Scientific Computing II 307/349

http://www.open-mpi.org/

Message Passing Interface API
MPI Context Initialization and Finalization

The most basic components of the MPI program are

#include <mpi.h>

to make the standard available. Then before we can use any message passing
routines we need to initialize the execution context via

int MPI_Init(int *argc, char ***argv)

passing on the usual arguments of the main() function of our C program. After
we have finished our MPI related work the execution context is destroyed using

int MPI_Finalize()

Processes may continue performing local work after the finalization, but with a
very few exceptions none of the MPI function work anymore. It is mandatory to
make sure all MPI operations have finished before calling MPI Finalize().

Jens Saak Scientific Computing II 308/349

Message Passing Interface API
Process Groups and Communicators: Process Groups

Definition (Process group)

Processes in MPI may be clustered in so called process groups. These are ordered
sets of instances of the program numbered from 0 to n − 1. The local numbers of
the processes are called rank.

From the programmers view an MPI group is an object of type MPI Group,
which can be accessed via a handle. There exists one predefined group constant
MPI GROUP EMPTY, denoting the empty group.
MPI process groups are useful to implement task parallel applications. MPI
supports communication inside a group and point to point type communication
between groups.

Jens Saak Scientific Computing II 309/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_union(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Generates the union of two existing groups by including all elements of the first
group, followed by all elements of second group that are not in the first group.

group1, group2 groups to include

*newgroup handle of the group to create. This may be equal to the empty
group MPI GROUP EMPTY.

The operation is not commutative but associative.

Jens Saak Scientific Computing II 310/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_intersection(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Produces a group at the intersection of two existing groups by including all
elements of the first group that are also in the second group, ordered as in the
first group.

group1, group2 groups to intersect,

*newgroup handle of the group to create. This may be equal to the empty
group MPI GROUP EMPTY.

The operation is not commutative but associative.

Jens Saak Scientific Computing II 311/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_difference(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Generates the new group from the difference of the existing groups by including
all elements of the first group that are not in the second group, ordered as in the
first group.

group1, group2 groups to determine the difference from

*newgroup handle of the group to create. This may be equal to the empty
group MPI GROUP EMPTY.

Jens Saak Scientific Computing II 312/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_incl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by including a possibly reordered
subset of the processes.

group the existing group

n number of ranks used in the new group

ranks ordered list of members for the new group

*newgroup handle of the group to create.

Jens Saak Scientific Computing II 313/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_excl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by excluding a possibly reordered
subset of the processes.

group the existing group

n number of ranks used in the new group

ranks ordered list of members to exclude from the new group

*newgroup handle of the group to create.

Jens Saak Scientific Computing II 314/349

Message Passing Interface API
Process Groups and Communicators: Process Group Functions

int MPI_Group_size(MPI_Group group, int *size)

Determines the number of members of a group, returned in size.

int MPI_Group_rank(MPI_Group group, int *rank)

Find the rank (local number) of the current process in group.

int MPI_Group_compare(MPI_Group group1,
MPI_Group group2,
int *result)

Find out how different group1 and group2 are. The result is MPI IDENT if
they are the same, MPI SIMILAR in case they only differ in the order of the
processes and MPI UNEQUAL otherwise.

Unused groups can be released by calling

int MPI_Group_free(MPI_Group *group)

On successful return group is set to MPI GROUP NULL

Jens Saak Scientific Computing II 315/349

Message Passing Interface API
Process Groups and Communicators: Communicators

Definition (Communicators)

The participants in a communication operation in MPI are usually determined via
so called communicators. MPI distinguishes two types of communicators

intra-communicators for the collective communication inside a process group

inter-communicators for the point-to-point like communication between two
process groups.

If we are following the SPMD programming model and do not want to have
task-parallelism in our code, we are usually fine with the predefined default
communicator MPI COMM WORLD. When people simply speak of a communicator
they usually refer to an intra-communicator. Communicators are objects of type
MPI Comm

Jens Saak Scientific Computing II 316/349

Message Passing Interface API
Process Groups and Communicators: Communicator Functions

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

Create a new communicator for a subset of the processes.

comm base communicator

group process group the new communicator will be associated with. Must
be a subgroup of the group associated to comm.

*newcomm handle to the newly created communicator.

Jens Saak Scientific Computing II 317/349

Message Passing Interface API
Process Groups and Communicators: Communicator Functions

int MPI_Comm_size (MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

are the communicator equivalents of the equally called group functions. For comm
equal to MPI COMM WORLD the total number of processes and the global ranks
are returned. Otherwise those of the associated group are given.

For the MPI Comm compare function the value MPI IDENT here means that the
underlying groups are in fact the same. MPI CONGRUENT is returned if the groups
are equal (including the order of the ranks) but not the same one group. If only
the order differs the result is MPI SIMILAR again and MPI UNEQUAL otherwise.

Jens Saak Scientific Computing II 318/349

Message Passing Interface API
Point-to-Point Communication

int MPI_Send(void *buf,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm)

Perform a blocking send operation.

buf address of the sendbuffer

count number of elements to send

datatype type of send buffer elements

dest the rank of the destination process inside comm

tag a message identifier

comm the communicator to use for the transmission

Jens Saak Scientific Computing II 319/349

Message Passing Interface API
Point-to-Point Communication

int MPI_Recv(void *buf,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI_Status *status)

Performs a standard-mode blocking receive.

buf address of the send buffer

count number of elements to send

datatype type of send buffer elements

source the rank of the sending process inside comm
tag a message identifier

comm the communicator to use for the transmission

status a status object containing information about the sender, the
message tag, and possible errors. Also the length of the message received can
be retrieved from it using the MPI Get count function. This can be set to
the constant MPI STATUS IGNORE to save resources if not needed by the
application.

Jens Saak Scientific Computing II 320/349

Message Passing Interface API
Point-to-Point Communication

Variants of these functions performing the send and receive in a single call or that
are non-blocking, exist, for the details see the standard and the man pages of
MPI Sendrcv(), MPI Isend(), MPI Irecv().

For the non-blocking communication operations the function MPI Test() can
be used to check whether a certain message has been transferred.

Jens Saak Scientific Computing II 321/349

Message Passing Interface API
Single-Collective Communication

int MPI_Barrier(MPI_Comm comm)

Actually not performing a real communication this function makes sure that
process flow stops until all processes in the group associated to comm have
reached this point.

comm the communicator to use the barrier for

Jens Saak Scientific Computing II 322/349

Message Passing Interface API
Single-Collective Communication

int MPI_Bcast(void *buffer,
int count,
MPI_Datatype datatype,
int root,
MPI_Comm comm)

Broadcasts a message from one process to all other processes of the
communicator.

*buffer address of the send/receive buffer

count number of elements to send

datatype type of send buffer elements

root the rank of the sending process

comm the communicator to be use

Jens Saak Scientific Computing II 323/349

Message Passing Interface API
Single-Collective Communication

int MPI_Reduce(void *sendbuf,
void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
int root,
MPI_Comm comm)

Reduces values on all processes within a group associated to a communicator

*sendbuf address of the send buffer

*recvbuf address of the receive buffer (only relevant on root)

count number of elements to send

datatype type of buffer elements

op the arithmetic operation to use in the reduce

root the rank of the root/receiving process

comm the communicator to be use

Jens Saak Scientific Computing II 324/349

Message Passing Interface API
Single-Collective Communication

int MPI_Scatter(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Distributes data from one process among all processes in the communicator

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

root the rank of the root/sending process

comm the communicator to be use

Jens Saak Scientific Computing II 325/349

Message Passing Interface API
Single-Collective Communication

int MPI_Gather(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Collects data from all processes on a single process.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

root the rank of the root/receiving process

comm the communicator to be use

Jens Saak Scientific Computing II 326/349

Message Passing Interface API
Multi-Collective Communication

int MPI_Allgather(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Collects and redistributes data from all processes to all processes.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

comm the communicator to be use

Jens Saak Scientific Computing II 327/349

Message Passing Interface API
Multi-Collective Communication

int MPI_Allreduce(void *sendbuf,
void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
MPI_Comm comm)

Similar to the MPI Reduce() function it combines values from all processes, but
in addition it distributes the result back to all processes.

*sendbuf address of the send buffer

*recvbuf address of the receive buffer

count number of elements to send

datatype type of buffer elements

op the arithmetic operation to use in the reduce

comm the communicator to be use

Jens Saak Scientific Computing II 328/349

Message Passing Interface API
Multi-Collective Communication

int MPI_Alltoall(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

The total exchange operation, i.e., every process sends to all other processes.

*sendbuf address of the send buffer

sendcount number of elements to send

sendtype type of the send buffer elements

*recvbuf address of the receive buffer

recvcount number of elements to receive

recvtype type of the receive buffer elements

comm the communicator to be use

Jens Saak Scientific Computing II 329/349

Message Passing using Open MPI
Multi-Collective Communication: Hello World

The obligatory “hello world!” program does no more than initializing the MPI
context, printing the obligatory text from all instances and destroying the context
again:

#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv){

/* start MPI context*/
MPI_Init(&argc, &argv);

/*Do something*/
printf("Hello world\n");

/* Stop MPI context*/
MPI_Finalize();
return 0;

}

Jens Saak Scientific Computing II 330/349

Message Passing using Open MPI
Multi-Collective Communication

In Open MPI27 a C wrapper compiler called mpicc is provided. Its sole purpose is
to transparently

add relevant compiler and linker flags to the user’s compiler command line

and then call the underlying compiler to perform the actual compilation.

Especially, we do not need to care where exactly the necessary MPI libraries are
located and which additional flags are required. If we have specified additional
parameters (e.g. for code optimization, or debugging), mpicc passes them on to
the underlying compiler.

Example

Thus, to compile the “hello world” code, we simply use:

mpicc hello_world.c -o hello_world -O2

27http://www.open-mpi.org/

Jens Saak Scientific Computing II 331/349

http://www.open-mpi.org/

Message Passing using Open MPI
Multi-Collective Communication

The drawback of the MPI framework is that processes need to be started within a
special runtime environment. In the case of Open MPI this is invoked using the
mpirun tool:

mpirun [options] <program> [<args>]

The tool takes a couple of options that allow to steer the number of processes
spawned, including where they are spawned, control their working environment
(path, working directory, environment variables, . . .) and the redirection of
standard input and output and many details more.

Jens Saak Scientific Computing II 332/349

Message Passing using Open MPI
Multi-Collective Communication

The most important options of mpirun for beginners are:

-n <#> run this many copies, if unset Open MPI spawns one copy per
processor (aliases are -c, --n, -np).

-H List of hosts (comma separate) to spawn the processes on (aliases
-host, --host)

-hostfile Provide a hostfile to use instead of the list above. (aliases and
synonyms --hostfile, -machinefile, --machinefile)

Example

To run 1 copy of hello world (from the local directory) each on the two hosts
alpha, beta we may use

mpirun -np 2 -H alpha,beta ./hello_world

Jens Saak Scientific Computing II 333/349

Chapter 5

Distributed Memory
Systems: Part V

Jens Saak Scientific Computing II 334/349

Data Dsitribution Schemes in Distributed LU

For a 2d data field (like a matrix) there are basically 3 types of data distribution

patterns:

row/column blocks,

row/column cyclic,

checkerboard.
All of them have their advantages and disadvantages in different algorithms. We
will treat them all in the case of the LU decomposition in the following.

Jens Saak Scientific Computing II 335/349

Data Dsitribution Schemes in Distributed LU
Multi-Collective Communication

Algorithm 7: Gaussian elimination — row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
3 for i = k + 1 : n do
4 for j = k + 1 : n do
5 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.

Jens Saak Scientific Computing II 336/349

Data Dsitribution Schemes in Distributed LU

Before diving into the details of data distribution we recall that after 4 steps of
the row-by-row LU decomposition we have the following:

A(4) =

u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8 u1,9 u1,10

l2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8 u2,9 u2,10

l3,1 l3,2 u3,3 u3,4 u3,5 u3,6 u3,7 u3,8 u3,9 u3,10

l4,1 l4,2 l4,3 u4,4 u4,5 u4,6 u4,7 u4,8 u4,9 u4,10

l5,1 l5,2 l5,3 l5,4 a5,5 a5,6 a5,7 a5,8 a5,9 a5,10

l6,1 l6,2 l6,3 l6,4 a6,5 a6,6 a6,7 a6,8 a6,9 a6,10

l7,1 l7,2 l7,3 l7,4 a7,5 a7,6 a7,7 a7,8 a7,9 a7,10

l8,1 l8,2 l8,3 l8,4 a8,5 a8,6 a8,7 a8,8 a8,9 a8,10

l9,1 l9,2 l9,3 l9,4 a9,5 a9,6 a9,7 a9,8 a9,9 a9,10

l10,1 l10,2 l10,3 l10,4 a10,5 a10,6 a10,7 a10,8 a10,9 a10,10

Furthermore the blue and green parts will no longer be touched and the algorithm
proceeds on the smaller lower right part A(5 : 10, 5 : 10) only.

Jens Saak Scientific Computing II 337/349

Row-/Column Block Distribution

Basic Idea:

Group the rows/columns in blocks of d np e. Each processor then works on one of

those blocks, performing all necessary operations that treat any rows/columns in
the scope.

P1

P2

P3

P4

P5

A(4) =

u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8 u1,9 u1,10

l2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8 u2,9 u2,10

l3,1 l3,2 u3,3 u3,4 u3,5 u3,6 u3,7 u3,8 u3,9 u3,10

l4,1 l4,2 l4,3 u4,4 u4,5 u4,6 u4,7 u4,8 u4,9 u4,10

l5,1 l5,2 l5,3 l5,4 a5,5 a5,6 a5,7 a5,8 a5,9 a5,10

l6,1 l6,2 l6,3 l6,4 a6,5 a6,6 a6,7 a6,8 a6,9 a6,10

l7,1 l7,2 l7,3 l7,4 a7,5 a7,6 a7,7 a7,8 a7,9 a7,10

l8,1 l8,2 l8,3 l8,4 a8,5 a8,6 a8,7 a8,8 a8,9 a8,10

l9,1 l9,2 l9,3 l9,4 a9,5 a9,6 a9,7 a9,8 a9,9 a9,10

l10,1 l10,2 l10,3 l10,4 a10,5 a10,6 a10,7 a10,8 a10,9 a10,10

Jens Saak Scientific Computing II 338/349

Row-/Column Block Distribution

Processors P1 and P2 have no more work do do after step 4. bad load
balancing among the processors.

As a consequence we should not use the block distribution in cases when not the
entire matrix is involved in all computations to make sure that all processors are
equally well loaded. That means for parallel matrix-vector or matrix-matrix
products it may serve well, but for the LU we need to find a data distribution that
has a better distribution of the workload.

Jens Saak Scientific Computing II 339/349

Cyclic-row/-column Distribution

Basic Idea:

Instead of distributing blocks of rows/columns assign a single row/column to a
process until all got one and then start over until all rows/columns are distributed.

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

A(4) =

u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8 u1,9 u1,10

l2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8 u2,9 u2,10

l3,1 l3,2 u3,3 u3,4 u3,5 u3,6 u3,7 u3,8 u3,9 u3,10

l4,1 l4,2 l4,3 u4,4 u4,5 u4,6 u4,7 u4,8 u4,9 u4,10

l5,1 l5,2 l5,3 l5,4 a5,5 a5,6 a5,7 a5,8 a5,9 a5,10

l6,1 l6,2 l6,3 l6,4 a6,5 a6,6 a6,7 a6,8 a6,9 a6,10

l7,1 l7,2 l7,3 l7,4 a7,5 a7,6 a7,7 a7,8 a7,9 a7,10

l8,1 l8,2 l8,3 l8,4 a8,5 a8,6 a8,7 a8,8 a8,9 a8,10

l9,1 l9,2 l9,3 l9,4 a9,5 a9,6 a9,7 a9,8 a9,9 a9,10

l10,1 l10,2 l10,3 l10,4 a10,5 a10,6 a10,7 a10,8 a10,9 a10,10

Jens Saak Scientific Computing II 340/349

Cyclic-row/-column Distribution

Obviously now the processors only start to become idle after n − p steps of the
outermost loop, i.e. in A(n−p), which is reasonable for p � n. Still basically every
processor is responsible for d np e rows.

Pivoting

Since pivoting adds a considerable amount of extra communication effort, we do
not neglect it here in contrast to earlier appearances. However, we restrict
ourselves to the case of column pivoting. That means as the first step of the outer
for loop we add the pivot selection and row swapping.

Jens Saak Scientific Computing II 341/349

Cyclic-row/-column Distribution

Obviously now the processors only start to become idle after n − p steps of the
outermost loop, i.e. in A(n−p), which is reasonable for p � n. Still basically every
processor is responsible for d np e rows.

Pivoting

Since pivoting adds a considerable amount of extra communication effort, we do
not neglect it here in contrast to earlier appearances. However, we restrict
ourselves to the case of column pivoting. That means as the first step of the outer
for loop we add the pivot selection and row swapping.

Jens Saak Scientific Computing II 341/349

Data Dsitribution Schemes in Distributed LU
Cyclic-row/-column Distribution

Algorithm 7: Gaussian elimination — row-by-row-version

Input: A ∈ Rn×n allowing LU decomposition
Output: A overwritten by L,U

1 for k = 1 : n − 1 do
2 k0 = argmaxi=k:n |A(i , k)|;
3 Swap rows k and k0;
4 A(k + 1 : n, k) = A(k + 1 : n, b)/A(k , k);
5 for i = k + 1 : n do
6 for j = k + 1 : n do
7 A(i , j) = A(i , j)− A(i , k)A(k , j);

Observation:

Innermost loop performs rank-1 update on the A(k + 1 : n, k + 1 : n)
submatrix in the lower right,

i.e. a BLAS level 2 operation.

Jens Saak Scientific Computing II 342/349

Cyclic-row/-column Distribution

Differences to the sequential case

1. Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed parallel

case. That means each processor finds its local pivot element and afterward they are

compared among all processors.

2. Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that owns the

row containing the critical diagonal element, we are fine. We can perform a local row swap

as in the sequential case. Otherwise the pivot row is exchanged with the process owning

the “diagonal row”.

3. Distribution of the pivot row.
The pivot row is the key ingredient to the computation in the step. It is needed by all

processors and thus needs to be broadcast to all active processors.

4. Computation of the matrix element updates.
The update step can now be performed as in the sequential case. Only, each processor just

works through the local rows it owns.

Jens Saak Scientific Computing II 343/349

Cyclic-row/-column Distribution

Differences to the sequential case

1. Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed parallel

case. That means each processor finds its local pivot element and afterward they are

compared among all processors.

2. Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that owns the

row containing the critical diagonal element, we are fine. We can perform a local row swap

as in the sequential case. Otherwise the pivot row is exchanged with the process owning

the “diagonal row”.

3. Distribution of the pivot row.
The pivot row is the key ingredient to the computation in the step. It is needed by all

processors and thus needs to be broadcast to all active processors.

4. Computation of the matrix element updates.
The update step can now be performed as in the sequential case. Only, each processor just

works through the local rows it owns.

Jens Saak Scientific Computing II 343/349

Cyclic-row/-column Distribution

Differences to the sequential case

1. Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed parallel

case. That means each processor finds its local pivot element and afterward they are

compared among all processors.

2. Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that owns the

row containing the critical diagonal element, we are fine. We can perform a local row swap

as in the sequential case. Otherwise the pivot row is exchanged with the process owning

the “diagonal row”.

3. Distribution of the pivot row.
The pivot row is the key ingredient to the computation in the step. It is needed by all

processors and thus needs to be broadcast to all active processors.

4. Computation of the matrix element updates.
The update step can now be performed as in the sequential case. Only, each processor just

works through the local rows it owns.

Jens Saak Scientific Computing II 343/349

Cyclic-row/-column Distribution

Differences to the sequential case

1. Determination of the pivot element.
The column below the diagonal is owned by several processors in the distributed parallel

case. That means each processor finds its local pivot element and afterward they are

compared among all processors.

2. Usage of the pivot element.
If we are lucky enough that the pivot row is owned by the same processor that owns the

row containing the critical diagonal element, we are fine. We can perform a local row swap

as in the sequential case. Otherwise the pivot row is exchanged with the process owning

the “diagonal row”.

3. Distribution of the pivot row.
The pivot row is the key ingredient to the computation in the step. It is needed by all

processors and thus needs to be broadcast to all active processors.

4. Computation of the matrix element updates.
The update step can now be performed as in the sequential case. Only, each processor just

works through the local rows it owns.

Jens Saak Scientific Computing II 343/349

Checkerboard Distribution

Basic Idea:

Distribution of the d-dimensional data array to a d-dimensional processor grid.
Note that we can follow the blocked or cyclic variants just as in the case above.

P11

a1,1 a1,2

a2,1 a2,2

P12

a1,3 a1,4

a2,3 a2,4

P13

a1,5 a1,6

a2,5 a2,6

P14

a1,7 a1,8

a2,7 a2,8

P21

a3,1 a3,2

a4,1 a4,2

P22

a3,3 a3,4

a4,3 a4,4

P23

a3,5 a3,6

a4,5 a4,6

P24

a3,7 a3,8

a4,7 a4,8

P31

a5,1 a5,2

a6,1 a6,2

P32

a5,3 a5,4

a6,3 a6,4

P33

a5,5 a5,6

a6,5 a6,6

P34

a5,7 a5,8

a6,7 a6,8

P41

a7,1 a7,2

a8,1 a8,2

P42

a7,3 a7,4

a8,3 a8,4

P43

a7,5 a7,6

a8,5 a8,6

P44

a7,7 a7,8

a8,7 a8,8

(a) blocked distribution

P11

a1,1 a1,5

a5,1 a5,5

P12

a1,2 a1,6

a5,2 a5,6

P13

a1,3 a1,7

a5,3 a5,7

P14

a1,4 a1,8

a5,4 a5,8

P21

a2,1 a2,5

a6,1 a6,5

P22

a2,2 a2,6

a6,2 a6,6

P23

a2,3 a2,7

a6,3 a6,7

P24

a2,4 a2,8

a6,4 a6,8

P31

a3,1 a3,5

a7,1 a7,5

P32

a3,2 a3,6

a7,2 a7,6

P33

a3,3 a3,7

a7,3 a7,7

P34

a3,4 a3,8

a7,4 a7,8

P41

a4,1 a4,5

a8,1 a8,5

P42

a4,2 a4,6

a8,2 a8,6

P43

a4,3 a4,7

a8,3 a8,7

P44

a4,4 a4,8

a8,4 a8,8

(b) cyclic distribution

Figure: blocked and cyclic checkerboard matrix distribution for A ∈ R8×8.
Jens Saak Scientific Computing II 344/349

Checkerboard Distribution

Definition

Let n =
∏d

i=1 ni be the total problem size and ni the degrees of freedom in the
i-th direction. Also p, as before, the number of processors in total. We call
p = (p1, . . . , pd) a processor distribution if it holds

p ≤
d∏

i=1

pi .

On each processor we assume a local data distribution b = (b1, . . . , bd) with

n ≤
d∏

i=1

pibi .

Ideally we want to have equality in both cases to achieve optimal load balancing.

Jens Saak Scientific Computing II 345/349

An Alternative for the LU Using Distributed BLAS and LAPACK

The PBLAS project (details later) aims at providing a parallel distributed version
of the BLAS library. In the previous Chapters we have investigated level 3 BLAS
based block outer product versions of the LU decomposition.

Jens Saak Scientific Computing II 346/349

Data Distribution for other Problems

domain decomposition

Similar to the splitting of the matrix into blocks on which smaller subproblems are
solved, in domain decomposition28 methods for boundary value problems the
objective domain on which the problem is to be solved is subdivided into smaller
parts. Then on each part a smaller independent boundary value problem is solved.
The interaction between subdomains is only necessary if their intersection is non
empty, i.e., they have a common “boundary”, the interface. In each iteration step
both processes rely on the result of the prior step and exchange the data on the
interface to make it fit in a post-processing procedure.

The interface is sometimes also called halo.

The interface may be a single layer of unknowns, but can also be extended.
One then speaks of overlapping domain decomposition methods.

28http://www.ddm.org

Jens Saak Scientific Computing II 347/349

http://www.ddm.org

Relevant Software and Libraries

Implementations of the MPI Standard

Open MPI, Current bugfix release 3.1.4 implements MPI-3.129

MPICH 3.3 (release of November 21, 2018) supports MPI-3.130

MVAPICH: The current MVAPICH2 2.3.1 is based on MPICH v3.2.131

Intel® MPI Library: version 2019 update 4 implements MPI-3.132

29http://www.openmpi.org
30http://www.mpich.org/
31http://mvapich.cse.ohio-state.edu/
32http://software.intel.com/en-us/intel-mpi-library

Jens Saak Scientific Computing II 348/349

http://www.openmpi.org
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library

Relevant Software and Libraries

Scientific Software

BLACS (Basic Linear Algebra Communication Subprograms) “is an ongoing
investigation whose purpose is to create a linear algebra oriented message
passing interface that may be implemented efficiently and uniformly across a
large range of distributed memory platforms.”33

ScaLAPACK a BLACS-based scalable distributed implementation of LAPACK
(current version 2.0.2 of May 1, 2012)34

PBLAS (Parallel Basic Linear Algebra Subprograms) subproject of the
above35

Boost starting with version 1.35 has a boost.MPI module providing a C++
friendly MPI framework. (current version 1.70.0 April 17, 2019)36

33http://www.netlib.org/blacs/
34http://www.netlib.org/scalapack/
35http://www.netlib.org/scalapack/pblas_qref.html
36http://www.boost.org/

Jens Saak Scientific Computing II 349/349

http://www.netlib.org/blacs/
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/pblas_qref.html
http://www.boost.org/

Relevant Software and Libraries

Scientific Software

PETSC “is a suite of data structures and routines for the scalable (parallel)
solution of scientific applications modeled by partial differential equations.”33

SLEPC is the Scalable Library for Eigenvalue Problem Computations.34

PARPACK an extension to the ARPACK for eigenvalue computations using
MPI and BLACS for parallel execution.35

33http://www.mcs.anl.gov/petsc/
34http://www.grycap.upv.es/slepc/
35http://www.caam.rice.edu/software/ARPACK/

Jens Saak Scientific Computing II 349/349

http://www.mcs.anl.gov/petsc/
http://www.grycap.upv.es/slepc/
http://www.caam.rice.edu/software/ARPACK/

	Preface
	Parallel Computing Basics
	What is a Parallel Computer?
	Basic Types of Parallelism
	Common Pitfalls in Parallel Computing

	Introduction: Part I
	Why Parallel Computing?
	Flynn's Taxonomy of Parallel Architectures
	Single-Instruction, Single-Data (SISD)
	Multiple-Instruction, Single-Data (MISD)
	Single-Instruction, Multiple-Data (SIMD)
	Multiple-Instruction, Multiple-Data (MIMD)

	Memory Hierarchies in Parallel Computers
	Repetition Sequential Processor
	Shared Memory
	General Memory Setting

	Communication Networks
	Hardware
	Topologies

	Performance Measures: Part I
	Time Measurement and Operation Counts
	The Single Processor Case
	Instructions: Timings and Counts
	MIPS versus FLOPS
	CPU_Time versus Execution Time

	Parallel Cost and Optimality
	Speedup
	Parallel Efficiency
	Amdahl's Law
	Scalability of Parallel Programs

	Multicore and Multiprocessor Systems: Part I
	Symmetric Multiprocessing
	Memory Hierarchy
	Basic Memory Layout
	Uniform Memory Access (UMA)
	Non-Uniform Memory Access (NUMA)
	Cache Coherence

	Processes and Threads
	Multiprocessing
	Threading
	Mapping of user level threads to kernel threads or processes
	Properties and Problems
	Protection of critical regions
	Dining Philosophers

	Multicore and Multiprocessor Systems: Part II
	POSIX Threads
	Basics
	Creation of threads
	Exiting threads and waiting for their termination

	Pthread coordination mechanisms
	Mutex and condition variables
	Mutex variables
	Avoiding mutex triggered deadlocks
	Condition variables
	A counting semaphore for Pthreads
	A typical application example for semaphores
	Coordination models for the cooperation of threads

	Task Pools
	Basic idea of the task pool
	Implementation of a basic task pool

	Shared Memory Blocks
	General shared memory blocks
	POSIX Shared Memory

	Multicore and Multiprocessor Systems: Part III
	Open Multi-Processing (OpenMP)
	This is OpenMP
	What OpenMP can do for us
	What OpenMP is NOT for!
	The Structure of the Standard
	OpenMP directives
	OpenMP clauses
	OpenMP Environment Variables
	OpenMP runtime library functions

	Multicore and Multiprocessor Systems: Part IV
	Tree Reduction
	The OpenMP reduction minimal example revisited
	Basic idea of tree reduction
	Practical tree reduction on multiple cores

	Dense Linear Systems of Equations
	Repetition blocked algorithms
	Fork-Join parallel implementation for multicore machines
	DAG scheduling of block operations aiming at manycore systems

	Multicore and Multiprocessor Systems: Part V
	Sparse Linear Systems of Equations
	The Conjugate Gradient (CG) Method (a prototype iterative solver)
	Sparse Matrix Vector Products
	Preconditioning
	Preconditioned CG
	Diagonal/Jacobi Preconditioner
	Sparse Approximate Inverse (SPAI) Preconditioning
	Issues of Sparse Direct Solvers
	A Task Pool Approach to Parallel Triangular Solves

	Relevant Software and Libraries

	GPU Computing and Accelerators: Part I
	Why use accelerators?
	Memory Hierarchy with Accelerators
	Common Features
	Graphics Processing Units (GPUs)
	Field Programmable Gate Arrays (FPGAs)

	GPU Computing and Accelerators: Part II
	Compute Unified Device Architecture (CUDA)
	What is CUDA?
	Basic Definitions
	Most Basic Syntax of the CUDA C Extension
	Introductory Examples
	Compiling CUDA Programs

	GPU Computing and Accelerators: Part III
	Compute Capabilities
	CUDA and IEEE 754 Floating Point Computations
	Data Communication Issues
	The CUDA Application Programmers Interface

	GPU Computing and Accelerators: Part IV
	Streams
	Page-Locked Memory on the Host
	Streams and Compute Capabilities
	An Introductory Asynchronous Transfer Example
	Other Topics

	GPU Computing and Accelerators: Part V
	Open Computing Language (OpenCL)
	Hybrid CPU-GPU Linear System Solvers
	The block outer product LU decomposition revisited
	Iterative Linear System Solvers
	Sparse Iterative Eigenvalue Approximation

	Relevant Software and Libraries
	The CUDA Related Libraries
	Derived Libraries

	Distributed Memory Systems: Part I
	Distributed Memory Hierarchy
	Comparison of Distributed Memory Systems
	Rankings
	Architectural Streams Currently Pursued
	Hybrid Accelerator/CPU Hosts
	Manycore and Embedded Hosts
	Multicore CPU Hosts
	The 2020 vision: Exascale Computing
	State of the art (statistics)

	Distributed Memory Systems: Part II
	Communication of Data
	Communication Operations via Message Passing

	Communication Networks (revisited)
	Asymptotic Message runtimes in some Standard Network Topologies

	Distributed Memory Systems: Part III
	Some Remarks on the Hypercube
	Communication Routing on the Hypercube

	Distributed Memory Systems: Part IV
	Message Passing Interface API
	MPI Context Initialization and Finalization
	Process Groups and Communicators
	Point-to-Point Communication
	Single-Collective Communication
	Multi-Collective Communication

	Message Passing using Open MPI

	Distributed Memory Systems: Part V
	Data Dsitribution Schemes in Distributed LU
	Row-/Column Block Distribution
	Cyclic-row/-column Distribution
	Checkerboard Distribution
	An Alternative for the LU Using Distributed BLAS and LAPACK
	Data Distribution for other Problems

	Relevant Software and Libraries

