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Preface

German Die Vorlesung “Wissenschaftliches Rechnen 1” verfolgt das Ziel, Ver-
fahren und Algorithmen der Numerischen Mathematik praktisch umzusetzen.
Sie soll Wissen und Strategien vermitteln, welche notwendig sind, um Ideen aus
der Theorie in praktisch nutzbare Programme zu übersetzen und diese effizient
zu implementieren. Dies soll mehrheitlich mit Hilfe der Programmiersprache C
geschehen, da sie eine der ammeisten eingesetzten Sprachen ist1 und auch im
Bereich von eingebetteten System unverzichtbar ist.
Die rein mathematische Betrachtung von Problemstellung reicht in vielen Fäl-
len dem Urheber des Problems nicht mehr aus. Viel mehr sind Industrie und
Technik an praktisch nutzbaren Ergebnissen für die Anwendung in Informatik,
Ingenieurwesen und Alltagsproblemen interessiert.
Neben der Umsetzungen von mathematischen Verfahren soll der Umgang mit
unixoiden Betriebssystemen (in diesem Fall Linux) erlernt werden. Diese bilden
die hauptsächlich eingesetzte Klasse von Betriebssystemen auf den großen und
sehr großen Installationen, wie Compute-Clustern inmodernen Rechenzentren.
Neben den Betriebssystem-Spezifika werden auch Hilfsmittel vorgestellt, die
den Arbeitsablauf im Umfeld des wissenschaftlichen Rechnens erleichtern.

English This lecture aims at the practical implementation of methods and al-
gortihms in numerical mathematics. Its main purpose is to convey the knowl-
edge and strategies necessary to transfer and efficiently implement theoretical
ideas into computer programs for practical application. We will focus on the

1https://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

https://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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C programming language since this is one of the most commonly1 used lan-
guages, which is especially invaluable in the environment of embedded systems.
The purely mathematical consideration of problem settings often is no longer
sufficient. Today partners from industry and technology are interested in prac-
tically usable results for applications in computer and engineering sciences.
Along with the practical implementation of mathematical methods the usage of
unixoidal operating systems (in our case Linux) is to be learned. Those operat-
ing systems form the most important class of operating systems used on large
compute clusters in modern high performance computing centers. Besides op-
erating system specifics we also present a couple of tools that help simplifying
work in a scientific computing environment.

Layout and Style

We have put some effort into creating a unique reading experience that visually
supports the reader in identifying contributions to the content. Examples are
typeset inside light gray background boxes to find them easily in the document.
They follow a chapter-wise numbering scheme, that is also used for Theorem-
like environments (i.e. definitions, theorems, lemmas, corollaries and remarks).
These environments are all displayed as framed boxes where definitions are
marked by a -symbol. Theorems, corollaries and lemmas can be identified
by the -symbol and remarks show a . Equation numbers follow their own
chapter-wise scheme.
Commands, program variables and alike are displayed in typewriter style
throughout the document. When an appropriate portion of code is presented,
we use color coding (of the background color) to identify the type of code that
is displayed. We distinguish the following:
C sources

Fortran sources

Shell scripts (especially BASH)

Makefiles

Keystrokes or key combinations are shown as, e.g. q for the singel key “q” or
ctrl + c for the combination of “c” and the “ctrl” key.

Authors and Contributors

The main authors o this document are Jens Saak and Martin Köhler. Beginning
from WS2012/2013 they have updated this document on a biannual basis until
WS2022/2023.
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. . . the Linux philosophy is ‘laugh in the face of danger’. Oops. Wrongone. ‘Do it yourself’. That’s it.
Linus Torwalds

CHAPTER 1

Linux and the Commandline

Contents
1.1 A short History of an Accidental Revolution . . . . . . . . . 2
1.2 The Linux Shell and Basic Commands for Handling Files . . 4
1.3 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Manipulation of Simple Commands . . . . . . . . . . . . . 15
1.5 Script File Basics . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Simple Automatic File Manipulation . . . . . . . . . . . . . 18
1.7 Remote Computing on Encrypted Connections . . . . . . . 24
1.8 screen – an Online/Offline Terminal . . . . . . . . . . . . 25
1.9 tmux— a screen Alternative . . . . . . . . . . . . . . . 27
1.10 The Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

This first chapter is dedicated to an introduction to the Linux operating system
and the command line. We focus on the command line operation of the system,
since onmany compute servers, especially in high performance computing cen-
ters, this is the onlyway to access the system. Furthermore, onceweunderstand
how to perform certain tasks on the command line, it is then a lot easier to write
job scripts for submission of so called batch jobs to job scheduling systems used
on distributed compute resources like clusters and grids.
We focus on Linux here although most Unix-like operating systems should at
least behave very similar. Especially for the ones based on the GNU (“GNU’s not

1



2 Chapter 1. Linux and the Commandline

Unix”) project everything should be more or less exactly the same. The GNU
project was founded in 1983 long before the first Linux kernel came to life. A
major contribution of the inventor Richard Stallman was the first version of the
GNU Public License (GPL) that today is inseparably connected with the Linux
operating system.

1.1 A short History of an Accidental Revolution

As a matter of fact, much later the first Linux system was developed for exactly
the purposewe are pursuing here, namely a terminal emulator for accessing the
universities Unix (in the special case Minix) based compute facilities. At some
point the author realised that he had “accidentally” written an operating system
kernel. The first version of Linux was announced by its inventor Linus Torvalds
in the following news posting in a usenet news group1 for the Minix OS that he
was trying to access on August 26, 1991:

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and pro-
fessional like gnu) for 386(486) AT clones. This has been brewing since
april, and is starting to get ready. I’d like any feedback on things people
like/dislike in minix, as my OS resembles it somewhat (same physical
layout of the file-system (due to practical reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I’ll get something practical within a few months, and
I’d like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’ll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is
NOT protable (uses 386 task switching etc), and it probably never will
support anything other than AT-harddisks, as that’s all I have :-(.

After this the (r)evolution has been fast as the following timeline (taken from
Wikipedia2) shows:
1983 Richard Stallman creates the GNU project with the goal of creating a free

operating system.
1989 Richard Stallman writes the first version of the GNU General Public Li-

cense.
1https://groups.google.com/forum/?fromgroups=#!msg/comp.os.

minix/dlNtH7RRrGA/SwRavCzVE7gJ2https://en.wikipedia.org/wiki/History_of_Linux

https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://en.wikipedia.org/wiki/History_of_Linux


1.1. A short History of an Accidental Revolution 3

1991 The Linux kernel is publicly announced by the 21 year old Finnish student
Linus Benedict Torvalds.

1992 The Linux kernel is relicensed under the GNU GPL. The first so called
“Linux distributions” are created.

1993 Over 100 developers work on the Linux kernel. With their assistance the
kernel is adapted to the GNU environment, which creates a large spec-
trum of application types for Linux. The oldest currently existing Linux
distribution, Slackware, is released for the first time. Later in the same
year, the Debian project is established. Today it is the largest community
distribution.

1994 InMarch Torvalds judges all components of the kernel to be fullymatured:
he releases version 1.0 of Linux. The XFree86 project contributes a graphic
user interface (GUI). In this year the companies Red Hat and SUSE publish
version 1.0 of their Linux distributions.

1995 Linux is ported to the DEC Alpha and to the Sun SPARC. Over the following
years it is ported to an ever greater number of platforms.

1996 Version 2.0 of the Linux kernel is released. The kernel can now serve sev-
eral processors at the same time, and thereby becomes a serious alter-
native for many companies.

1998 Many major companies such as IBM, Compaq and Oracle announce their
support for Linux. In addition a group of programmers begins developing
the graphic user interface KDE.

1999 A group of developers begin work on the graphic environment GNOME,
which should become a free replacement for KDE, which depended on the
then proprietary Qt toolkit. During the year IBM announces an extensive
project for the support of Linux.

2004 The XFree86 team splits up and joins with the existing X Window stan-
dards body to form the X.Org Foundation, which results in a substantially
faster development of the X Window Server for Linux.

2005 The project openSUSE begins a free distribution fromNovell’s community.
Also the project OpenOffice.org introduces version 2.0 that now supports
OASIS OpenDocument standards in October.

2006 Oracle releases its own distribution of Red Hat. Novell and Microsoft an-
nounce a cooperation for a better interoperability.

2007 Dell starts distributing laptops with Ubuntu pre-installed in them.
2011 Version 3.0 of the Linux kernel is released.
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2012 The aggregate Linux server market revenue exceeds that of the rest of
the Unix market.

2013 Google’s Linux-based operating system, Android claims 75% of the smart-
phone market share, in terms of the number of phones shipped.

2014 Ubuntu claims 22000000 users.
2015 Version 4.0 of the Linux kernel is released.
2019 Version 5.0 of the Linux kernel is released.
At first Linus Torvalds intended to name his operating system Freax, a portman-
teau of the words “freak”, “free”, and “x” (for Unix). As of today the times when
Linux was an operating system only for freaks are over. Several modern Linux
distributions exist that are nowadays as easy to use and install as the main con-
sumer market competitors MS Windows and MacOS.

1.2 The Linux Shell and Basic Commands for Handling
Files

The shell is the Linux command interpreter. It serves as the basic interface to
the operating system. In fact there is not only one shell but a couple of imple-
mentations like bash, csh, tcsh, ksh, zsh. We base our presentation on the
bash shell. Most of the ideas directly transfer to the other ones although the
commands and syntax can differ slightly. Before diving into the usage of the
bash and basic tools for managing files and data, we call the attention to the
list of special characters that play important roles and cannot easily be used in
command, file, or directory names. They are reported in the following table.

* serves as a placeholder for arbitrarily many characters
? a placeholder for a single character
/ directory separator
\ escape character for quoting special characters and to mark line

breaks
~ abbreviation for your home directory
| the pipe operator: connects two simple commands to a new one by

redirecting the output of the one on the left to the other one on the
right. || represents a logic OR.

< fetches the input for a command (on the left) from a file or device
(on the right)

> redirects the output of a command (on the left) to a file or device
(on the right)
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2> same as above for the error output only, can be used to redirect the
standard error messages to standard output so it is recognized by
the > and | as well via 2>&1

1> same as above for the standard output without the errors
» as > but appends the output instead of overwriting the file
$ used in command substitution and for referring to shell and envi-

ronment variables
& a single & after a command name sends the execution to the back-

ground. Double && stand for the logic AND.
‘ accent grave is used for command substitution
’ single quotes removes the special meaning of all special characters

enclosed by them.
" double quotes act the same as single quotes with the exception of

the $, ‘, \ (and sometimes !) characters keeping their special prop-
erties.

blank the simple blank is used to separate words and thus needs to be
escaped when, e.g., a file name contains it.

# comment character; everything following this character on the same
line will be dropped

! initiates history expansion
Basic Directory Commands The basic arrangement of filesystems differs sig-
nifficantly from, e.g., aMSWindowsmachine. In contrast toMSWindows, where
all physical discs get their own drive letter and start a local directory at the vol-
ume’s root, in Unix-like environments the filesystem is arranged in one global
directory tree and all physical drives are placed in a certain structure under a
common root called /. The specific structure of this tree differs between the
types of Unixes and even among Linux distributions it has been varying a lot.
Over the recent years huge efforts have been undertaken to unify the struc-
ture. The Linux Standard Base (LSB) is the largest and most important initiated
by the Linux Foundation. It is not only defining a common directory structure,
but tries to unify large parts of the distribution to increase the cross distribution
compatibility.
There are many commands used to work with or manipulate files and direc-
tories. We will only report on a selection of commonly used ones here. Before
we get to the list of commands, however, we introduce some special directories.
The directory shorthand \~wasmentioned in the table above already. It stands
for your home directory, i.e., the directory holding your personal files and the
one directory in which you usually end up directly after logging in to the system.
Every directory contains two special entries: “.” representing the current direc-
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tory, and “..” abbreviating the directory one level above in the directory tree.
The first one enables us to refer to commands in the current directory in case it
is not in our default search path and the other enables the use of relative path
constructs for referring to files.
pwd short for print working directory, and printing the name of the directory

you are currently working in is exactly what it does.
cd change directory, switches the current working directory to the directory

given as the argument. If no argument is given cd takes you home, i.e.,
switches to your user’s home directory.

mkdir creates a new directory in the current working directory
rmdir removes the directories specified as arguments if they are empty.
touch creates an empty file, or sets the access date of the file to the current

time and date, if it already exists.
rm removes files. It can also be used to remove directories with the -r (recur-

sive) option. This is especially useful when rmdir does not work since
the directory is not empty. The -f (force) option can be used to remove
even protected files.

ls lists all files in the directory specified. If none is specified the current work-
ing directory is used. If the argument is a file or a list of files only those
files are listed. Useful options are -l for a full listing including access
rights and ownership information, -a for a listing including also hidden
files. The -h option in combination with the two previous ones makes
file sizes human readable, i.e., displayed as multiples of KiB, MiB, GiB, TiB,
where all of these are representing powers of 1 024 (binary prefix). If a
1 000 based presentation is desired --si needs to be used instead (dec-
imal prefix).

cp takes two or more arguments and copies the n ´ 1 first arguments to the
last. If more than 2 arguments are given the last one must be a directory.
Absolute and relative paths are allowed.

mv Same as above but moves the files, i.e., the originals are removed after the
copy has successfully finished.

ln links files to new names. By default a hard link is created. Then the new
name serves as a new entry in the file system associated to the same data
and the data is only removed if all hard links are removed. Whenusedwith
the -s option a soft link (or symbolic link) is created that only points to the
original. When the original data is removed the link becomes orphaned.

find is a powerful search tool that can hardly be fully described in a fewwords.
We refer to the man and info pages for details. A feature often over-
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looked in the man page are the operators. Note that, e.g., ! or -not
allow to negate the following search expression.

locate Another search tool that uses a pregenerated database to accelerate
the searches. The database may be restricted to parts of the filesystem
only, or even not exist. Also it is frequently updated but may be outdated
when the actual search is performed. However, for directories that do
not change very frequently this is a good alternative since it is usually a
lot faster than find.

File Permissions andStorageAmounts Wehave seenbefore that thels -l
command helps us learn about the permissions of files. Here we explain these
permissions in detail and show how they can be changed. The command exe-
cuted in the home directory storing the files of the standard user scuser on
the virtual machine found on the lectures homepage give the following result
Example 1.1:

total 32
drwxr-xr-x 2 scuser scuser 4096 Sep 27 12:20 Desktop
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Documents
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Downloads
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Music
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Pictures
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Public
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Templates
drwxr-xr-x 2 scuser scuser 4096 Aug 27 15:14 Videos

The same command issued on the Desktop folder gives:
Example 1.2:

-rw------- 1 scuser scuser 12680 Aug 30 08:59 chromium-\
Õ browser.desktop

-rw------- 1 scuser scuser 4953 Sep 27 12:18 \
Õ lxterminalA6O6KW.desktop

-rw------- 1 scuser scuser 4953 Aug 27 16:32 lxterminal.\
Õ desktop

-rw------- 1 scuser scuser 5813 Sep 27 12:20 pcmanfm.\
Õ desktop

In both cases the output contains the same important groups information. The
drwxr-xr-x, and -rw------ show the file type and permissions. Here the
d in the first set shows that the corresponding line relates to a directory. The -
marks a normal file. Another commonly found symbol is l for symbolic links.
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There aremanymore that are described in theinfopages (see also Section 1.3).
The following three groups of three characters describe the file permissions of
the owner (first three), the related group (second three) and everyone else (re-
maining three). Here the r stands for the possibility to read a file, or directory
and the w stands for write access. The x on a file makes that file executable, i.e.,
interpreted as a program. For a directory the flag stands for the ability to change
into the directory. If a flag is unset, i.e., the access is not granted it is replaced
by a - in the corresponding position. The scuser scuser part represents
the owner (first) and the related user group (second) for the file. In the exam-
ples above the user scuser has read and write access on all objects and for
the directories is also allowed to change into them. The group scuser, how-
ever, is only allowed to read and change into the directories, but can not read
or manipulate the files in the Desktop directory.
To determine whether a certain user group permission set applies to your user
you may use one of the two commands id or groups. The second one simply
prints all group names the current user is in. The first one in addition prints the
numeric ids that are used by the system to represent the user, its primary and
all the other groups.
In case the group a file is related to needs to be changed, this can be done using
the chgrp command. The command takes two or more arguments. The first
argument needs to be the new group for which the association should be per-
formed. After this a list of elements (files, directories, links) follows that should
be associated to the new group. Several optional command line switches exist
that influence the way, for example links are treated. Alternatively the chown
(change ownership) command may be used. This can also be used to change
the owning user. For the latter task normally superuser privileges are required.
The calling sequence is mainly the same. The only difference is that instead of a
group owner and group are given in the form owner:group. Here both owner
and group are optional, but the syntax needs to be :group if only the group is
to be changed.
The standard Unix file permissions can be changed by the chmod command.
The standard format to perform simple changes is for example
chmod u+w file1
chmod g+rw file2
chmod o-wx file3

to grant the user write permission to file1, the group read and write permis-
sion on file file2 and remove the write and execute permission from file3
for the rest of the users (o for others). These changes are performed relative to
the existing file permissions. Sometimes it is however easier to perform abso-
lute changes. To this end read, write and execute flags have corresponding nu-
merical values. Read permission counts 4, write permission 2 and execute per-
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mission 1. All combinations of read, write and execution permissions can then
be formed as sums of those values. That means 7 represents rwx, 6 stands
for rw-, 5 for r-x and 3 is -wx. This way, changing the file permissions to
rwxrw-rw- for file from an arbitrary prior setting can be done via
chmod 755 file

On the Andrews filesystem (AFS) which is also used at theMagdeburg University
file permissions are stored on a per directory basis. Also the above command
is useless there. The corresponding command for checking and setting file per-
missions there is called fs and the command for group handling is pts. Their
in depth explanation would exceed the space limitations here and we refer to
the man pages or web based AFS quick reference3 for getting started.
Often the disk space per user is limited by the operating system. To check the
amount of space on a Unix file system that a user is currently using and is al-
lowed to use at maximum can be found via the quota command. On the lec-
tures virtual machine the disk space is the only limit for the space. The quota
command is therefore not even installed.
The more important limit to the disk usage is obviously given by the capacity of
the physical drives available in the machine or the servers our network filesys-
tems are residing on. We can get an overview of those filesystems currently
used (mounted) on our machine by typing df, which on the virtual machine
gives
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 9804120 2256688 7049412 25% /
udev 246672 4 246668 1% /dev
tmpfs 101576 748 100828 1% /run
none 5120 0 5120 0% /run/lock
none 253936 0 253936 0% /run/shm

This tells us that we are currently using 25% of the maximum capacity of our
main disk mounted at the file system root /. The other entries are used by the
operating system and not related to physical drives.
Once we have determined we are consuming a certain percentage of our al-
lowed or possible space it may get important to find out where all the space is
going, i.e., which files are using it. The du command can be employed to find
this out. Started in a certain directory the command recursively descends into
all directories below that point in the filesystem tree and checks and reports
their disk usage in bytes. At the end it provides a grand total. As for the ls
command a -h flag exists to make the output a bit more user readable. The
--max-depth= command line parameter can be used to limit the descend

3https://its.ucsc.edu/unix-timeshare/tutorials/afs-quickref.html

https://its.ucsc.edu/unix-timeshare/tutorials/afs-quickref.html
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depth for which the disk usage is reported. Still themaximumdepth is searched
but only the selected ones are reported in detail.
Influencing the Working Environment The shell uses variables to store in-
formation about your working environment. Variables are elements referenced
with a $ sign and usually written in all capital letters. One can find out which vari-
ables are currently set using the command env. If one knows the name of the
variable beforehand the content can be printed out using the echo command.
Some important environment variables are
$HOME containing the path to the users home directory,
$USER the user name of the user (also found in $LOGNAME, or $USERNAME),
$PATH a : separated list of directories that are used to search for executable

programs
$HOSTNAME the name of the computer the shell is running on.
echo $HOME

Other important variables used by the GNU compilers and linkers will be in-
troduced in Chapter 3. Environment variables can be set by simply assigning a
value to them at the command line. For example
PATH=$PATH:$HOME/bin

appends the bin directory in the users home directory to the current exe-
cutable search path. If one intends to have this setting inherited by processes
started from the shell the same has to be done as
export PATH=$PATH:$HOME/bin

Also if we set variables in a script file and we want them to persist after the
execution we have to use the export statement.
Two examples of such script files are the files .profile and .bashrc. Both
these files are executed upon login to a new bash shell. They can thus contain
settings that should always be active. For example if the above bin directory
should always be contained in the search path, we would simply add the export
line to one of the files. In this case this should preferably be .bashrc since
the .profile will also be read by other shells which in some cases do not
understand export but use a command called setenv instead.
The configuration files can also be used to define command abbreviations. For
example one would often call the command lswith the -l and -h parameters
and probably want to have it a little colorful to distinguish between files and di-
rectoriesmore easily, as well as see at the first glimpsewhat files are executable.
Adding the simple line
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alias ll='ls -lh --color='auto' --group-directories-first'

defines a shortcut ll that does all this automatically.
Viewing Files The simplest file viewer is probably the cat command it takes
the contents of the argument files, concatenates them, and displays the result
at the standard output. It will not stop printing until the end of the last file is
reached. Since this is not very useful for reading the content of longer files, cat
is usually used in combination with other command or for redirecting the result
to a new file (see also Section 1.4).
Two slightly more usable viewers are head and tail which by default display
the ten first and last lines in the argument file. Both take the -n parameter that
is used to change the number of lines displayed. tail is often used in combi-
nation with the watch command that periodically executes a certain command
to watch the status of log files. For example
watch -n 60 tail -n 50 mylog.txt

displays the final 50 lines of the files mylog.txt every 60 seconds.
A fairly helpful file viewer is the less command. It uses the full height of the
terminal window to display the leading part of the file. It then lets you scroll
through the files content with the cursor keys, jump to the beginning or the end
using the pos1 4 and end keys, or search through the files content with /
followed by the search expression. One can then navigate through thematches
using the n (for next) and p (for previous) keys. The view can be exited by
simply pressing the q key.
When one has two versions of the same file, e.g., subsequent iterations of the
same source code, it is usually not easy to find the differences by simply com-
paring the content in two neighboring less views. To help simplify this task
diff is the tool of choice. There are many command line switches that help
to configure how the comparison is performed and how the result is displayed.
By default the two files are compared and only differing lines with a little bit of
context around them are displayed. There also exist several graphical user in-
terfaces that help you compare and merge files even more easily. xxdiff and
kdiff3 are just two of those.
Compressing Files The common compression formats zip and rar most
people know in the MS Windows world are available on Unix-like platforms as
well. For example
zip -r folder.zip folder

4sometimes also called home
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takes the directory folder and its entire content and creates a compressed
archive folder.zip. After that
unzip folder.zip

can be used to unpack the directory somewhere else again.
The same task can be performed with rar using
rar a -r folder.rar folder

for the archiving and
unrar x folder.rar

for the extraction. If the extraction should be done flat, i.e., all files should go to
the current directory ignoring the directory structure of the archive this can be
achieved by
unrar e folder.rar

Alternatives, found on Unixesmore classically, are gzip, gunzip for compres-
sion and decompression of single files using the Lempel-Ziv coding. If gzip is
supplied with multiple files they will be compressed separately, however. Every
compressed files gets an additional suffix .gz to show the compression. Sim-
ilarly bzip2 and bunzip2 are used to compress single files using Burrows-
Wheeler block sorting text compression algorithm, and Huffman coding, which
usually leads to better compression rates, but takes more time to complete.
The compressor adds a .bz2 suffix. Both gunzip and bunzip2 remove the
additional suffixes again after decompression.
If many files are to be compressed in a single file, they can be bound together in
a tape archive using the tar command. Again returning to our example above
we would perform the task by
tar -cf folder.tar folder

where -c tells the command to create the archive and the -f is used to specify
the resulting file name. We can combine this directly with the two compression
formats above using
tar -czf folder.tar.gz folder

or
tar -czf folder.tgz folder

to create a gzip compressed tape archive, or
tar -cjf folder.tar.bz2 folder
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to do the same using bzip2 compression.
The corresponding decompression is then done by
tar -cf folder.tar
tar -czf folder.tgz
tar -czf folder.tar.gz
tar -cjf folder.tar.bz2

respectively.
Since the file extensions(suffixes) do not mean anything to the system in Unix
environments, they can be seen as a reminder for the user. To really see what
type a file has the file command can be used. Again we use an example for
clarification. Running file in the above .tgz file by
file folder.tgz

results in something like
folder.tgz: gzip compressed data, from Unix, last modified\

Õ : Tue Oct 9 21:38:02 2012

Downloading Files An easy way to download files via the command line is
given by the command wget. The virtual appliance for the lectures virtual ma-
chine can be downloaded via
wget https://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2016\

Õ _WS_SC/vm/ubuntu-16.04.ova

for example. The tool is, however, much more powerful. It can also be used to
mirror entire websites. For the details we refer to the man page.
Processes and System Usage Once you logout of the system, all your pro-
cesses are usually terminated. Especially in the case of large computing tasks
we would, however, prefer if they would continue running. One tool that helps
avoiding this is the nohup command. It basically tells the operating system not
to terminate a certain job when the user logs out. However the output of the
command needs to be redirected and we cannot easily reattach to the running
process. The GNU screen utility is a better alternative. It will be decribed in
Section 1.8.
Especially for compute jobs that are running for a very long time it can be ad-
vantageous to not block the CPU of themachine they are runing on entirely. For
examplewhen one uses the localmachine to start the job andwants to continue
working on it, it is a good idea to manipulate the job such that it will only use
such CPU cycles that are not needed by any other task. This can easily be done
using the program nice.
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nice -19 large-computation

starts the program large-computation with nice level 19, i.e., the lowest
possible priority. Any level between 0 (the default for a user process) and 19
can be used. If the program is already running and one decides to lower the
priority this can be done using renice as in
renice -n 19 12345

where 12345 is the process identification number (PID) of the program to be
reniced.
An easy way to find out the PID for an already running task is the pgrep utility
pgrep large-computation

provided only one instance of the computation program is running.
A good overview of which processes are currently running is given by the top
tool. It produces a full screen view showing the current entries of the operating
systems process table. This is by default sorted by the percentage of CPU usage.
The view is periodically updated and the ordering can be manipulated by the
larger and smaller keys, which move the column of the display used for sorting
to the left or right. The top view can also be used to identify jobs and find
PIDs for renicing. Some tasks like renicing and terminating processes can even
be performed from inside top using certain shortcut keys (found in the man
page). As for less, or man the q is used to exit top.
In script files top can obviously not be used. There the ps command is the tool
of choice. The tool has a huge number of switches selecting the processes to
display. For a general view of the users processes
ps ax

can be used. The list is then usually rather long on the other hand. Therefore
the output of ps is often processed further as can be seen in Section 1.4.
If we are not so much interested in the exact processes running on a machine
but only want to know who is currently working on it, we can find this informa-
tion via the command who. It simply prints a list of all active users.
Some tasks need superuser privileges to be able to execute. Systemwide in-
stallation of certain software would be one such example. A convenient way
of performing such tasks is the sudo tool. It starts a command with the same
privileges that the superuser root would have. To be able to do so one needs
to be registered in a list of users allowed to this however. On our lectures virtual
machine the scuser is allowed to perform mainly any tasks using sudo. In a
general environment the permission to do so will, on the other hand, be very
limited.
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One thing a user is always allowed to do is the termination of tasks. If this is
not done from within the task, it can be forced from the outside by the kill
command. For the above task that we reniced already we can use
kill -QUIT 12345

to tell it to safely terminate. If for some reason it does not do so, kill knows
a couple of other signals it can send to the process. The KILL signal is the most
drastic of those and should be used only if all others fail.

1.3 Getting Help

The two most important local resources for documentation of linux commands
are the man and info systems. Both simply take the command name as their
argument and display documentation information in a simple text-based com-
mand line browser view. The man documentation page can be navigated and
searched through just like the less view described above. In an info page
additionally there may be cross references in the form of hyperlinks to further
details and related commands.
If one does not remember the command name but knows the purpose, then
apropos can help finding the command. Called with a keyword as the argu-
ment apropos searches the short descriptions at the beginnings of all man
pages for the keyword and displays a list of all commands where it finds appro-
priate matches.

1.4 Manipulation of Simple Commands

Inmany situations especially in script files one is interested in passing the results
of certain operations directly into the next operation. The pipe operator | in the
linux shell can be used to do this.
program1 | program2

can be used whenever program1 writes its output to the standard output and
program2 reads its input from the standard input. Unfortunately this is not
always the case. For example if we want to remove all PDF files from the current
directory and all its subdirectories, we can use find to generate a list of all
those files. Now we would like to use rm to remove them. rm, however, takes
it arguments directly from the command line and only uses the standard input
if we force it to use the interactive mode asking for permission to delete every
file. The task can be completed anyway using thexargsutility, which takes a list
from standard input and splits it into a list of arguments to another command.
So all in all we want to do
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find . -name '*.pdf'| xargs rm

or if the number of files is very large we can force xargs to pass the files to rm
one after the other
find . -name '*.pdf'| xargs -n 1 rm

The parameter -n here takes the number of simultaneously passed arguments.
There are two more important parameters. The maximum number of parallel
executions can be set with -P and -d is used to specify the delimiter used for
the spliting of the list if it should not be a single space.
We have seen another example of such a contruction before since pgrep can
be made up the same way
pgrep = ps ax | grep [x]xx | awk '{ print $1; }'

The grep and awk utilities will be described in the following section.
In other situations it is necessary to store the output of a certain command as
a text file or read the input from it. The redirection operators > and < can be
used to do this. Again we use some examples to clarify this. To simply write the
output of a command that would appear on the screen to a file output.txt
we use
program > output.txt

To preserve the current content of the file we need to call
program >> output.txt

to tell the system to append the new information to the end of output.txt.
Otherwise the file is replaced. Non existing files are created prior to writing to
them.
If at a later point another program that usually reads inputs from user interac-
tion needs this output as its input we can read it by
other_program < output.txt

We can also do both, i.e., read from a file input and write to another file
output

program <input >output

There are two special variants of the output operator that allow to separate
between standard outputs and error messages.
program 1>output 2>errors
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will create a file output containing the standardmessages of the program and
another file errors where all the error messages are stored.
We can also directly reuse the output of a command to make up new strings or
commands by command substitution. This is performed if a simple command
is enclosed by one of the two types of command substitution characters. For
example thedate command can be used to return the current time and date. If
wewant to directly use it in the output of a script we can use theecho command
to print a message containing the current time and date:
echo Yeah, today is `date`, the term is almost over!
echo Yeah, today is $(date), the term is almost over!

both will give an output similar to
Yeah, today is Mo Oct 16 14:45:32 CEST 2023 the term is \

Õ almost over!

One big problem using the pipe and the redirect operators is that one can not
see the output that is redirected. This might, however, be useful in some cases.
The problem can be solved by the tee command, which reads data from the
standard input andwrites to the standard output and a file simultaneously. Con-
sider the case where you want to list all files in the current directory and store
the result in a file:
ls > file

If we also want to have the output on the screen as well we can use:
ls | tee file

tee can be used to to create copies of the data processed by a sequence of
pipes:
ls | tee output_of_ls | grep "[Hh]ello.c"

Per default tee overwrites the given file. If it should append the output to a
given file use:
... | tee -a outputfile

1.5 Script File Basics

In large computing centers the devices are usually not directly accessible, but
the computation tasks have to be submitted to a job scheduling system. There,
one has to provide a job script along with the executable that is used to run the
computation with the desired parameters. Such job scripts are simple text files
of a certain structure that we are explaining in this section. Such script files can
also be helpful on the local desktop computer to automate certain actions that
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one has to perform on a regular basis. The following is a minimal hello world
bash script that already contains all the important ingredients.
#!/bin/bash
echo "Hello World!"

Saving this as a file hellow.sh and making that file executable, we can simply
run
hellow.sh

to get the response
Hello World!

The file suffix .sh here is only used for our convenience. That means it is only
used tomake it easier for the user to identify it as a shell script. The system itself
identifies which interpreter (in our case the bash shell) needs to be executed
to run the remainder of the file by the special statement #!/bin/bash on the
first line. The #!, here, tells the system that the following should be read as the
interpreter. It is necessary to use the full path from the root of the filesystem
to make sure the interpreter is found upon execution of the script. Similarly we
can specify that the interpreter should be awk (described in the next section)
by using #!/usr/bin/awk or the python language #!/usr/bin/python
on the first line and filling the remainder with something written in the corre-
sponding programming language.

Remark 1.3: Note the blank after the “!” in the above example. This is
mandatory since otherwise bashmay use the “!” to initiate a history sub-
stitution. This happens unless it is followed by a blank, newline, carriage
return or (. The behavior is explained in the Event Designators section of
the man page.

Inside the script files bash can use several control structures like loops and
conditional, or even functions. Their explanation would however exceed the
scope of our presentation and we refer to the man page for details.

1.6 Simple Automatic File Manipulation

One of the key ingredients for automatic treatment of files are regular expres-
sions. They are for example used to extract certain useful information from
log files, or replace expressions in source code when name changes need to be
performed in large software projects. They are also the main tool for successful
usage of the grep and sed utilities described later in this section.
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Regular Expressions Regular expressions are strings that can be used to es-
tablish complex search and replace operations on other strings. A regular ex-
pression consists of a combination of special and basic characters that are used
to match the sought after substring in the other string. There exist a number
of special characters /, (, ), *, ., |, +, ?, [, ],ˆ, $, z,t,u. The following table explains
them in detail. Note that sed and grep process files line by line. Thus, line and
string are used synonymously in the following.

. matches any single character except line breaks
ˆ matches the beginning of the string/line
$ matches the end of the string/line

[list] any one character from list. Here list can be a single character, a
number of characters, or a character range given with -

[̂ list] any one character that is NOT in list.
( ) guarantees precedence of the enclosed expression. (optional)
(re) matches the expression re

re1|re2 matches either the expression re1 or re2
re? matches at most one appearance of re. Note that in sed you

need to either write z? or use the -r command line switch when
using this.

re+ matches one or more subsequent appearances of re
re* matches none or arbitrarily many subsequent appearances of re

retn,mu matches at least n and at most m subsequent appearances of re.
Both n and m can be omitted either with or without the comma.
Then nmeans exactly nmatches. n, stands for at least nmatches
and ,m for at most m matches.

(re1)(re2) matches re1 followed by re2 — in search and replace operations
the corresponding matches can be referred to by \1 and \2

z escapes, i.e., removes the special meaning of the following spe-
cial character.

The next table contains some enlightening examples. More examples and an in-
sight to the magic that can be performed using those expressions can be found
on the sed homepage5

a?b matches a string of one or two characters eventually starting with a
but necessarily ending on b

F̂rom matches a line/string beginning with From
$̂ matches an empty line/string

X̂*YZ matches any line/string starting with arbitrarily many X characters
followed by YZ

5https://sed.sourceforge.net/

https://sed.sourceforge.net/
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linux matches the string linux
[a-z]+ matches any string consisting of at least one but also more lower

case letters
[̂̂ aA] any line/string that does not start with an a or A.

Some scripting languages havemore powerful regular expressions than others.
It is always best to check the documentation about the details. The above men-
tioned should be the smallest intersection of all extended regular expression
sets. Note the following remark from the grepmanual page:

In basic regular expressions the meta-characters ?, +, t, |, (, and ) lose
their special meaning; instead use the backslashed versions \?, \+, \t,
\|, \(, and \).

The Swiss Army Knifes for Scripting Gurus Although we refer to scripting
gurus in the section title the following tools are powerful helpers in scientific
computing for everyone, as well. They can be used to easily scan large log-files
for the important data. For example in a large computing task wemay have cre-
ated a file containing all kinds of status information of our code/algorithm. For
the corresponding publication we might, on the other hand, only be interested
in the execution times of the single steps. The tools presented in this section
can then be employed to find and print those times in the proper form required
for further processing. All three of them are so extremely mighty that our pre-
sentation can only scratch the surface of their possible applications. There are
many online tutorials introducing them from different points of view.
grep is basically used for printing lines in a number of input files matching

a given pattern. That pattern can be a simple keyword but also an arbi-
trarily complicated regular expression. The easiest way to use it in the
introductory example would be
grep Time logfile

If you are not sure whether Time was written with capital T you can use
grep -i Time logfile

which switches of case sensitivity, or
grep [tT]ime logfile

as an example for a simple regular expression. In the case you do not
remember which file in your large software project contains the defini-
tion of a certain function you can have grep search a complete directory
recursively
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grep -r function-name *

returning all lines containing function-name preceded by the corre-
sponding file name. You can also negate the output of grep by the switch
-v to suppress all lines that match the pattern.

sed the Stream Editor is a basic text editor that, in contrast to the usual text
editors (likevi, emacs, nano, . . . ), is not interactive but uses certain com-
mand strings to manipulate the text file, streamed into it, automatically,
i.e., without user interaction. It is especially useful when, e.g., a variable or
function (or any other identifier) in a large software project is supposed to
be renamed. Consider the name of variable called complicatedname
is to be replaced by simplename for better readability of the code in a
large C project.
The search and replace string insed takes the forms/foo/bar/. In this
form the incoming stream is searched line by line and every first match
of the regular expression foo is replaced by bar. If we expect more than
one possible matches per line, we should however use s/foo/bar/g
to replace all of them. In case we only want every third appearance in a
row to be replaced, the string becomes s/foo/bar/3. So getting back
to our example C project the call for the main file might be
sed -i 's/complicatedname/simplename/g' main.c

To complete the picture we can use find to search for all .c and .h files
(see also Chapter 3) and execute the above line for every single one of
them.
find . -name '*.[ch]' -exec sed -i 's/complicatedname/\

Õ simplename/g' {};

The -i switch in both versions is used to perform the manipulations in
place, i.e., replacing the original file by the modified result. We can advise
sed to create backup copies with a user defined suffix by simply specify-
ing the suffix directly after the -i parameter as in
sed -i.orig 's/foo/bar/4' filename.txt

which copiesfilename.txt tofilename.txt.origprior to thema-
nipulation. Here the 4 advisessed to replace only the forthmatch bybar.
sed can behave like a couple of tools we already learned about earlier.
For example to print the first 10 lines of file like
head file

we can use
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sed 10q file

as well. Also we can make sed emulate grep by using a simple search
string instead of the replace string.
grep foo file

can be written as
sed -n '/foo/p' file

in sed and grep -v is performed by replacing p with !p above.
We can also employ sed to imitate the behavior of the tool basename
that can be used to truncate filenames by cutting of the extension. Calling
basename /usr/include/stdio.h .h

produces the output
stdio

The same can be done by
ls /usr/include/stdio.h |
sed -r 's/^(.*\/)*([^\/]*)\.h/\2/g'

which requires the -r flag for extended regular expressions in order to
grab the second match using \2.
Often sed is employed in conjunction with the other tools presented in
this section to perform pre or post processing for those. This is for ex-
ample nicely seen in the pgrep example in Section 1.4. There instead of
using the file name argument sed reads the input from a pipe. So the last
example above could as well be written as
cat file | sed -n '/foo/p'

The sed-one-liners list6 gives a first impression of the real power this small
tool has. We refer to the various web tutorial for earning deeper knowl-
edge. For local information confer the info pages rather than the manual
pages, since they are by far more detailed and structured.

awk The AWK utility is an interpreted programming language typically used
as a data extraction and reporting tool. Its name is derived from the
family names of its inventors – Alfred Aho, Peter Weinberger, and Brian
Kernighan. The current specifications can be found in the IEEE 1003.1-
20087 standard. It is invoked using

6https://sed.sourceforge.net/sed1line.txt7https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.
html

https://sed.sourceforge.net/sed1line.txt
 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
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awk 'awk-statements' filename

to analyze a file. It can also read its input from a pipe:
... | awk 'statements'

Instead of specifying the awk statements directly on the command line
an awk script can be used. To this end the -f scriptfile switch is
appended to the call.
awk reads the input, processes it row by row and splits it into columns.
The values of the columns are accessed using $columnnumber inside
an awk-statement. For example the first column is accessed by $1. The
pseudo column $0 represents the complete row. The separation into
columns is performed based on white spaces by default. We will se later
how this behavior can be changed.
An awk-statement has the following format:
Condition { Action }

Multiple statements are used writing them one after another. The condi-
tion selects a data set on which the action is applied to. A condition can
be Expression Operator Expression where Expression is a
column identifier, a numeric value or a string enclosed by double quotes.
The Operator is one of ==, !=, <, >, . . .
Another condition type is Expression Operator /RegEx/. This se-
lects a data sets with respect to a regular expression. The Operator
can be \~ if the regular expression should match or !\~ if it should not
match. Two special conditions exists: BEGIN is executed before the first
row is processed andEND is evaluated after the last row is processed. The
print command is the only action we need. For complex ones we refer
to the IEEE Standard or literature.
Consider the following file containing some measured data
1 0.02 0.43
2 0.03 1.03
3 0.55 0.30

If we want to extract only the second column we invoke awk as
cat file | awk '{ print $2; }'

All rows where the third column is larger than one are returned by
cat file | awk '$3>1.0 { print $0; }'



24 Chapter 1. Linux and the Commandline

If the column separator is not a space or a tabulator it can be redefined
with FS="Separator" inside the begin action. If we consider the same
data file as above but with | characters to separate the values it changes
to
cat file | awk 'BEGIN{ FS="|"; } $3>1.0 { print $0; }'

1.7 Remote Computing on Encrypted Connections

We have used the job execution on a possibly far away compute server in a high
performance computing center as a motivating example in the above, but we
have never explained how this is done. We are catching up on this here. Classi-
caly two commands have been used to log into a remote machine. These have
been rlogin and rsh. Both names suggest what they were doing. Their main
purpose was to simply open a remote terminal and start a shell on the remote
machine. Both lacked certain security features like encrypted communication.
Therefore they have been replaced by a modern version of rsh called ssh (for
secure shell). The new ssh tool features higher security for user logins and
encrypted data transfer between the local and remote host. It is used as in
ssh username@remote.machine.somewhere

If your local machine supports it, you can use
ssh -X username@remote.machine.somewhere

to even redirect graphical user interfaces to the local machine. Note that the lat-
ter does onlymake sense if the two host are connected via a rather fast network
connection, because it usually generates high traffic on the connection.
There is also a command for copying files to or from the remote machine that
comes along withssh. The secure copy (scp) features the same securitymech-
anisms as ssh itself and works very similar to the basic cp command. Obvi-
ously you have to add user and host information to the calling sequence. This
is demonstrated in the next example
scp localfilename user@remote.host.somewhere:\

Õ remotefilename
scp user@remote.host.somewhere:remotefilename \

Õ localfilename

The local file name is specified relative to the current working directory or abso-
lute (i.e., relative to the file system root). The remote files by default end up in
the remote users home directory. Therefore all remote file names are specified
relative to the home directory or absolute. The scp command can also be used
to copy entire directories. Then the source file name is replaced by the direc-
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tory name and scp -r is used instead of plain scp to indicate the recursive
operation.

1.8 screen – an Online/Offline Terminal

We have dicussed the nohup utility in a previous section. There, we pointed out
the disadvantages of the utility. Here, we recommend an alternative approach
pursued by the GNU screen project that the projects web page8 describes as
follows:

Screen is a full-screen window manager that multiplexes a physical ter-
minal between several processes, typically interactive shells. Each vir-
tual terminal provides the functions of the DEC VT100 terminal and,
in addition, several control functions from the ANSI X3.64 (ISO 6429)
and ISO 2022 standards (e.g., insert/delete line and support for multi-
ple character sets). There is a scrollback history buffer for each virtual
terminal and a copy-and-pastemechanism that allows the user tomove
text regions between windows. When screen is called, it creates a single
windowwith a shell in it (or the specified command) and then gets out of
your way so that you can use the program as you normally would. Then,
at any time, you can create new (full-screen) windows with other pro-
grams in them (including more shells), kill the current window, view a
list of the active windows, turn output logging on and off, copy text be-
tween windows, view the scrollback history, switch between windows,
etc. All windows run their programs completely independent of each
other. Programs continue to run when their window is currently not vis-
ible and even when the whole screen session is detached from the users
terminal.

The main strength of screen for our purposes is summarized in the final sen-
tence. It gives the ability to detach the users terminal from the screen session,
i.e., the shell in which the computation is running. At any later time and even
from a completely different terminal and location the user can then reattach
to the screen session and continue working as if he/she had never left the
screen.
Basic Usage Open a (usually remote) terminal and just type
screen

A welcome message appears. Now press the space-key and you are in a stan-
dard terminal. You can now start your favourite process, e.g.,
top

8https://www.gnu.org/software/screen/screen.html

https://www.gnu.org/software/screen/screen.html
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and detach the screen session by typing ctrl + a d
You should get a
[detached]

message. You can now close the terminal and come back to your session any-
time later by saying
screen -r

in a terminal.
Multiple Windows screen allows you to use several windows in which you
can run separate processes. To open a new window, just type ctrl + a c . To
switch between several windows, you can either use ctrl + a n to go to the
next or ctrl + a p to go to the previous window. Alternatively, you can also
say, e.g., ctrl + a 2 to go to the second window.
WhichscreenProcesses / SessionsAreCurrently Running? To get anoverview
about screen sessions we have running on a certain machine we just type
screen -list

and we will get a list of the form
There are screens on:
30714.pts-5.<host> (Detached)
30769.pts-5.<host> (Attached)
2 Sockets in /var/run/uscreens/S-<user>.

where <host> is the name of your computer and <user> is our user name.
Terminating screen Type ctrl + d or enter
exit

and you will get back to the terminal from which you started.
screen and ssh Probably the most useful feature of screen is that you
can use it to start processes remotely, then log out of the remote computer and
log back in (even using a different computer) and continue the session. This is
useful for long computations that do not need to be monitored. Consider the
following example.
We log in to a remote server via ssh:
ssh user@remote.pc.somewhere
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Next we start screen on the remote host:
screen

In the newly started shell in screen, we then start, e.g., MATLAB® without dis-
play:
matlab -nodisplay

This has to be done because you can not log out of the remote machine with-
out killing your processes if they use the graphical display. We then start our
MATLAB computation
start_long_matlab_computation

and detach the screen session ( ctrl + a d ). We can now close the ssh-
connection and after logging back in to the remote machine, we can pick up the
MATLAB session by saying
screen -r

Other Features screen can also be used in a multiuser-mode which, e.g.,
allows one user to act as a teacher for some other user who can sit at a different
computer. screen also offers Copy&Paste and Regions. We however refer to
the screen documentation for details here.

1.9 tmux— a screen Alternative

The terminalmultiplexertmux is a tool that provides all the features ofscreen,
and adds tiling features to the display. On high resolution terminals, this can be
beneficial, since one can keep an eye on several things simultaneously. Note
that the session commands in tmux are using ctrl + b instead of ctrl + a ,
but otherwise coincidewith the ones fromscreen. The tilingmentioned above
is achieved through subsequent horizontal or vertical splitting of the current
view or pane as tmux calls them. The two key sequences for splitting the pane
in two are ctrl + b " for a top and bottom split, or ctrl + b % for a left
and right split. One can then navigate the panes, i.e., move the focus, or active
status another pane by combining ctrl + b with the arrow or cursor keys. As
usual, the man page has much more to say about options and more possible
commands. Also thetmuxwiki has lots of helpful information and a nice getting
started guide.

1.10 The Toolchain

The toolchain is a wrapper expression for a set of tools that are used in pro-
gramming tasks. It usually consists of

https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki/Getting-Started
https://github.com/tmux/tmux/wiki/Getting-Started
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• a tool for automation of the build process,
• a compiler suite containing compiler for a set of programming languages,
• tools for generation andmanipulation of binaries, libraries and assembler
codes,
• a debugger helping the user in evaluating wrong code and fixing it,
• a build system that simplifies the usage of external dependencies, e.g., by
automatic search for libraries and header files.

In the special case of the GNU toolchain developed by the GNU project the list
reads like this:
• GNU make,
• GCC (GNU Compiler Collection),
• GNU binutils and GNU assembler,
• GDB (GNU Debugger),
• GNU autotools.

We present more detailed descriptions of the single tools or proper alternatives
in Chapter 3, wherever they are needed in the process of working with a C pro-
gram.
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Revision Control, also known as Version Control or Source Control is a task that is
becoming more and more important also in Scientific Computing. It describes
the process of monitoring changes in sets of information. The sets of informa-
tion are usually documents, source codes, large web repositories or alike. The
set of all information (usually files) under revision control makes a repository, a
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set of changes to a single or multiple pieces of information (files) constitutes a
revision of the repository, and in the case of software a set of revisions defines
a new version. For general information the terms revision and version are often
used synonymously. The revisions get assigned a unique name that may be an
identification number or a human readable text. The main purposes of revision
control can be summarized as the following items:

1. Logging of changes: at any later stage of development of the information
it is clear which change has been added by whom and when this hap-
pened.

2. Recovery of earlier states of the single pieces of information: accidental
or erroneous changes can be identified and rolled back.

3. Archiving: It is possible to get back to each state of the set of information,
e.g. to make computational results reproducible.

4. Coordination of joint work on the information by several collaborators.
5. Parallel development of multiple branches of the information with the

possibility to merge single branches back to a main development stream.
In order to achieve this functionality the systems follow either of the two strate-
gies
Lock Modify Write The rather restrictive pessimistic revision control strategy is

also called Lock Modify Unlock. It grants single authors exclusive access to
the item and thus avoids conflicts.

Copy Modify Merge This is the optimistic revision control strategy. It allows joint
access to the items for several authors. Thus it can not avoid conflicts but
will provide facilities to automatically merge easy conflicts and support
the authors in resolving more complicated ones. In the case of files on
a computer, binary data is often difficult for this kind of approach since
there the merge step is usually not possible without additional tools.

2.1 Types of Revision Control Systems

The existing tools for revision control, of computer files, can be categorized in
three large groups. These groupswill be introduced in the following subsections
2.1.1 Local Revision Control

As the name suggests this version is completely local. Usually only single files
are under revision control and the version information is stored locally. Often
one can find the version information directly inside the file in the form of com-
ments at the beginning or end of the file. Prominent implementations of lo-
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cal revision control are the classic Source Code Control System (SCCS) or the
more well known Revision Control System (RCS)1. Both systems have classically
been employed on Unix-like systems for revision control of single source code
files. Local revision control is also implemented in modern office applications
like Microsoft Word or OpenOffice/LibreOffice Writer to track changes of ones
collaborators.
2.1.2 Central Revision Control

This type of revision control is different from the previous in that it stores the
version information in a central (possibly remote/online repository). Users con-
nect in a client server way to this central resource. The actual local copy of the
files the user is then manipulating is usually called working copy. The basic con-
cept of central revision control goes back to the open source project Concurrent
Versions System (CVS)2 and has been made even more popular by the Subver-
sion (SVN)3 system. The working copy usually contains information about a sin-
gle version. This version is either the one the central repository was in while the
local copy was created, or the one it had when the local version was last syn-
chronized to it. This version is usually called HEAD revision. Local changes can
usually only be determined with respect to this HEAD revision. These are the
changes that are merged into the central repository when the local changes are
submitted. This procedure is generally called commit.
2.1.3 Distributed Revision Control

The major disadvantage of central revision control systems, that use an online
server for storing the central repository, is the requirement for an active net-
work connection for determining version information and changes during re-
visions other than the HEAD revision. Distributed revision control systems are
a way to overcome this drawback. They feature local repositories in which the
entire version history is stored. Local working copies are synchronized against
these local repositories. The local repositories are then synchronized to either
the repositories of collaborators or central repositories in online resources.
The local repositories feature a very quick access and allow for fine grained ver-
sion management and logging of changes. Therefore, usually the distributed
revision control systems often have much more powerful merge facilities.
Important distributed revision control systems in the open sourceworld areGit4
which has among other authors been developed by Linus Torvalds, Bazaar5 that

1https://www.gnu.org/software/rcs/2https://www.nongnu.org/cvs/3https://subversion.apache.org/4https://git-scm.com/5https://github.com/bazaar-community/bazaar3
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https://git-scm.com/
https://github.com/bazaar-community/bazaar3


32 Chapter 2. Revision Control

is mainly developed by Canonical Ltd. (who are the driving force behind Ubuntu
and distributions derived from it.), and Mercurial6.

2.2 Collaborative Work on Projects

Especially the central and distributed revision control systems are very attrac-
tive for collaborative work on entire projects. While for local revision control all
collaborators require access to the same file or need to exchange it, the latest
version of an entire project is always accessible for all coworkers in a central
repository or independent local repositories. This allows for a highly increased
flexibility in editing the files.
2.2.1 Conflicts

When editing different files of the same project, or a common file in disjoint po-
sitions, usually these systems can automatically merge the changes of several
authors into a single repository. In case of changes in common locations of sin-
gle files, these systems offer conflict management facilities that support users
in resolving the conflicts possibly generated by editing the same locations in the
file.
2.2.2 Branches

A common way to avoid conflicts is the technique of branching. The main de-
velopment line of a project is often called trunk, ormaster. Just like the trunk of
a natural tree this version is the fundamental part of the project. A branch is
then splitting off of this main version as an exact copy of the trunk. Then, it can
be used to develop, e.g., a certain feature without harming the main develop-
ment. In contrast to the biological tree, the branches do in general return to the
trunk after a while, e.g., when the feature is ready to enter the main develop-
ment stream. In the case of central revision control, these branches are usually
linear sequences of revisions. For distributed systems with enhanced merging
capabilities, the branches are often even branched further, such that the entire
object becomes a directed acyclic graph of revisions.
2.2.3 Tags

Especially when developing software, certain revisions aremore important than
others, e.g. because they are used as release versions. It is then important to
create so called tags, i.e., named revisions to have an easy means to reproduce
this exact state of the repository. Theway tagging is implemented, or being used
is differing among the systems, but it is always possible in one way or another.

6https://repo.mercurial-scm.org/hg/help

https://repo.mercurial-scm.org/hg/help
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2.3 Revision Control meets Social Networking

Some of themost prominent providers of Revision Control services for the open
source community are GitHub7, BitBucket8, and GitLab9. Today also many sci-
entific codes are hosted on, e.g. GitHub. In contrast to the others, GitLab also
offers their software for personal use in an open source version with limited
features.
All off the above have one thing in common. They do not only provide plain
revision control features, but add social networking type functionality to their
systems. This, for example, allows users to monitor the changes of projects,
including those that they are not participating in themselves, and check the ac-
tivity of other users, such as their fellow developers.

2.3.1 Issues

The expression Issue is used as a collective term for
bug: A bug report means a report about faulty or erroneous code. It can be as

specific as a code snippet for a suggested correction, or as vague as “this
unexpected behavior was observed”.

feature request: No software will ever fully satisfy its users. As a consequence
users will come up with lists of additional functionality the software could
respectively should feature in future releases. They are collected as fea-
ture request issues.

suggestion: Similar to the above but mixing the two for things that are not
exactly wrong but rather can be done, e.g., more optimal or efficient.

2.3.2 Pull Request / Merge Request

In the course of collaborative work on a joint software project, usually some
developers are more priviledged than others. The so called maintainers or core
developers are handling themaster branch of the software, while their fellow de-
velopers create bug fixes or new features in their own branches. Whenever they
are finished, the standard developers can not merge their changes back to the
master branch themselves. In order to notify the maintainers about their work
being ready to get merged, they post pull requests (also called merge requests
in some systems). Usually the git systems allow the maintainers to easily re-
view the pull request in the online system. This feature usually shows them all
the changes made to the code base such that they can easily and quickly decide

7https://github.com8https://bitbucket.org9https://gitlab.com

https://github.com
https://bitbucket.org
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whether or not to take the changes into themaster, ormaybe request additional
changes to maintain project consistency or the like.
2.3.3 Forks

In case one wants to contribute to a project one is not yet part of, the easiest
way to get involved is to just grab a copy of the project. This can be done using
a fork. Acting similar to a branch, the fork is created as ones own project still
maintaining the connection to the original project. Then obviously one canwork
freely on the own copy. Once the work is finished, again a pull request to the
original projectsmaintainers canmake the changes flow into the original project
and get oneself involved.
A second scenario where forks are important is the situation, where one wants
to pick up the work of another project that has been discontinued. In that
case the fork enables new maintainers to continue the work on a project that
has been orphaned by its original developers. This is a common situation in
academia when people finish their theses and leave academia to industry, while
at a later point in time other people at possibly other academic institutions want
to continue their research.
2.3.4 A generic workflow

While the git system in general gives you maximal power with no actual pre-
scription on how to use and distribute this power, a certain workflow is com-
monly observed on the above mentioned platforms. The workflow consists of
the following few steps and usually maintains project and branch integrity, thus
avoiding conflicts and problems.

1. someone opens an issue
2. a maintainer assigns the issue to a developer
3. the developer creates a new project branch connected to the issue
4. the developer changes the code to close the issue
5. once finished, the developer files a pull request
6. the maintainers review and merge the pull request, and close the issue.

2.4 What to put into a version control repository

Mostmodern version control systems for code are basedonmonitoring changes
in files via tools like diff. Some additional features about detecting name
changes for files and their addition, or removal complete the picture. This gives
us a rather clear idea about what to put into a repository. Since derived binary
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files often change all over the place when only little is actually changed, diff will
have a hard time with them. Thatmeans, PDF-files due to their encryption/com-
pression of the content are bad. Similarly, JPEG images will have widespread
changes due to the integral folding used to generate them, even when only few
pixels change. The same holds true for compressed archives in ZIP, BZIP2 or
similar formats. On the other hand, diff works best with plain text files.
This allows us to formulate some simple rules of thumb:

1. plain text files are good, especially when they do not change much.
2. image files and compressed files should only be added if they at most

change VERY rarely; at best never, especially when they are large.
3. automatically generated files, e.g. compiled versions of source code, can

always be generated again and should not be put under version control.
Some systems allow special treatment for large binary files. Then they are less
harmful.
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It is practically impossible to teach good programming to studentsthat have had a prior exposure to BASIC: as potential programmersthey are mentally mutilated beyond hope of regeneration.
How do we tell truths that might hurt?Edsger Wybe Dijkstra

CHAPTER 3

Concise Introduction to the C Programming Language and the
GNU Toolchain

Contents
3.1 The Programming Environment . . . . . . . . . . . . . . . 39

3.2 C Statements, Types and Operators . . . . . . . . . . . . . 43

3.3 Control Structures . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Complex Data Types and Arrays . . . . . . . . . . . . . . . 52

3.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 An Introduction to the Standard Library . . . . . . . . . . . 61

3.6.1 stdio.h and stdlib.h . . . . . . . . . . . . . 62

3.6.2 math.h and complex.h . . . . . . . . . . . . . 64

3.6.3 string.h . . . . . . . . . . . . . . . . . . . . . . 66

3.7 File Input and Output . . . . . . . . . . . . . . . . . . . . . 67

3.8 The Preprocessor and Header Files . . . . . . . . . . . . . 69

3.9 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Writing Own Libraries . . . . . . . . . . . . . . . . . . . . . 75

3.11 Interfacing Fortran . . . . . . . . . . . . . . . . . . . . . . 77

3.12 AutomaticGeneration of CodeDocumentationsUsingDOXY-GEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

37



38 Chapter 3. Introduction to C and the GNU Toolchain

One of the main goals of the lecture is to understand how mathematical algo-
rithms are translated into a high-level programming language. This includes an
overview how efficient implementations basically work. We chose C for many
reasons instead of other high-level languages like C++, Java, or Fortran:
• C is easy to learn. It has only about 30 keywords.
• C has been one of the most often used programming language for a long
period of time1. Even thirty years old programs work today.
• C is standardized by ISO in ISO/IEC 9899 (see [5, 7, 9]).
• C works on embedded systems, as well as, on the largest super comput-
ers.
• C can be combined with nearly all other popular programming languages.
Even scripting languages or assembler code can be embedded.
• A large variety of libraries exists: GUI-programming, networking, mathe-
matical algorithms.

The first version of Cwas developed by Ken Thompson, Dennis Ritchie and Brian
W. Kernighan in the early 1970s for developing their UNIX operating system.
Since then the concepts and the syntax of C have influenced many program-
ming languages. In 1978 the K&R book [11] appeared. This book defines the
first quasi standard of the C syntax. Caused by the popularity and its strong
connection to UNIX many vendors have created their own subsets of C with dif-
ferent extensions. This became a major problem for exchanging code and lead
to the standardization of C by an ANSI committee, founded in 1983. The com-
mittee released the first standard in 1989. This standard directly became an ISO
standard in 1990 [5]. The standard was revised and extended in 1995, 1999 [7],
2011 [9], 2018 [10] and 2023 (upcoming). Currently, the C23 standard is only
experimental and will likely see the light of day as ISO/IEC 9899:2024 next year.
ISO C17 (actually ISO/IEC 9899:2018) is mainly a clarification and revision of the
C11 standard, which has been implemented in the all major compilers.
C does not restrict the programmer to a fixed programming style. This allows
nearly unreadable code which works correctly. Although with IOCCC2, there
is a contest focusing on the exploitation of this freedom, one of the aims of
the present text is to also create awareness of the curse that hides within this
freedom.
In the remainder of our presentation we assume that a Unix-like operating sys-
tem (such as Linux, *BSDorMacOS X)with theGNUCompiler Collection (Version

1https://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html2https://www.ioccc.org/

https://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://www.ioccc.org/
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8.1.0 or later for full C17 support) is used.

3.1 The Programming Environment

Before we can run our first self-written program we have to understand how
to process a human readable source code to an executable program. A C pro-
gram consists of at least one text file with extension .c. This is created with a
normal text editor like vim, emacs, kate, gedit, . . .or an integrated development
environment (IDE) like VS Code3, kdevelop4, eclipse5,. . . . Word processors like
MS Word, LibreOffice, OpenOffice, etc. are not suitable for this job.
Four steps are necessary to transform the human readable source code to an
executable program:

1. The Preprocessor searches the source code for special directives begin-
ning with #. These directives can include other libraries, dynamically in-
clude and exclude code, or modify the program using a complex pattern
matching search and replace mechanism. The output of this phase stays
human readable but the code is filled with additional statements and data
from other files.

2. The Compiler is the main tool. It checks whether the source code is syn-
tactically correct. Afterwards the preprocessed source is translated into
assembler code. An optimization phasemay speed up the code and adapt
it to the features of the CPU. The assembler output is still human read-
able, and it expresses the same instruction as the C source on a much
lower abstraction level.

3. The Assembler turns the assembler output into machine code. This can
theoretically be executed by the CPU, but missing external libraries pre-
vents this. The output of the step are object files. An archived collection of
object files is used as static library. See Section 3.10.

4. The Linker finally merges the object files and the libraries into one ex-
ecutable program. It checks if all necessary functions and symbols are
found in the object files and the specified libraries.

These four steps are usually performed by single compiler call. The compiler
performs all steps and creates the executable directly from the source code.
The GNU Compiler collection provides one command for all steps. The gcc
command invokes preprocessor, compiler, assembler and linker. Sometimes it
is necessary to invoke the linker separately with ld or gcc.

3https://code.visualstudio.com/4https://kdevelop.org/5https://www.eclipse.org/

https://code.visualstudio.com/
https://kdevelop.org/
https://www.eclipse.org/
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The C compiler is invoked in the shell:
gcc <options> -o outputfilename input1.c ... <libraries>

This compiles all given input files to one executable. If the output filename is
omitted the compiler uses a.out. The behavior of the compiler is influenced
by a variety of compiler options. Some important ones are:
Binary code optimization:
-Os Optimize the code to reduce the size of the binary.
-O1 Turn on basic optimizations. The compiler tries to re-

duce code size and execution time, without performing
any optimizations that take a great deal of compilation
time.

-O2 Optimize even more. GCC performs nearly all optimiza-
tions that do not involve a space-speed trade-off. As
compared to -O1, this option increases both compila-
tion time and the performance.

-O3 Aggressive optimization. It tries to unroll loops con-
structs and inlines small functions. It can cause unex-
pected effects in the program. The output is usually
larger then using -O2.

-march=native Automatically determines the code generation options
to optimally exploit your local CPU features. Code may
not be executable on other machines.

Debugging:
-g Include the debug symbols in the output. This is neces-

sary for tools like gdb, ddd or valgrind.
-pg Include the profiling information for the GNU profiler.

Execution ingprof then produces the desired informa-
tion.

Floating Point Arithmetics related:
-ffast-math Turns off the IEEE754 floating point arithmetics. This

option is dangerous.
-ffloat-store Floating point operations store the results to the mem-

ory instead of keeping them in high accuracy CPU regis-
ters.

-mfpmath=sse
-msse2

Use the SSE2 registers for floating point opera-
tions instead of the classical x86/x87 floating point
unit. Only available on x86 and x86_64 platforms.
-mfpmath=sse default on x86_64.
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-mavx
-mavx2

as above but for the more recent AVX and AVX2 regis-
ters.

Warnings and C Standards:
-Wall The compiler displays all warnings about malformed

code.
-std=XXX Defines the C standard to use. Normally explicit usage

is not necessary. Possible values: c89, c99 or c11.
Finding libraries and header files:
-Ipath Set an addtional search path for theinclude directive.

This can be used multiple times.
-Lpath Set an additional search path for the linker.
-lNAME Link a specified library to the program. The lib prefix

is automatically added to the library.
Compilation of own libraries:
-c Compile the source code to object files without linking

it. The default output name is inputname.o.
-fPIC Generate position independent code. This flag influ-

ences the assembler code production to use relative ad-
dresses. It is necessary for libraries.

Code Preprocessing and basic shared memory parallelism:
-DNAME=VALUE Defines a preprocessor variable NAME and sets it to

VALUE
-fopenmp The OpenMP support is enabled.
-pthread The PThread support is enabled.

If a program consists of many source files, or they need different compiler op-
tions, it is more convenient to create the single object files first:
gcc -c input1.c
gcc -c input2.c
...

Afterwards the object files are linked with libraries to the final executable:
gcc -o output input1.o input2.o ... <options>

External libraries are added using the -l option. The standard C library and
system dependent ones are added automatically. A library named libNAME
is linked using -lNAME. The linker adds the lib prefix automatically. The li-
braries must be specified in the order they depend on each other (rightmost
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libraries are the most independent). Cyclic dependencies are solved by adding
the libraries more then once to the linker invocation.
Example 3.1: A programdepends onlibone, libtwo andlibthree, where
libtwo depends on libone. The resulting compiler call is:
gcc -o output input.c -ltwo -lone -lthree.

Libraries are existing in two types. The classic approach of combining single
object files in a reusable library is to glue them together in a static library (usu-
ally ending on .a). Upon linking, all of the object contained in the library are
added to the program executable. This usually results in fairly large binary com-
mands. The more modern approach is to use so called shared object libraries
(usually ending on .so) or also dynamic link libraries. These are kept external
and library symbols and commands are included only upon execution of the
program. The dynamic loader loads all external libraries when a program is ex-
ecuted. It searches for them in the standard paths of the operating system. If a
library does not reside in these directories the search path can be extended by
setting the LD_LIBRARY_PATH environment variable.
Example 3.2: A program uses a library in a non standard location. It is compiled
and linked using
gcc -o output input.c -L/path/to/the/library -lthelib

and executed with adding the path to LD_LIBRARY_PATH:
export LD_LIBRARY_PATH=/path/to/the/library:\

Õ $LD_LIBRARY_PATH
./output

Many tools exists to support the programmer during development and debug-
ging. The basic ones are:
gdb The GNUDebugger is a command line tool that helps executing a program

step by step, and enables to look into variable values at runtime, or view
the machine code. It allows a deep analysis of what is going on in the
program. Available at https://www.gnu.org/software/gdb/

ddd The Data Display Debugger is a graphical user interface for gdb. Available
at https://www.gnu.org/software/ddd/

valgrind Is a suite of debugging tools which analyze the memory access,
check for memory leaks, create call graphs,. . . Its graphical front end is
called valkyrie. Available at https://www.valgrind.org

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/ddd/
https://www.valgrind.org
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nm Lists all symbols (functions or variables) in an object file or a library.
ldd Lists all external libraries required by a program. It also checks if they

are found in the current search paths and shows which ones will be used
upon execution of the program.

make An automatic build utility. Details can be found in Section 3.9.

3.2 C Statements, Types and Operators

The basic structure of a C program looks like
#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 3.4)
...
// function definitions (see Section 3.5)
...
int main (int argc, char **argv) {

// Here comes the code.
return 0;

}

The include statements above are called preprocessor statements (see Sec-
tion 3.8). They include so-called header files containing information about exter-
nal libraries or functions and variables in the current source files. stdio.h and
stdlib.h are two header files from the standard C library. They provide basic
input and output, access to files and other basic actions. They are necessary for
essentially every program.
main() is the function that is called when a program starts. All statements are
executed in the order in which they appear. The return 0; statements exits
the main() function and returns a status code to the operating system. The
0 as a general convention means that a program terminated successfully. All
other values are treated as errors.
Comments. Lines beginning with “//” are comments. The compiler ignores
them but they should be used to help human readers to understand the code.
Comments can also beused to prevent the compiler from including certain parts
of the code. Possible comment structures are:
// A single line comment

/* Another single line comment */

/* This
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is
a multi-line comment */

#ifdef GRAPHICS
Some code fragment
#endif /*GRAPHICS*/

Here the last one is a pre-processor based comment. So it is not a comment
in the original sense. On the other hand, they allow to exclude large portions
of code based onMacro definitions. Here, GRAPHICS is a pre-processor macro
that could, e.g., be used to enable certain graphical output only when themacro
is defined. This is a common way to exclude graphical interfaces from compila-
tion for compute servers that do not supply the corresponding libraries. More
details regarding this can be found in Section 3.8
Statements and Blocks. A statement in C can be one of the four kinds:
• variable declaration
data-type varname;

• function call
dosomething();

• assignment
x = 3;

• control structure (see also Section 3.3).
All statements are case sensitive and must end with a semicolon. Line breaks
are ignored by the C compiler. This allows more than one statement per line.
Statements are grouped to code blocks using { and }:
{ // begin of the code block

Statement1;
Statement2;
...

} // End of the code block

Basic Data Types and Variable Declaration. A variable needs to be declared
prior to its first usage. The declaration consist of a data-type followed by a
comma separated list of variable names. A valid variable name begins with a
alphabetic character, only contains “_” as special character and is not used for
another variable or function in the context. Variables need to be declared at the
beginning of a block or a function following the C89 standard. The C99 standard
allows this everywhere. Nevertheless for better readability it is recommended
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to follow C89. A variable only exists inside the {}-parentheses where it is de-
clared. Variables are not initialized with a default value. Common built-in data-
types are:
int Stores one signed integer value. Normally, this is 4 byte

large, that means it can store one 32-bit number.
long Stores one large signed integer value. This must have

at least the size of an int variable but it can be larger.
On a 64-bit architecture this is normally 8 byte.

unsigned int Stores an integer without a sign, that means only posi-
tive but larger numbers.

unsigned long Stores a long without a sign, that means only positive
but larger numbers.

char Stores one character from the ASCII table. Internally, it
is a one-byte integer value and holds values from -127
to 128.

size_t An unsigned integer value which is large enough to
store the size of the largest theoretically possiblemem-
ory object. Its size depends on the hardware of the plat-
form used.

float A single precision floating point number, 4 Bytes.
double A double precision floating point number, 8 Bytes.
void Non specified type for function with no return value or

generic pointers.
There was no boolean data-type in C until the C99 standard. Boolean values are
therefore expressed as integers where zero means false and all other values
are evaluated as true. The definitions of variables of basic data types can also
contain initial assignments.
Example 3.3:

int x = 1, y;

The above definition declares two integers x and y and initializes xwith the value
1. The character type char is assigned using single quotes:
char c = 'A';

The single quotes implicitly convert the given character in to the corresponding
ASCII value. We introduce strings in Section 3.4.

Operators. The basic arithmetic operations `, ´, ˚, and { are known to C.
The modulo operator % exists only for integers. If both operands are integers
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then the operations expression is evaluated in integer arithmetic. The division
discards the fractional part in this case. The compiler pays attention to the arith-
metic priority rules. Parentheses influence the evaluation order.
Example 3.4:

int x,y,z,r; // Declares x,y,z, and r to be integers
x = 4; // Sets x to 4
y = 3; // Sets y to 3
z = x / y; // Integer Division of x and y
r = x % r; // Modulo, the remainder of the division

If the left side of an assignment is the same as the first operand of a binary
operation this can be abbreviated as in:
x += y; // same as x = x + y;

This is possible with all binary operators. The ++ and -- operators increment
or decrement a variable by one. They are used as pre- or postfix to a variable.
The prefix increments the variable before its value is used. The postfix does it
the other way around.
Example 3.5:

int x = 1, y;
x++; // x = 2;
y = ++x; // y = 3; x = 3;
y = x++; // y = 3; x = 4;

Bitwise operators are available in C too:
x & y Perform a bit-wise and operation.
x | y Perform a bit-wise or operation.
x ^ y Perform a bit-wise xor operation.
~x Perform a bit-wise not operation.
x << y Bit-Shift on x. Move y bits to the left.
x >> y Bit-Shift on x. Move y bits to the right.

A typecast is used to convert one data-type into another one. It is performed by
putting the new data-type in parentheses in front of a variable.
int y; double x;
x = (double) y; // converts y from int to double

Besides dealing with variables one usually needs input and output operations,
e.g. for printing computation results to the screen, or reading user inputs from
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the keyboard. The standard C library provides printf and scanf for this pur-
pose. The syntax of printf is
int printf("format string", list, of, variables, ...);

The first argument is the string printed to the screen. Variables are embedded to
this string using placeholders. The placeholders are replaced in the order of the
occurrence with the variable from the list of variables. The placeholders need
to be chosen in correspondence to the data-types of the variables. Placeholder
start with % followed by a type specifier (see Table 3.2). A new line is created
with the “\n” escape sequence. The “\t” (tabular) is used for alignment of the
output.
Example 3.6:

int x = 1;
double y = 1.8;
printf("x = %d and y = %g\n", x, y);

prints:
x = 1 and y = 1.8

The scanf function reads variable values from the standard input (usually the
keyboard, or redirected outputs from other programs). It works analogous to
printf. The syntax is
int scanf("format string", list, of, variables, ...);

where the format string is similar to printf. scanf tries to match the in-
puts with the placeholders and stores them to the variables in the order of their
appearance. Because the variables are modified by scanf, they need to be
prefixed with the address-of operator &. Details about & are given in Section 3.4
and 3.5. The return value is the number of variables read during the function
call.
Example 3.7: To read one integer and one floating point number from the stan-
dard input and print them on standard output one needs to do the following:
int x;
double y
scanf("%d %lg", &x, &y);
printf("You typed %d and %g\n", x, y);
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3.3 Control Structures

The program flow is controlled with statements of two categories. The first ones
are conditionals, the second ones are loops.
Conditionals. C has two conditional statements: if and switch. The if-
statement realizes an alternative. The simplest one is:
if ( condition ) {

Statements evaluated if the condition is true;
}

The condition is an expression which is evaluated to be either false, i.e.,
equal to 0 as integer, or true, i.e., not equal to 0 as integer. Comparison oper-
ators exist for all numerical data-types, such as int or double:
< smaller than
<= smaller than or equal to
== equal to
!= not equal to, same as ~= in MATLAB
>= greater than or equal to
> greater than

Boolean operators combine different conditions:
&& boolean and
|| boolean or
! boolean negation, prefix operator

Remark 3.8: Conditions are evaluated from left to right. The evaluation is
stopped if the result is obvious. The &&-operator cancels the evaluation
as soon as the first expression evaluatesfalse. The||-operator cancels
the evaluation when the first expression evaluates true.

Remark 3.9: The assignment operator = is true for every non zero right
side.
if ( x = 5 ) {

// executed independently of x
}

Some compilers are able to detect such errors (the authors intention in
the example would most likely have been to check whether x equals 5 via
x == 5) and print a corresponding warning.
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The if statement can be extended to an if-else construct. This full alterna-
tive is:
if ( condition ) {

Statements evaluated if the condition is true;
} else {

Statements evaluated if the condition is false;
}

If more than two cases are necessary this extends to:
if ( condition1 ) {

Statements evaluated if the condition1 is true;
} else if ( condition2) {

Statements evaluated if the condition2 is true;
} else {

Statements evaluated if the condition1 and 2 are false;
}

This concept works for more than two conditions analogously.
A conditional assignment
if ( condition ) {

a = value1;
} else {

a = value2;
}

can be reduced with the help of the ?-operator to:
a = (condition)? value1:value2;

This is the only ternary operator in C.
The discrete decision statement in C is switch. The syntax is
switch(variable){

case const_1:
Statements if variable == const_1;
break;
case const_2:
Statements if variable == const_2;
break;
default:
Statements if none of the other cases matched.

}

The appropriate block is executed according to the variable compared to the
constant expressions in the case-statement. The break-statement ensures
that the statements in the following cases will be ignored. If there is no break-
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statement the program runs trough all other following cases until a break
statement is detected. This is used to merge different cases easily:
switch(variable){

case const_1:
case const_2:
Statements if variable == const_1 or variable == const_2;
break;
default:
....

}

The default-statement defines a special case. It is executed if none of the
other case-statements matched the value of the variable. switch only works
on discrete data. Interval conditions like x>4 && x<4.5 require an if-else
construction.
Loops. C provides three different loop constructions: The for, the while,
and the do-while-loop. A loop repeats a group of statements until certain
conditions are met. The easiest one is the while-loop. It repeats a block as
long a condition is true. The syntax is
while (condition) {

Statements executed as long as the condition is true;
}

The condition is tested every time the loop is entered. If it is false at the be-
ginning the while-loop is not executed. The condition works exactly as in the
if-statements.
A slight modification of the while-loop is the do-while-loop. It repeats a
block as long a condition holds true but the block is guaranteed to be executed
at least one time and the condition is tested upon exiting the code block. The
syntax is:
do {

Statements executed as long as the condition is true.
} while (condition);

The semicolon at the end of the statement is untypical but mandatory.
The most general loop statement in C is the for-loop. It is mostly used for
enumerations but it can emulate every other loop construction. The syntax is:
for (initialization; condition; action) {

Statements inside the loop;
}

The initialization is executed once before the body of the loop is entered for the
first time. It is used to initialize variables (most commonly the loop counter).
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The loop is continued as long as the conditions stays true. The action-statement
is executed at the end of every loop. This is mostly an increment or decrement
statement. A for-loop is equivalent to a while-loop of the form:
initialization;
while (condition) {

Statements inside the loop;
action;

}

Each of the three parts inside the for-definition can be made up of multiple
expressions separated by commas. They are evaluated from left to right and
represent the value of the last expression.
Example 3.10: Output all square numbers from 1 to 10:
int i;
for (i = 1 ; i <= 10; i++) {

printf(" %d * %d = %d\n", i, i, i*i);
}

Loops can be influenced via the break- and the continue-statement. The
break-statement is an emergency exit inside a loop. It exits the loop immedi-
ately and stops its repetition neglecting the condition. The program continues
in the first statement after the loop.
while ( condition ) {

Statements;
if ( special condition ) {

break; //Exits the loop regardless of the while-
condition

}
}
// Control jumps here on the break

The continue-statement causes the control to jump to the end of the code
block defining the loop immediately skipping the remaining statements. If the
condition allows it the next iteration is then started. If a continue-statement
is called inside a for-loop it still evaluates the action statements.
while ( condition ) {

Statements;
if ( special condition ) {

continue;
}
Statements;
// Control jumps here on the continue;

}
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Remark 3.11: Control structures can be nested inside each other as often
as desired.

Remark 3.12: If a control structure only executes one statement, the sur-
rounding brackets {} defining the code block can be omitted.

3.4 Complex Data Types and Arrays

Simple scalar values or characters are not sufficient for the applications. This
section extends the basic data types by structures, arrays, strings and pointers.
For enumeration, type definition and unions we refer to the literature [14, 15, 7].

Structures. Data-structures are collections of different variableswithin a com-
mon context. They are defined using the struct-statement:
struct NameOfTheStructure {

data-type1 variable1;
data-type2 variable2;
...

};

We replace the data-type of a variable by struct NameOfTheStructure
to declare a variable to be a data-structure.
struct NameOfTheStructure variable;

The .-operator provides access to the components of a structure:
variable.member = ...;
x = variable.member;

Example 3.13:We define a structure representing a point in R3 and let P “

p0, 1,´1q P R3 of this type:
struct point3d {

double x, y, z;
};
struct point3d P;
P.x = 0.0;
P.y = 1.0;
P.z = -1.0;
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The normal assignment operator copies a structure to another one. However
the comparison operator == does not work this way. If we want to compare two
structures we need to compare all components separately.
Arrays. Arrays provide amulti-dimensional storage for data of the same data-
type. The data is accessed using a zero-based indexing scheme in each dimen-
sion. A one-dimensional array is declared using:
data-type name[NumberOfElements];

The bracket []-operator provides the access to the elements:
x[0] = y; // Assignment of the first element
h = x[i-1]; // Access to the i-th element

The array-elements are indexed from 0 to NumberOfElements´1.

Remark 3.14: The access to an array is not checked for violation of the
array bounds. Neither the compiler, nor the runtime environment can
detect violations. Accessing elements that lie outside the declared region
can crash your program, or manipulate other data of your program un-
intentionally. The typical error message in the first of these two cases is
a Segmentation Fault, resulting from the attempt to access a mem-
ory segment that is not belonging to your program, which is detected by
the memory management facilities of the operating system.

Example 3.15:We declare a vector a P R4:
double a[4];

It consists of four values a[0], a[1], a[2] and a[3].
The same scheme allows to declare n-dimensional arrays. A two-dimensional
array can be declared using 2 brackets, a three-dimensional with three brackets
and so on. The array data is arranged with the elements of the right most index
next to each other in the memory. That means the element x[i][j] resides
right before x[i][j+1].

Remark 3.16: This is a difference to Fortran where the data is arranged
the with regard to left-most index.

Every data-type can be made up to an array. Arrays of structures are possible
and arrays can be used as members of structures.
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Example 3.17:We declare an array of 10 Points in R3:
struct point3d {

double x, y, z;
};
struct point3d points[10];
points[0].x = 10.0; // Set the x value of the first

point.
points[9].z = -1.0; // Set the z value of the last

point.

Strings. Strings are a special case of arrays. Per definition a string is only an
array of characters. Since a string does not necessarily have to be as long as the
surrounding array storing it, C uses a special technique to determine the end
of the string. The end of a string is marked adding a 0-byte (ASCII: NIL). Every
string operation stops reading when it reaches the 0-byte. As a consequence, a
string of n characters requires a character array of n` 1 elements. In contrast
to single char constants a string is assigned using double quotes. The double
quote operators automatically terminate the string by the trailing 0-byte.
Example 3.18: The string “Hello!” is stored in an array of 10 characters:
char string[10] = "Hello!";

This will be stored as
Index: 0 1 2 3 4 5 6 7 8 9
Value: ’H’ ’e’ ’l’ ’l’ ’o’ ’!’ 0 * * *

inmemory. The*s are undetermined values that are left over fromearlier usage
of the memory segment.
String manipulation functions are presented in Section 3.6.3.
Pointers. Pointers are the most powerful concept of C and at the same time
themost difficult for beginners using the language. A pointer is a variable which
contains a memory address instead of a normal value. It is a reference to a
memory segment where the actual data is located. The following metaphor
explains this in a more natural way:

Imagine the memory as a big long street with houses on it. Each
variable in a program is a house on this street. Each household can
hold a number of people (which is the value of the variable). The
address of the house is the memory location of the data. Now a
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pointer is a variable which contains such an address.
A pointer is declared like a normal variable with an additional * in front of the
variable name:
data_type *a_pointer_to_data_type;

A pointer needs to be assigned to a valid memory location. The operating sys-
tem takes care of this. An illegal access will kill the program just like in Re-
mark 3.14. The address-of operator &, which was already mentioned in Sec-
tion 3.2 for the scanf-statement, returns the address of a variable. In the case
of an integer this looks like:
int var_x; //declares an int variable
int *ptr_x; //declares a pointer to a int variables
var_x = 2; //Sets the value of var_x
ptr_x = &var_x; //Assigns the pointer to the location of

var_x

ptr_x contains the memory address of var_x. The dereferencing operator
* is the counterpart to the &-operator. It allows to access the data inside the
given address. Continuing the previous example
*ptr_x = 12;

will overwrite the value in the memory location stored in ptr_x with 12. That
means var_x is now 12. Unused pointers should be set to NULL which rep-
resents 0 in the pointer context. This allows checks if a pointer is used, or not.
The void* pointer is the generic pointer which can be type cast to any other
pointer.
From the basic data type point of view pointers are not very useful. However,
there is a close relation between pointers and arrays in the C language. This is
best explained by following code:
int field[10];
int *ptr;
ptr = &field[0];

Then the pointer refers the first element of the array. Nowwe can accessfield
by ptr:
int x = ptr[3];
ptr[4] = 4711;

In this way a pointer is simply an alternative representation of an array without
a previously known size. A pointer to a single value can be considered as a
pointer to an array of one element. The array-style access is, however, not valid
for void* pointers.
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Remark 3.19: Note that in expressions as ptr[3] above the brackets
represent a dereferencing operation for the element chosen by the en-
closed index and thus no additional * is needed

Apointer to a structure is used similarly. Dereferencing the pointer is doneusing
the *-operator and the access to the components is done using the .-operator:
struct point3d p;
struct point3d *sptr;
sptr = &p;
(*sptr).x = 0.0;

This type of notation (*sptr).x looks a bit confusing and complicated. The C
syntax therefore has an equivalent representation as in:
sptr->x = 0.0;

Pointers can also be cascaded. That means, constructs like int** ptr; are
valid. Following the above example this contains a pointer to a pointer to an
int. Dereferencing one time give the pointer to an int and double derefer-
encing gives the integer. This corresponds to a two-dimensional array. Analo-
gously three or more * can be used to implement higher dimensonal dynamic
arrays. Note that to really exploit the dynamic features of pointers one needs
to employ the malloc() and free() functions (introduced below) from the
standard library (both in stdlib.h) described in Section 3.6.1.
Pointers are also necessary if a function should be able to modify an argument
passed to it. The scanf-example in Section 3.2 showed this already. The Sec-
tion 3.5 describes this technique in more detail.
Some arithmetic operations can be applied to pointers too. We however con-
sider this a dangerous technique for accessing elements in the memory that
should only be used by experts where it is unavoidable. For details see one of
the numerous tutorials on the Internet.

Type Definitions. Type definitions are one way to create abbreviations for ex-
isting data types in C. They are used to get short version of structure definitions
or to create meaningful abbreviations for existing types. The syntax of a type
definition is
typedef original type name aliasname;

The aliasname is used afterwards instead the original type like any other data
type in a variable declaration or function declaration. The newly defined type
is compatible to its original type and the compiler performs all type casts au-
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tomatically. Additionally the compiler throws an error if an aliasname is used
twice in a namespace.
Example 3.20: An unsigned index type for an array can be defined using
typedef unsigned int indextype;

Example 3.21: A structure definition can be abbreviated using
typedef struct {

datatype component1;
datatype component2;

} structname;

and then instantiated via
structname variable1, variable2;

Furthermore, type definitions can be used to hide pointers. In this case the type
definition is done using:
typedef original type * pointer_type;

Then a pointer to the original type can be defined using the pointer_type
which adds the * in the variable definition.

Remark 3.22: If the defined type already contains a pointer like
typedef int* pointer_to_int;

the variable definition
pointer_to_int *x;

makes x a double pointer.

MemoryManagement. Until nowevery pointer needed to have apredeclared
variable to refer to. In many practical examples it is, however, not possible to
know a priori how much space will be consumed by the data. The standard C
library provides a set of functions to allocate memory dynamically.
Since the size of data-typesmay vary on different hardware platforms themem-
ory allocation needs to be done relative to their sizes. The sizeof(type)-
operator returns the size of a data-type in bytes. It can be applied to basic data
types as well as structures.
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Example 3.23: Print the size of the double and the struct point3d type:
printf("sizeof (double) = %lu\n",sizeof(double));
printf("sizeof (struct point3d) = %lu\n",
sizeof(struct point3d));

The malloc function allocates contiguous memory blocks of arbitrary size6:
void *malloc(size_t size);

This requests amemory location of size bytes and returns the start address. If
the allocation fails it returns NULL. malloc does not care about the data-type.
The returned void* pointer needs to be transformed to the desired data-type
using a type cast.
double *x;
x = (double *) malloc(sizeof(double));

If a memory location is no longer used it should be made available again. The
free-function deallocates the memory referred to by a pointer:
void free (void *ptr);

Example 3.24: Allocate an array with 100 double entries, sum them up, and
free the array:
double *array; // declare the pointers
// Allocate 100*sizeof(double) bytes memory
array = (double *) malloc(sizeof(double)*100);
// sum them up
double sum = 0;
for ( i = 0; i < 100; i++) {

sum += array[i]; }
free(array); // free the memory

If an allocated memory location is too small or too large it can be resized using
the realloc-function:
void *realloc(void *oldptr, size_t newsize);

It takes the old pointer and the new size of the array and returns the pointer to
the resized array. The data in the part that is kept remains unchanged. If the
old pointer is the special NULL value, realloc behaves exactly like malloc.
Statically allocated arrays, such where the size is known before the program is
compiled, can not be resized.

6Only restricted by the availability of memory.
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A few other memory allocation operations exists. For example calloc and
mmap are two of these.

Remark 3.25: valgrind is an excellent tool to detect errors with wrong
access to pointers or wrong usage of the memory management function.

3.5 Functions

Nearly all programming languages have a construct to separate a package of
code blocks. This is necessary to get a well-arranged reusable code avoiding
copy and paste orgies. The main-function is the starting function of every pro-
gram. It is called automatically when a program is executed. Statements like
printf and scanf are functions, too. Some important standard functions
are introduced in Section 3.6.
Functions are called using their name followed by a list of arguments in paren-
theses. If the return-value is needed it is used like a variable in an expression or
a function in a mathematical context.
Example 3.26: Check if scanf has read two integers correctly:
int i1, i2, r;
r = scanf("%d %d", &i1, &i2);
if ( r != 2 ) {

printf("scanf did not read 2 integers successfully.\n");
}

A function consists of two parts. The header defines the input/output argu-
ments and the return type. The second part is the body where the function is
implemented. This gives the following layout:
return-type function-name(argument-list) {

// Local declarations
Statements;
Statements;
return return-value;

}

Thereturn-type canbe any simple data-type, including structures andpoint-
ers. If the function does not have a return value the return-type void is
used. Obviously, the return-valuemust be of the type return-type. The
naming conventions for variables also apply to functions. The argument list is
a comma-separated list of the format data-type variable which defines
the arguments for the function. The function header without the body is called
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signature of a function. The compiler checks if the calling sequence is compatible
with its signature, i.e., the number of arguments is correct and the data-types
can be type cast correctly.
Example 3.27: Define a function named “sqr” operating on a double precision
number and returning the square of the argument:
double sqr(double x) {

double a;
a = x * x;
return a;

}

The signature of this function is double sqr(double x);

Normally the arguments are copied to the function when it is called. The func-
tion works on a copy of the data not modifying the original. This behavior is
called Call by Value. If a function has to change a given argument at its origi-
nal location the arguments needs to be a pointer to the variable. We call this
behaviour Call by Reference because only a reference to a variable is passed.
A function can return more than one value or complex data types using this
technique. The scanf-function again serves as an example for this. Another
popular example is the swap-function:
Example 3.28:We define a function which takes two integer values as argu-
ments and swaps their values. The straight forward solution would be:
void swap (int a, int b) {

int tmp;
tmp = a;
a = b;
b = tmp;

}
// in main()
int x = 4;
int y = 5;
swap(x, y);

This looks correct but the swap-function only exchanges a copy of x and y. The
correct solution would be:
void (int *a, int *b) {

int tmp;
tmp = *a;
*a = *b;
*b = tmp;

}
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// in main()
int x = 4;
int y = 5;
swap(&x, &y);

In this case a and b are used as a reference to x and y. Exchanging the values
in the memory locations where a and b point to will change the values of x and
y immediately.

Example 3.29: The main-function of a C program is a special case of a function
that takes two arguments, the first int argc argument contains the num-
ber of command line arguments passed to the program including the program
name itself. The second argument char **argv is an array of strings. Each
string contains one command line argument. The element argv[0] contains
the name of the program.

Remark 3.30: Arrays are always passed to a function Call by Reference be-
cause they are equivalent to pointers. There is no way to pass an array
using Call by Value except of creating a copy of the array beforemanipulat-
ing it inside the function. By default modifications are directly performed
in the original array.

3.6 An Introduction to the Standard Library

The ISO C Standard [5, 7, 9] defines a standard library to provide basic functions
on every platform and allow portable programming. It consists of about 20 dif-
ferent header files and around 200 function for input/output, basic math, string
manipulation andmemorymanagement. This sections gives an overview about
some important predefined functions. The functions are presented using their
signature and a short description.
The POSIX C Library [6] is an important extension to the standard C library which
provides more operating system dependent operations on Unix-like operating
systems. It contains functions for networking, inter process communication,
threading and many more. Due to space limitations it can however not be in-
cluded in this presentation. Starting with the C11 standard, threading has also
become part of the standard C library.
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d integers of the type int
ld integers of the type long
u integers of the type unsigned int
g floating point numbers of the type float or double
e floating point number in [-]d.ddde+dd notation
c a single character of type char
s strings (see Section 3.4)
% the % sign.

Table 3.2: Format specifiers

3.6.1 stdio.h and stdlib.h

These two headers files provide the basic functionality of the C library. They pro-
vide input/output operations, control statements and memory management.
The file-io operations are demonstrated in Section 3.7 again.
The input/output functions introduced later in this section contain format strings
determining what is to be read or printed. These format strings contain for-
mat specifiers for the representation of the variable’s contents. Some important
specifiers are given in Table 3.2.
The full format specification has the form

% [flags][width][.precision][l]type

The [l]type part is what is shown in Table 3.2. The bracketed specifiers are
optional. They can be used to further influence the output representation. The
width parameter for example determines the length in the corresponding out-
put string. For floating point numbers precision determines the number of
digits in width that is used for the decimals.
Example 3.31:

double pi = 3.14159265;
printf("pi = %8.6g\n",pi);

prints:
pi = 3.141593
Note that the decimal dot is consuming one of the 8 digits.
The other placeholders and modifiers are described in the man page of the
printf function, see:
man 3 printf
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or [15, 14] in detail.
The following is a list of the most important functions contained in stdio.h
and stdlib.h.
int printf(const char *formatstring, arguments, ...);
int fprintf(FILE *f, const char *formatstring, arguments,

...);
int sprintf(char *buf, const char *formatstring, arguments,

...);

The function printfwrites a text to the standard output. The equivalent func-
tion for writing into files is fprintf, and sprintf stores the result in the
output string buf in the memory. The format string is explained above and
mentioned in Section 3.2. The return-value in all cases is the number of charac-
ters written.
int scanf(const char *formatstring, arguments, ...);
int fscanf(FILE *f, const char *formatstring, arguments,

...);
int sscanf(const char *string, const char *formatstring,

arguments, ...);

The scanf-function reads a formatted input from the standard input. This is
the keyboard in most cases. The arguments are pointers to the variables where
the values read from the input are stored. The fscanf-function is the equiva-
lent to read data from a file and sscanf reads from another string. The func-
tions return the number of values read. fscanf stops reading when either
the end of a line, or the end of the file is reached. sscanf terminates upon
reaching the 0-byte.
FILE *fopen(char *filename, char *mode);

The fopen-function opens the file specified by the filename and returns a
pointer to the file stream. Themode argument is a string determining the access
to the file: fopen returns NULL in case of an error.
int fclose(FILE *stream);

The fclose-function closes a given file stream. Any buffered data is written to
the file. The stream is no longer associated with the file.
int feof(FILE *stream);

The feof-function returns true if the given file stream reached the end of the
file otherwise false is returned.
void perror(const char *s);
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Mode Meaning Remarks
r open for reading Only possible if the file exists

otherwise NULL is returned.
w create a file for writing If the file already exists the con-

tent is destroyed.
a append data to a file If the file already exists, the new

data is appended to the end. If
it does not exist the behavior is
like w.

r+ / w+ / a+ open/create file for
read and write access.

basic behavior is as above
t text mode Only valid in combination with

the above. Produces human
readable output files. This is the
default if neither t nor b is given.

b binary mode Only valid in combination with
the above. Produces machine
readable output. Usually gives
smaller output files.

The perror-function displays the most recent error from the C library. The
string s may contain an explanatory message that is printed before the actual
error message.
void *malloc(size_t size);
void *realloc(void *ptr, size_t new_size);
void free(void *ptr);

The memory management functions explained in Section 3.4.
void abort();
void exit(int exit_code);

The abort-function terminates a program immediately without any clean up.
The exit-function terminates a program immediately with clean up. It is the
same as return in the main function but can be called anywhere in the code.
int atoi(char *s):
double atof(char *s);

Theatoi-function converts a string to an integer if possible. Theatof-function
does the same with a floating point number.
3.6.2 math.h and complex.h

These two header files provide commonmathematical functions and constants.
If a program uses at least one of them it needs to be linked against the math
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part of the standard C library. This is done using the “-lm” linker flag when the
compiler/linker is invoked (see also Section 3.1). All of the following functions
take double arguments and produce double return values.

fabs(x) returns absolute value of x
exp(x) returns ex
exp2(x) returns 2x

log(x) returns lnx

log10(x) returns log10 x

log2(x) returns log2 x

sqrt(x) returns?x
hypot(x,y) returnsax2 ` y2

pow(x,y) returns xy
sin(x) returns sinx

cos(x) returns cosx

tan(x) returns tanx

asin(x) returns sin´1 x

acos(x) returns cos´1 x

atan(x) returns tan´1 x

The C99 standard [7] introduces the new data types float complex and
double complex for handling complex numbers. These data types are de-
fined in the header file complex.h, along with the imaginary unit as I and the
following functions for double precision complex arguments and return values:

creal(x) real part of x
cimag(x) imaginary part of x
carg(x) computes the phase angle of a complex number
cabs(x) computes the magnitude of a complex number
conj(x) returns x̄
cexp(x) returns ex
clog(x) returns lnx

csqrt(x) returns?x
cpow(x,y) returns xy
csin(x) returns sinx

ccos(x) returns cosx

ctan(x) returns tanx

casin(x) returns sin´1 x

cacos(x) returns cos´1 x

catan(x) returns tan´1 x
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The list of mathematical functions presented here is not complete. More can be
found in the man pages or the C standard [7]. For nearly all double precision
functions there exists a corresponding single precision function with an f as
suffix. For example the single precision square root is computed by sqrtf(x).
Some predefined constants are:

M_PI π “ 3.14159265358979323846

M_PI_2 π
2 “ 1.57079632679489661923

M_E e “ 2.7182818284590452354

M_SQRT2
?

2 “ 1.41421356237309504880

3.6.3 string.h

The string.h-header file contains various functions to manipulate and work
with strings. The important ones are:
size_t strlen(char *s);

The strlen-function returns the length of the string not including the termi-
nating 0 character.
char *strcpy(char *dest, char *src);

The strcpy-function copies a string from src to dest and returns the dest
pointer again. dest needs to be a preallocated string with a length of at least
strlen(src)+1 elements. The destination string is not 0-terminated if the
source string does not contain the 0-byte within the length of the destination
string. The behavior in case the destination is to short is unspecified and may
depend on the actual implementation of the compiler.
char *strcat(char *dest, char *src);

The strcat-function appends the string from src to dest and returns the
dest pointer again. dest needs to be a preallocated string that has space for
at least strlen(src)+strlen(dest)+1 elements.
int *strcmp(char *lhs, char *rhs);

The strcmp-function compares two strings lexicographically. It returns a neg-
ative value if lhsărhs, a positive value if lhsąrhs and 0 if they are equal.
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Additional Memory Manipulation Functions in string.h In addition to
the string operations, string.h defines a variety of memory related actions
like:
void *memcpy(void *dest, void *src, size_t n);

The memcpy-function copies n bytes from src to dest and returns the dest
pointer again. dest needs to be a preallocated with n bytes. src and dest
must not overlap each other. memmove does the same but allows overlapping.
It is slower than memcpy.
void *memset(void *dest, int ch, size_t count);

Thememset-function converts the valuech to anunsigned char and copies
it into each of the first count characters of the location referred to by dest.

3.7 File Input and Output

The basic functions for file-io have already been mentioned in Section 3.6. In
this section we present some examples for their usage. They mostly behave
like their corresponding standard-io counterparts.
fopen opens a specified file in the desired mode. To avoid undefined behavior
we have to check if NULL was returned.
Example 3.32:We create file “test.txt” for writing:
FILE *fp;
fp = fopen("test.txt","w");
if ( fp == NULL ) {

perror("can not open test.txt for writing.");
return -1;

}

If we want to read data from a file we have to use r instead.
The access modes "w" and "a" open files for writing. fprintf is used like
printf on this file:
int x = 10;
double y = 145.1;
fprintf(fp, "x = %d , y = %lg\n", x, y);

The access mode "r" allows fscanf to read data from it. It works like scanf
but reads a line from a file and tries to assign the values like specified in the
format string. If the feof()-function evaluates to true, no more data can read
from the file.
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Example 3.33:We consider a human-readable file with the following layout:
x1 y1
x2 y2
...

The code-snippet to read all values and print them to the screen will be:
FILE *fp;
double x, y;
fp = fopen("test.txt","r");
if ( fp == NULL ) {

perror("can not open test.txt for reading.");
return -1;

}
while (!feof(fp)){

fscanf("%lg %lg", &x, &y);
printf("x=%g \t y=%g\n",x,y);

}

After reading or writing to a file it needs to be closed by fclose(fp).
The fprintf and fscanf functions are only useful for human readable files.
For individual access to binaries we refer to fread, fwrite and other func-
tions from stdio.h.
Error Handling The file-io functions mostly return only that an error has hap-
pened but they do not describe this error in detail. In order to achieve this ad-
ditional work is necessary. Example 3.32 already shows the usage of perror,
which shows the last error of the standard C library on the standard error out-
put. This error message is prefixed with the string passed to perror. The er-
ror number is also available in a variable int errno, which gets visible to the
user when including the errno.h header file. This error number can be used
inside the code to realize a proper error handling. The whole set of possible
error numbers is given in the manpage man 3 errno. Using the strerror
function one can retrieve a human readable representation from a given error
number as a string. Since the errno variable is accessed by almost all function
from the standard library, its value need to be saved immediately after an er-
ror is detected and before calling the next function from the standard library.
Regarding this rule. Example 3.32 can be rewritten to:
FILE *fp;
int err;
fp = fopen("test.txt","w");
if ( fp == NULL ) {

err = errno; // save the last error
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fprintf(stderr,"fopen - errno = %d, errmsg = %s\n",
err, strerror(err));
return -1;

}

3.8 The Preprocessor and Header Files

Before a C compiler translates the source code into the machine code the in-
put is processed by the preprocessor. It performs search-replace operations
and includes other files into the current source code. All preprocessor state-
ments begin with a # and end with a newline. The most frequently used one is
#include. It includes other files into the current source code. Other common
statements are #define and #ifdef.
#include As we have seen above already, #include is used to include
other files into the current source code. These are mostly header files of li-
brarieswhich contain function-headers, data-structures or constants. A Cheader
file has the extension .h. The entire content of the included file is temporarily
copied to the position of the include-statement in the source file. Two differ-
ent variants of #include are possible:
#include <header.h>

searches the system include path7 first and then it uses the additional ones
given by the -I option on the command line. This is used to include standard
headers and other external libraries. The second one is
#include "header.h"

which searches in the current directory first. This one is used for local, in-project,
include files. It is also possible to include other .c-files. This can, however,
cause conflicts.
#define is used in three ways. The first one is to set up symbolic replace-
ments in the source. This is used to define constants for example.
Example 3.34: The preprocessor statements:
#define PI 3.14519
#define SQRT2 sqrt(2)

will replace any occurrence of PI with 3.14159 and of SQRT2 with sqrt(2)
in the current source file.

7usually /usr/include and /usr/local/include
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The second way is to define parameter-depended replacements, so called pre-
processor macros. They depend on at least one parameter and perform all re-
placements with respect to the given parameters. The parameters in the macro
are filled up with the expressions from where the macro is used. The param-
eter list is appended directly to the macro-name without any white-space. The
parameters should be enclosed in parentheses when they are used. The whole
macro should be enclosed with parentheses again to avoid errors after the re-
placement.
Example 3.35: The following macro will give the absolute value of the parame-
ter:
#define ABS(X) (((X)>0)?(X):(-(X)))

This replaces y = ABS(z+1); with:
y = (((z+1)>0)?(z+1):(-(z+1)));

If X is not enclosed with parentheses this is evaluated to:
y = ((z+1>0)?z+1:-z+1));

This is not the desired behavior because the minus in the second part is only
applied to z and not to the whole expression as it was intended.
The thirdway to use thedefine-directive is as boolean variables for the#ifdef-
statement. It evaluates to true when the define exists. The preprocessor vari-
ables can be set using the -D command line option of the compiler.

Remark 3.36: The preprocessor acts stupid on replacements of all ap-
pearances of define statements. It does not check whether or not the
result actually is valid C code. The programmer has to make sure that the
define statements are extended to the correct intended C code.

#ifdef The ifdef-directive, a short form of #if defined, allows condi-
tional compiling of the source code. It works like the if-else construct in a
normal program but is evaluated by the preprocessor at compile time:
#ifdef PREPROCESSOR_DEFINE
// Code compilied if PREPROCESSOR_DEFINE exitsts
#else
// Code compiled otherwise
#endif

The #else-part can be left out. The code in the unused case is temporarily
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removed from the source code during the preprocessing. This technique is used
to handle different environment situations in one source file.
Example 3.37: In order to debug a program easily somebody defined a INFO-
macro which prints the given parameter to the screen. In the final version of the
program this is not necessary. However removing all outputs in the code may
be unwanted to be able to insert them again for debugging purposes:
#ifdef DEBUG
#define INFO(X) printf(X)
#else
#define INFO(X)
#endif

If DEBUG is defined the INFO-macro is expanded to a printf-statement oth-
erwise it is replaced with nothing.
The #ifndef statements is the opposite of #ifdef. It simply negates the
condition of the #ifdef statement.
Header-Files. If a C program is split into several source files, the header file
tells the compiler which functions, data-structures and constants exist in other
source files. This is necessary because the compiler can only check the function
headers and the calling sequence in the current file. Header files can also be
used to share data structures and variables. It is similar to a normal source file
but consists only of definitions without any implementation. A cyclic inclusion
should be avoided using the preprocessor commands#define and#ifndef.
The following example shows how a function can be moved to an external file
and how the header looks like:
Example 3.38: exfct.c implements the function something:
#include <math.h> // for sqrt
#include "exfct.h" // Ensure that the function header
// fits to the one from exfct.h
double something(double x, double y, double z){

return sqrt(x*x+y*y+z+z*z);
}

The header file exfct.h only contains the function header (its signature) and
a preprocessor trick ensuring that it can not be included twice in one file:
#ifndef EXFCT_H
#define EXFCT_H
double something(double x, double y, double z);
#endif
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The main program can now include the header and knows how the function
something is called correctly.
Splitting a large program into different source filesmakes the whole project well
arranged and easily maintainable. The different files should have a meaningful
name.
A software project consisting of many source files can be compiled adding all
.c-file to the compiler call. This works but is not the best way when searching
for compilation errors. A better and faster way is to define a makefile which
automates the build. The next Section 3.9 shows how this basically works.

3.9 Makefiles

Make is a utility that automates the build process for executable programs
and libraries from source code. It is, by default, controlled by a text file called
Makefile, which contains the build instructions. It can deal with dependen-
cies between different source code files and compiles only files that have been
modified since the last build. There exists different versions of make such as
GNU Make, BSD Make and Microsoft’s nmake.
Amakefile is not a script as we have seen it in the case ofbash, but rather works
as a dependency tree. It compiles the files that are outdated in the order they
depend on each other. The makefile consists of so called targets, which may
depend on each other. A target is defined by a rule:
targetname: dependencies

command1
command2
...

The indentation before the commands must be <tab> characters; not spaces! The
targetname should be equal to or closely related to the output file generated
by the commands. dependencies is a space separated list of other targets
that need to be compiled prior to the target or names of files which need to
exist. A target is only built if it is older than at least one of its dependencies.
There can be more than one target in a single makefile.
Example 3.39: Consider a small software project consisting of main.c,
file1.c and file1.h. A makefile to create the final program prog looks
like:
prog: main.c file1.c file1.h
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gcc -c main.c
gcc -c file1.c
gcc -o prog main.o file1.o

In the case that the makefile is named Makefile or makefile the make pro-
cess may be invoked executing
make targetname

If the makefile is called differently, use:
make -f makefilename targetname

If no targetname is specified, the first one found in the makefile is used.
In order to be more flexible, we can introduce variables. Mostly they contain
the list of source files, object files or compiler and linker options. A variable is
set by
VARNAME=VALUE

and it’s contents is accessed with $(VARNAME). To change the extension of all
files listed in a variable the substitute command is used. The syntax is
NEWVAR = ${OLDVAR:.old=.new}

This replaces the extension of every file ending with .old in OLDVAR to .new
and stores the list to NEWVAR. This is normally used to create a list of object files
from the list of source files. Additionally, one can define conditional variables. In
this case the value is only set if the variable does not already exist. This is helpful
if the user should be able to set options when he invokes make. A conditional
variable is set by
VAR?=FOO

If make is called without any argument then VAR will contain “FOO”, if make is
called like
make VAR=BAR

the variable VAR contains “BAR”.
Because it takes too long to define a rule for every input file, suffix rules are
used. They create a target for every file matching the rule. They apply to files
that match the suffix and have not been processed by a separate target before.
.SUFFIXES: .in .out
.in.out:

command1
command2
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...

These rules create a target for every file ending on .in to transform it into the
same filename with the extension .out. This is used to compile source code
from file.c to an object file file.o. Two placeholders exist referring to the
input and the output filenames. The input file is referred to using $< and the
output file using $@.
Finally we define a clean up target. The target clean removes all object files
or intermediate outputs. Because this target does not produce an output file
or does not depend on a file called clean it needs to be declared as .PHONY
target.
Example 3.40:We consider again Example 3.39. Inserting variables, suffix rules
and the extension replacement we can turn it into a more generic one:
SRC=main.c file1.c
OUTPUT=prog
CC=gcc
CFLAGS= -O2
OBJECTS=${SRC:.c=.o}

$(OUTPUT): $(OBJECTS)
$(CC) -o $(OUTPUT) $(CFLAGS) $(OBJECTS)

.SUFFIXES: .c .o

.c.o:
$(CC) -c -o $@ $(CFLAGS) $<

clean:
rm -f $(OBJECTS)

.PHONY: clean

From time to time make does seem to do strange things and not work as in-
tended. In most cases this is due to the fact that the actual command issued by
make are notwhatwe intended in the first place. Then the-nor--just-print,
--dry-run, --recon flags (all aliases of each other) can help identify what is
going on. In contrast to normal operation, this will make make print all com-
mands that would be issued. So, we can crosscheck where the discrepancy
between actual and intended operation is and update the rules in the corre-
sponding targets.
There exist many other techniques to extend the make file such as automatic
dependency creation using the GCC compiler, pattern rules as a generalization
of the suffix rules, include statements, if directives and many more. See [12]



3.10. Writing Own Libraries 75

for details. Other tools like CMake8 or the GNU Autotools9 provide high level
scripting languages to create complex makefiles automatically.

3.10 Writing Own Libraries

Libraries are collections of precompiled functions and predefined data struc-
tures and constants togetherwith theheader files, containing the function head-
ers and the data structures. In contrast to a normal C program a library does
not provide a main function. The standard C library is an example for a library
which was already used in the previous sections.
Two different types of libraries exists. The first ones are the static libraries and
the other ones are the dynamic or shared ones. Both of them have advantages
and disadvantages. The static ones are easy to create but need more space
on the mass storage and cause problems with cyclic dependencies between li-
braries. On the other hand, the dynamic libraries are a bit more complicated to
create but take less space on the mass storage and can be exchanged without
recompiling the program. Many programs can refer to a single shared library
and use it independent of the specific version or implementation.
Static Libraries Static libraries are collections of object files combined in a
specially structured archive. This archive is a classical UNIX ar-file containing
all .o-files of the library and a search index. The source code only needs to be
compiled to object code using the -c compiler option. Afterwards, all object files
are combined to a .a-file:
ar crs libNAME.a *.o

The c options creates an archive, the r option replaces existing files inside the
archive, if it already exists and the s options adds an object index. This index
speeds up the linking procedure. For completeness we mention that running
ar with the s option is completely equivalent to using the command ranlib
for the index generation.
A static library is linked to a program by adding the .a-file to the compiler call:
gcc -o program main.c libname.a

All functions referenced in main.c are copied from libname.a to the final
program. If more than one static library is used the compiler resolves the sym-
bols from left to right. That means if two or more libraries depend on each
other they have to be added in their order of dependence. If there is a cyclic
dependency the files need to be added multiple times.

8https://www.cmake.org9https://en.wikipedia.org/wiki/GNU_build_system

https://www.cmake.org
https://en.wikipedia.org/wiki/GNU_build_system


76 Chapter 3. Introduction to C and the GNU Toolchain

Remark 3.41: If a static library is used in conjunction with a dynamic one
or on a 64-bit architecture like x86_64 all source files must be compiled
with the -fPIC flag.

Example 3.42:We consider the minimal external function from Example 3.38.
The following steps create a static library and link it against a program.
gcc -c -fPIC exfct.c
ar crs libexfct.a *.o
gcc -o prgm main.c libexfct.a

Dynamic/Shared Libraries Dynamic or shared libraries are nearly the same
as normal programs. The only difference is the missing main function. When
they are linked to a program a cross reference is placed in the program indicat-
ing in which dynamic library the functions actually resides. The dynamic loader
reads this cross references on execution and loads the necessary libraries into
the same address space as the program. If the program now calls an external
function it executes the code loaded from the libraries.
The dynamic linker searches for the dynamic libraries only in standard system
paths. Typically, these are /lib, /usr/lib/ and /usr/local/lib/. If a
library does not exist in these standard paths, the LD_LIBRARY_PATH envi-
ronment variable can be used to set additional search paths. An alternative
way is to add additional search paths to the program during the linking phase.
The addition of -Wl,-rpath=PATH to the compiler call allows this.
Dynamic libraries can be replacedwithout relinking program as long as they use
a compatible binary interface. If at least one function head, i.e. the functions
signature, changes or a data structure in a header file changes, the program
needs to be recompiled and relinked.
Dynamic libraries are createdusing the compiler and the linker. The source code
needs to be compiled with the -fPIC compiler flag. Additionally, the -shared
option advises the compiler and the linker to create a shared library instead of
a normal executable. The output file name for a shared library must follow the
libNAME.so naming convention.
Example 3.43:We consider the minimal external function from Example 3.38
again. The following steps create a dynamical library and link it against a pro-
gram.
gcc -shared -fPIC -o libexfct.so exfct.c
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gcc -o prgm -L. -lexfct main.c

If the additional search path should be integrated in the binary add
-Wl,-rpath=. to the second compiler call. The libexfct.so can be mod-
ified without relinking it to the output program as long as the function signature
does not change. A very nice summary of the topic can be found in [13].

3.11 Interfacing Fortran

Manymathematical libraries, especially numerical linear algebra ones, have been
written in Fortran. Fortran is the oldest high-level programming language which
is still in use. It is currently specified in ISO/IEC 1539-1:2010 [8]. The newer
versions of Fortran provide an interface to C10, but this is not supported by all
compilers and many Fortran codes rely on old standards. Due to this, the old
fashioned way of interfacing Fortran is presented by an example in this section.
Fortran code can be compiled using the gfortran command. This invokes
the Fortran compiler of the GNU Compiler Collection. It takes nearly the same
command line arguments as the C compiler. Fortran files typically use .f, .f90
or .f95 as extensions.
The DAXPY11 operation taken from the Basic Linear Algebra Subroutine library
(BLAS)12, which we introduce in Section 6.4.1, is used as an example to explain
how a Fortran subroutine is called from C. The DAXPY operation computes

y “ y ` αx

for two vectors x, y P Rn and a scalar α P R. The Fortran function header is
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

DOUBLE PRECISION DA
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(*),DY(*)

First of all, we have to translate the Fortran data-types to the corresponding C
types. Because Fortran passes values to a function using Call by Reference, all
arguments will be pointers no matter if they are scalar values or vectors. The
data-types of the arguments translate to:

10https://de.wikibooks.org/wiki/Fortran:_Fortran_und_C11https://www.netlib.org/blas/daxpy.f12https://www.netlib.org/blas

https://de.wikibooks.org/wiki/Fortran:_Fortran_und_C
https://www.netlib.org/blas/daxpy.f
https://www.netlib.org/blas
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Fortran type C type
INTEGER int
REAL float
REAL*8 double
DOUBLE PRECISION double
COMPLEX float complex
COMPLEX*16 double complex
DOUBLE COMPLEX double complex
CHARACTER or CHARACTER(*) char *

The second step is to translate the function name. Different compilers use dif-
ferent conventions for this. As long as only the GNU Compiler Collection is used
the rules are:
• The function name is translated to lower case.
• A trailing underscore “_” is added to the function name.
• If the function name contains anunderscore, a secondunderscore is added.

A Fortran subroutine is like a C function with a void return-type. If it is a func-
tion instead of a subroutine the return-type needs to be translated according to
the list above, as well. The return-type is then not a pointer.
Applying these rules to the DAXPY subroutine gives:
void daxpy_(int *N, double *DA, double *DX,
int *INCX, double *DY, int *INCY);

This function header is necessary in every C source code which uses the Fortran
routine. It can also be moved to a header file.
The following code computes

y “

ˆ

1
2

˙

, y “ y ` 2 ¨

ˆ

4
3

˙

using the DAXPY subroutine:
#include <stdio.h>
#include <stdlib.h>
void daxpy_(int *N, double *DA, double *DX,
int *INCX, double *DY, int *INCY);
int main(int argc, char *argv) {

double x[2] = {4 ,3};
double y[2] = {1 ,2};
double alpha = 2.0;
int n = 2, incx = 1, incy = 1;
daxpy_(&n, &alpha, x, &incx, y, &incy);
printf("y = [ %g, %g ]\n", y[0], y[1]);
return 0;
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}

The program is compiled calling:
gfortran -c daxpy.f
gcc -c main.c
gcc -o prgm main.o daxpy.o -lm -lgfortran

The math (-lm) and the Fortran runtime library (-lgfortran) need to be
added to the program.
If the list of arguments contains aCHARACTER(*) argument, we have to adjust
the rules a bit since Fortran does not use the NUL-termination of strings. For
this reason, the length of the string is passed as a hidden argument at the end
of the argument list 13. For each string argument of the subroutine one hidden
argument is added. This argument is an integer and passed by-value instead
of the by-reference. The length of the string is counted without the terminating
NUL character. The argument is not directly visible in the Fortran code.
Consider the Fortran header:
SUBROUTINE STRFUNC(MYSTR)

CHARACTER(*) MYSTR

We obtain the following prototype for the C interface:
#if __GNUC__ > 7
typedef size_t fortran_charlen_t;
#else
typedef int fortran_charlen_t;
#endif

void strfunc_(char *mystr, fortran_charlen_t length);

Remark 3.44: Although the calling convention between C and Fortran has
been defining hidden argument for CHARACTER arguments since at least
30 years, they are rarely used. Especially, if only characters of length one
are passed or the length is clear to the subroutine, these arguments are
very often neglected. In most codes, especially where BLAS and LAPACK
are interfaced, these hidden arguments are missing. With some version
of the GCC compiler and some compiler flags this can cause troubleab.

ahttps://lwn.net/Articles/791393/
bhttps://developer.r-project.org/Blog/public/2019/05/15/

gfortran-issues-with-lapack/

13https://gcc.gnu.org/onlinedocs/gfortran/Argument-passing-conventions.
html

https://lwn.net/Articles/791393/
https://developer.r-project.org/Blog/public/2019/05/15/gfortran-issues-with-lapack/
https://developer.r-project.org/Blog/public/2019/05/15/gfortran-issues-with-lapack/
https://gcc.gnu.org/onlinedocs/gfortran/Argument-passing-conventions.html
https://gcc.gnu.org/onlinedocs/gfortran/Argument-passing-conventions.html
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3.12 AutomaticGenerationof CodeDocumentationsUs-
ing DOXYGEN

Documenting code and writing a manual for a software project can be even
more time consuming than the real programming job. doxygen is a documen-
tation generator tool which allows the programmer to write the documentation
directly inside the source code. It extracts the documentation from specially
structured comments and outputs it to HTML files, a LATEX document, an RTF
document or man pages. A large variety of programming languages such as C,
C++, Java, Fortran or Python are supported.
Modified multi line comments are mostly used for doxygen in a C source.
Instead of /* they have to start with /**. Depending on the programming
language other comments must be used. These comments are interpreted by
doxygen. When a doxygen-comment stands directly in front of a function, a
structure definition or a similar construct, it refers to this object. The documen-
tation is improved with special statements inside the comment. The basic ones
are:
@brief Set the brief documentation of the object.
@param Document a parameter of a function.
@return Document the return value of a function.
@author Set the author of a function.
@version Set the version of an object.
@see Create a cross reference to an other function, struct,. . .

Alternatively, the commands can start with a \ instead of the @ character. All
lines not beginning with a doxygen-command are extracted as normal docu-
mentation text. Normal C comments are not recognized by doxygen.
Additionally, HTML tags or LATEX-style formulas can be used in the documenta-
tion. A LATEX formula is enclosed by \f$ or \f[ and \f] in order to create an
in-line or a separated formula. If the outputs are HTML files the LATEX-formulas
are rendered and included as images. On the other hand, if the output is a
LATEX document the basic HTML tags are converted to the corresponding LATEX-commands.
Example 3.45:Wewant to document the sqr function from Example 3.27. This
is done adding a doxygen comment block right before the function header
begins:
/**
\brief Squares a given double value.
\param x Input value.
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\return the square of the input value x.

The sqr function returns the square \f$ x^2 \f$ of a
given number x. <i>The intermediate result is stored
in an internal variable.</i>

*/
double sqr(double x) {

/* This is not for doxygen. */
double a;
a = x * x;
return a;

}

Beside the special comments inside the source code doxygen is controlled by
a so called Doxyfile. This specifies the source directory, the output format
and other in- and output related options. A template of this file is generated
using:
doxygen -g config_filename

The newly generated file is well documented and easily customizable using a
text editor. The documentation of a software project is created by simply calling
doxygen config_filename

If doxygen is invokedwithout any configuration file it searches for a file named
Doxyfile in the current directory.
More information about doxygen and its use within a software project are
available in [4]. A good starting point for beginning readers can be found in [3].

Bibliography

[1] Wikibook: C, https://de.wikibooks.org/wiki/
C-Programmierung.

[2] Wikibook: Fortran, https://de.wikibooks.org/wiki/Fortran.
[3] Doxygen: Getting started, https://www.doxygen.org/manual/

starting.html.
[4] Doxygen: Website, https://www.doxygen.org/.
[5] ISO, ISO/IEC 9899:1990: Programming languages — C, International Organi-

zation for Standardization, Geneva, Switzerland, 1990, https://www.
iso.org/standard/17782.html.

https://de.wikibooks.org/wiki/C-Programmierung
https://de.wikibooks.org/wiki/C-Programmierung
https://de.wikibooks.org/wiki/Fortran
https://www.doxygen.org/manual/starting.html
https://www.doxygen.org/manual/starting.html
https://www.doxygen.org/
https://www.iso.org/standard/17782.html
https://www.iso.org/standard/17782.html


82 Chapter 3. Introduction to C and the GNU Toolchain

[6] ISO, ISO/IEC 9945-1:1996: Information technology — Portable Operat-
ing System Interface (POSIX) — Part 1: System Application Program In-
terface (API) [C Language], International Organization for Standardiza-
tion, Geneva, Switzerland, 1996, https://www.iso.org/standard/
24426.html.

[7] ISO, ISO/IEC 9899:1999: Programming Languages — C, International Orga-
nization for Standardization, Geneva, Switzerland, Dec. 1999, https://
www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf.

[8] ISO, ISO/IEC 1539-1:2010 Information technology — Programming languages
— Fortran — Part 1: Base language, International Organization for
Standardization, Geneva, Switzerland, June 2010, http://fcode.cn/
download/N1830.pdf.

[9] ISO, ISO/IEC 9899:2011: Programming Languages — C, International Orga-
nization for Standardization, Geneva, Switzerland, Dec. 2011, https://
www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf.

[10] ISO, ISO/IEC 9899:2018 Information technology — Programming languages
— C, International Organization for Standardization, Geneva, Switzerland,
fourth ed., June 2018, https://www.iso.org/standard/68564.
html.

[11] B. Kernighan and D. Ritchie, The C Programming Language, Prentice-Hall
Software Series, Prentice Hall, 1988, https://books.google.de/
books?id=161QAAAAMAAJ.

[12] R. Mecklenburg,Managing Projects with GNUMake, O’Reilley Media, 3rd ed.,
2004.

[13] A. Rachum, Shared libraries: Understanding dynamic loading, Sept.
2016, https://amir.rachum.com/blog/2016/09/17/
shared-libraries/.

[14] C. K. Ulrich Kaiser, C/C++ Das umfassende Lehrbuch, Gallileo Computing,
2005.

[15] J. Wolf, C von A bis Z, Gallileo Computing, 2009, http://openbook.
galileocomputing.de/c_von_a_bis_z/.

[16] J. Wolf, Linux-UNIX-Programmierung, Gallileo Computing, 3rd ed., 2009,
http://openbook.galileocomputing.de/linux_unix_
programmierung/. 2nd Edition available as OpenBook.

https://www.iso.org/standard/24426.html
https://www.iso.org/standard/24426.html
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://fcode.cn/download/N1830.pdf
http://fcode.cn/download/N1830.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://books.google.de/books?id=161QAAAAMAAJ
https://books.google.de/books?id=161QAAAAMAAJ
https://amir.rachum.com/blog/2016/09/17/shared-libraries/
https://amir.rachum.com/blog/2016/09/17/shared-libraries/
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/c_von_a_bis_z/
http://openbook.galileocomputing.de/linux_unix_programmierung/
http://openbook.galileocomputing.de/linux_unix_programmierung/


640K is more memory than anyone will ever need on a computer.
among the top 5 myths aboutBill Gates

CHAPTER 4

Memory Architecture and Memory Management

Contents
4.1 Virtual Memory Concept . . . . . . . . . . . . . . . . . . . 85

4.1.1 Paging . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.2 Memory Related Error Signals . . . . . . . . . . . 87

4.2 Volatile memory . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 Registers . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Main Memory . . . . . . . . . . . . . . . . . . . . 89

4.3 Non-Volatile Storage . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 Local Storage Media . . . . . . . . . . . . . . . . . 89
4.3.2 Local Network . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Cloud and Remote Network Services . . . . . . . . 90

4.4 Non Uniform Memory Access . . . . . . . . . . . . . . . . 91
4.4.1 Cache Coherence . . . . . . . . . . . . . . . . . . 91
4.4.2 Memory Consistency . . . . . . . . . . . . . . . . 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Several different layers of memory exist in a modern computer environment.
Each of the layers in this hierarchy has a certain relevance in, and special prop-
erties for, scientific computing tasks. This chapter is dedicated to a brief intro-
duction of the single layers with their most important properties. The presenta-
tion of these properties will help understand the motivation behind the storage
structures and tiled operation strategies introduced in Chapter 6.
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• L3 Cache
• L2 Cache
• L1 Cache
• Registers

• Main Random Access Memory
(RAM)

• Network Storage
• Local Storage

– Hard Disk Drive (HDD)
– Solid State Disk (SSD)

• Cloud

fast

medium

slow and
very slow

Figure 4.1: Memory Classes in Scientific Computing

Hardware sided the relevant memory comes mainly in four types
• Static Random Access Memory
(SRAM)
• Dynamic Random Access Memory
(DRAM)
• Flash Electrically Erasable Programmable Read-Only Memory
(Flash-EEPROM)
• Magnetic surfaces

Here, the first two types are so called volatile memory devices, which only hold
the information as long as they are supplied with electric power. The other
two are designed to preserve their content during phases where the power
is switched off. Naturally, the secure storage of data (with respect to power-
off) comes at a cost. The cost we have to pay is the increased time for, espe-
cially, write accesses. The magnetic storage types here are the slowest. This is
mainly due to the mechanic subsystems involved in the process. On a hard disk
drive the magnetic read/write-head has to be positioned at the right place prior
to operation. This equivalently has to be done with the tapes in a tape drive.
Both types are, therefore, mainly usable for long term storage of final results.
Hard disks are to some extent also useful during computations, when the main
memory is running short. Special techniques often called cache to disk or dou-
ble buffering are used to store data portions, that will not be used for a longer
time in the computation, to the local storage and so free up main memory for
intermediate computations.
Nevertheless, in basic operation the static and dynamic random access mem-
ory types are the more important ones. Both are electronic memory devices
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consisting of integrated circuits (ICs) as basic realizations. Their main differ-
ence is that the SRAM circuits are transistor based and the DRAMs are capacitor
based. It is now easy to imagine that SRAMs can switch essentially instanta-
neous, whereas DRAMs have to wait for the capacitors to charge completely
and require periodic refresh signals to prevent the capacitors from discharg-
ing. On the other hand, DRAMs are producible in higher density at lower costs,
and have a smaller energy consumption. The main properties are compared in
Table 4.1.

Feature SRAM DRAM
Storage Circuit Base Transistor Capacitor
Speed Same as CPU Slower than CPU
Latency Low High
Density Low High
Power Consumption High Low
Cost High Low

Table 4.1: Comparison of Volatile Memory Types

Due to the low cost the largest part of a modern computer’s memory, namely
the main memory, is made out of DRAM chips. The faster and more expensive
SRAM chips are only used on the part of thememory that is closest to the actual
processing units on the CPU. That means the Cache (see Figure 4.1) is made out
of SRAMs, which is one reason why it is usually very limited.
The main concerns in this chapter will be:
• memory organization (pages, page sizes),
• swapping,
• memory related error signals,
• memory transfer and alignment,
• virtual memory concept.

4.1 Virtual Memory Concept

Definition 4.1 (Virtual memory and memory pages): Virtual memory is an
operating systemabstraction layer, that allows to access the variousmem-
ory layers as one large device. It usually consists of memory pages, the
smallest accessible units of memory (normally 4 or 64 kBytes).
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Virtual memory covers:
• main memory
• cache (via CPU memory management unit (MMU))
• memory mapped files
• SWAP (usually specially structured part of disks)

Data relocation relies on hardware support, mainly implemented in thememory
management unit of the CPU.

Definition 4.2 (swapping and double buffering): Relocation of potentially
unused data to the local storage by the operating system is called swap-
ping. Moving data to the local storagemay cause large overhead inwaiting
time. Any technique that moves that data at strategically better times to
avoid swapping is called double buffering.

4.1.1 Paging

Paging is a memory management scheme that eliminates the need for contigu-
ous allocation of physical memory, thus minimizing issues like fragmentation.
• paged virtual memory is the most common implementation,
• page size mostly 4 kBytes,
• generally data can be located anywhere in a page,
• some operations expect the data to be located at the start of a memory
page,
Ñ page alignedmemory
Ñ increases memory fragmentation
• page locked memory is a special type of memory that is not allowed to get
swapped,
• pages can bemoved between RAMand permanent storage like harddisks.

Paging on the CPU works in the following way:
1. Logical and Physical Address Space:

• The logical address space is divided into fixed-size units called pages.
• The physical address space is divided into blocks of the same size,
called frames.

2. Page Table:
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• Each process has a page table that maps logical pages to physical
frames.
• The page table keeps track of where each page is stored in physical
memory.

3. Address Translation:
• When a process needs to access a memory location, the CPU trans-
lates the logical address into a physical address using the page table.
• The logical address is split into a page number and an offset. The
page number is used to find the corresponding frame in the page
table, and the offset specifies the exact location within the frame.

Advantages of paging:
• No Physical Fragmentation: Since pages and frames are of fixed size,
there is no fragmentation in the physical memory.
• EfficientMemoryUse: Allows for efficient use ofmemory by loading only
the necessary pages into memory.

Disadvantages of paging:
• Page Table Overhead: Each process requires its own page table, which
can consume a significant amount of memory.
• Page Faults: If a page is not in memory, a page fault occurs, requiring the
page to be loaded from disk, which can be slow.

4.1.2 Memory Related Error Signals

The two important memory related signals are:
• SIGSEGV

– segmentation violation or segmentation fault signal
– usually leads to immediate abortions of the process
– caused by accessing memory segments in foreign address spaces.

• SIGBUS
– Bus error signal
– abortion also immediate
– one common cause: using a processor instruction with an address
that does not satisfy its alignment requirements
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4.2 Volatile memory

4.2.1 Registers

• very small number
• small (<100 Bytes)
• MMX, SSE, AVX
looooooomooooooon

local vectorization
• we rely on compiler capabilities

4.2.2 Cache

• L1: typically 32 or 64 kBytes, split into a data and an instruction part, in-
stalled per core, direct access to the registers, transfer-rate: 1TB/s.
• L2: « 256 ´ ´2048 kBytes, installed per core, keeps frequently used
data and instructions of the current core, transfer-rate: 1TB/s
• L3: « few MBytes per core, same as L2 for a group of cores making a
processor, connects to RAM, transfer-rate: ą400 GB/s
• L4: only on fewCPUarchitectures, cacheof thememory controller, transfer-
rate: 400 GB/s

Cache is small, high speed memory made out of SRAM.
Data-Lookup:

L1 Cache L2 Cache L3 Cache Main Memory

Successful lookup is called Cache Hit, and the data item is transferred to the
registers at maximum speed.
Cache Miss:

• data not available in cache
• needs to be loaded from main memory
• results in amiss penalty (Cache Latency)

Hit ratio: percentage of memory accesses satisfied by the cache (« 80´ 90%).
Miss ratio: 100%´ Hit ratio
Arranged in so called cache lines of 4´ 128 Bytes.
The cache behaviour can be explored using valgrind’s cachegrind compo-
nent.
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Cache line replacement: e.g.
• LRU — least recently used
• random

Rules of thumb:
cache transfer rate [Bytes/s] “ width (no. bits) ˆ clockrate ˆ data per clock / 8

The secret of a fast method is program locality, i.e., as many opera-
tions as possible on data already residing in the caches.

4.2.3 Main Memory

made of DRAM mainly availabe in 3 types
• asynschronous
(FPRAM, EDORAM) (outdated)
• synchronous
(SDRAM,DDRSDRAM,DDR2SDRAM,DDR3SDRAM,DDR4SDRAM,DDR5SDRAM)
• Rambus
(RDRAM, XDRDRAM, XDR2DRAM)

Standard PCs today mostly use DDR4SDRAM or DDR5SDRAM.
Memory clock 2000–4000 MHz
Data rate 4000–6000 MT/s
Peak transfer rate 32–64 GB/s
CAS Latency 30–40 cycles (at best) « 7.5–20ns

The latest DDR5SDRAM chips feature double the manufacturing density, lower
operation voltage (1.1V compared to 1.2V for DDR4 and 1.5V DDR3) and higher
operation frequencies (DDR4: 1600–3200MHz).
Columns Address Stroke Latency (CAS Latency): time for waiting between a
request of data and their availability at the memory pins.
Currently available sizes: 256 MB – 2 TB

4.3 Non-Volatile Storage

4.3.1 Local Storage Media

Maximum possible transfer rates are bounded by the capabilities of the bus
interface
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Type theoretic peak transfer release / introduction
ATA 33/66/100 33/66/100 MB/s

SATA I 150 MB/s “̂ 0.15 GB/s
SATA II 300 MB/s “̂ 0.30 GB/s « 2005
SATA 3.0 600MB/s “̂ 0.60 GB/s 05.2009
SATA 3.2 up to 1969MB/s “̂ 1.97 GB/s 08.2013
SAS 300 MB/s – 22.5 GB/s current developments

Solid StateDisk vs. HardDiskDrive Both are connected to the samehost/bus
interface.

Feature/Property SSD HDD
Noise ` ´

Reliabilty, Lifetime ´ `

Price ´ `

Capacity ´ `

Fragmentation ` ´

mechanical delay ` ´

practical transfer rates 100–600 MB/s ď 140 MB/s
random access time 0.1 ms 2.9–12 ms

Developments connecting the SSD to the PCIe bus (see SATA 3.2 above) get al-
most 2 GB/s.
Currently available sizes: ď8–16 TB (HDD).

RAID (Redundant Array of Independent Disks)

• can increase total storage capacity by grouping disks to larger logical vol-
umes
• can increase the performance and data safety by multiply/redundantly
storing the same data.

4.3.2 Local Network

High variance in speeds from 100–10000 Mb/s on local network to 10–40 Gb/s
on high speed Infiniband server networks. 56/80/100 Gb/s have recently en-
tered the market. Higher speeds are in development.

4.3.3 Cloud and Remote Network Services

Usually only useful for storing results for post processing. Involves additional
synchronization.
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4.4 Non Uniform Memory Access

The non uniform memory access (NUMA) model is part of Flynn’s taxonomy of
parallel architectures, which will be treated in more detail in term 2. The basic
characterization of a NUMA machine is the type of architecture that appears
when several independent processing units have thememory associated locally
to single units. The entire shared memory of all processing units is the sum of
the local memories. Then parts of the memory can only be accessed indirectly
with the help of other processing units and additional latencies are unavoidable.
Example 4.3: A system is equippedwith 2 processors an 32GBofmainmemory,
which is separated into two blocks of 16 GB, one for each processor.
The MMUs each organize 16GB locally and need to access the other 16GB via
the other MMU.
A less obvious appearance of this phenomenon is onMulticore processors, where
each core has its own L1 and L2 Cache, and L3 cache can be available for certain
core groups only.

4.4.1 Cache Coherence

Example 4.4: Consider a dual Core systemwith L1/L2 caches for each processor
core. The situation that a memory block is present in both caches and one of
the copies invalidates the other copy due to a write access, can appear.
The problemdescribed in Example 4.4 is called cache coherence problem. The
task of keeping different copies of the data coherent, i.e., consistentwith respect
to read access, is introducing additional management work that can increase
read access times.
A system that is investing this extra work is called ccNUMA (for cache coherent
NUMA) machines.

4.4.2 Memory Consistency

CacheCoherence ensures the same view to the globalmemory through the local
cache for each processing unit.
ñ At each point in time each processor performing a read access gets the latest
data.
The corresponding problem for write accesses describes the memory consis-
tency problem.
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number crunching. Computations of a numerical nature, esp. those that makeextensive use of floating point numbers. The only thing Fortrash is good for. This termis in widespread informal use outside hackerdom and even in mainstream slang, buthas additional hackish connotations: namely, that the computations are mindless andinvolve massive use of brute force. This is not always evil, esp. if it involves ray tracingor fractals or some other use that makes pretty pictures, esp. if such pictures can beused as screen backgrounds.
The New Hacker’s Dictionary
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We have seen in the preface, that the numerical solution of mathematical tasks
produces different kinds of errors. In order to be able to judge the correct-
ness of our results and avoid or bound the errors resulting from finite precision
representations, we investigate and analyze the machine numbers used for cal-
culation on modern computers.
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5.1 Machine Numbers

For calculations on, e.g., a computer, a cell phone, or a pocket calculator, real
or complex numbers need to be stored in the finite memory of the device, i.e.,
with only finitely many digits of accuracy. For simple numbers like 1.0 or 0.5 it is
easy to imagine that this is somehow possible, however, for π, which is known
to have infinitely many digits, we obviously need to truncate somewhere and
thus introduce a certain representation error.
There exist a number of known representations for storing real numbers. Most
of them are based on the following theorem.

Theorem5.1 (p–adic expansion): Forx P R, p P Nzt1u there exist uniquely
determined j P t0, 1u, ` P Z and @k P Z with k ď ` unique γk P
t0, . . . , p´ 1u, such that

x “ p´1qj
ÿ̀

k“´8

γkp
k, (5.1)

where γ` ‰ 0 for x ‰ 0, j “ ` “ 0 for x “ 0, and γk ă p´ 1 for infinitely
many k ď `.

Proof. See, e.g., [3].
In Theorem 5.1 especially the expression “γk ă p ´ 1 for infinitely many k”
means that, e.g., for p “ 10 the number 3.9 is represented as 4.0. Moreover,
note that all summands in (5.1) are positive, so for x “ 0 all γk need to be zeroand the condition j “ ` “ 0 only makes the representation unique.
The p–adic representation of a number given in a different number system can
be expressed using the following representation:

pxqp :“ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . ,

where the digits following the separating “.” are called the mantissa.
decimal system In our everyday life we are usually using the decimal system,
i.e., the representation for p “ 10.

x “ ˘
ÿ̀

k“´8

γk ¨ 10k “ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . “ pxq10

with digits γk P t0, . . . , 9u and base p “ 10.
The important number systems for computer arithmetic systems are:
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binary system p “ 2, γk P t0, 1u.As an example the decimal number x “ 1123 is translated into the binary
system as follows:

1123 “ 1024` 99 “ 210 ` 64` 35

“ 210 ` 26 ` 32` 3 “ 210 ` 26 ` 25 ` 21 ` 20,

i.e., p1123q2 “ 10001100011.
For the decimal number 1

10 , on the other hand, we have
ˆ

1

10

˙

2

“ 0.00011.

To see this we exploit p10q2 “ 1010 and perform the division manually in
the binary system:
1:1010 = 0.000110011...
.
.
.
.
-----
10000
-1010
-----
1100
-1010
-----

10000
.
.
.

So 1
10 can not be written in a finite number of digits in the mantissa. Note

that this does not contradict the conditions of Theorem 5.1, since we still
have γk “ 0 for infinitely many k.

hexadecimal system p “ 16, γk P t0, 1, . . . , 15u.
The usual representation usesA “ 10,B “ 11, . . . ,F “ 15, and therefore
the standard digits are t0, 1, . . . , 9, A,B, . . . , F u.
For example for the hexadecimal number x “ A1E it holds
pA1Eq10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation of a decimal number into the hexadecimal system is espe-
cially easy if we already know its binary representation. There the binary
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digits can be clustered into groups of four digits for which the hexadeci-
mal representation is computed, as in

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Representation (5.1) is equivalent to
x “

#

p´1qj
ÿ̀

k“´8

γkp
k´`´1

+

looooooooooooooomooooooooooooooon

“:s

¨p``1 “:

#

p´1qj
8
ÿ

i“1

αi
pi

+

loooooooomoooooooon

“:a

pb, (5.2)

where αi :“ γ`´i`1, i “ 1, . . . and b :“ l ` 1. In (5.1) we have γ` “ 0 and thus
we immediately get 1

p ď |s| ă 1.

Definition 5.2: The representation of any x P R as in (5.2) is called nor-
malized floating point representation of x with respect to p. Here

a :“ p´1qj
8
ÿ

i“1

αi
pi

where αi P t0, 1, . . . , p´ 1u (5.3)
is called the significand and

b :“ p´1qs
m
ÿ

i“1

βip
m´i, for s P t0, 1u, βi P t0, 1, . . . , p´ 1u (5.4)

the exponent.
This floating point representation is called normalized since α1 ‰ 0.

In contrast to the representation above, on a computer we can only store finitely
many digits in the significand. In case αi “ 0 for all i ą t P N, x can be encoded
by saving j, s (for determining the signs of significand and exponent) and the
digits in the p-adic representation of significand and exponent. This motivates
the schematic representation

j α1 . . . αt s β1 . . . βm

Thus we require 1` t` 1`mmemory positions.
Example 5.3: For p “ 10 the normalized floating point representation of the
real number 35 657.23 is given as

0.3565723 ¨ 105 “

ˆ

3

101
`

5

102
`

6

103
`

5

104
`

7

105
`

2

106
`

3

107

˙

¨ 105,
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encoded as
0 3 5 6 5 7 2 3 0 5

j α1 α2 α3 α4 α5 α6 α7 s β1
.

In this example t “ 7 andm “ 1.

This now allows to define the representation of real numbers in sets of com-
puter representable numbers.

Definition 5.4: For p P Nzt1u, emin, emax P Z, t P N we denote the set of
normalized floating point numbers of length t with respect to the base p and
range of exponents temin, emin ` 1, . . . , emaxu Ă Z by
Mpp, t, emin, emaxq :“ t ˘0.α1α2 . . . αt ¨ p

b |αi P t0, . . . , p´ 1u, α1 ‰ 0,

emin ď b ď emaxu Y t0u .

x PMpp, t, emin, emaxq is called computer number ormachine number.

Example 5.5: The elements inMp2, 3,´1, 4q are shown in the following number
ray

´15 ´10 ´5 5 10 15

Note that machine numbers are not equally distributed.

5.2 Rounding Errors and Error Propagation

Real numbers need to be represented as machine numbers on a computer.
They can not always be represented exactly due to the fact that the significand
of a machine number has only t digits of accuracy, as we have for example seen
in the translation of 0.1 to binary representation. In cases where these t digits
are not sufficient, we need to either truncate the representation or round to the
closest machine number. Doing this we introduce rounding errors.

5.2.1 Rounding Rules

The rounding function
γ : RÑMpp, t, emin, emaxq
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for x P Z :“ r´xmax,´xmins Y t0u Y rxmin, xmaxs is determined by
γpxq “ arg min

x̃PMpp,t,emin,emaxq

|x´ x̃|, (5.5)
where

xmin :“ min t|x| | x PMpp, t, emin, emaxqzt0uu ,

xmax :“ max t|x| | x PMpp, t, emin, emaxqu .

Let x “ ˘ 8
ř

i“1

αi

pi
¨ pb P Z with α1 ‰ 0. Then we have

γpxq “

$

’

’

&

’

’

%

˘
t
ř

i“1

αi

pi
¨ pb, αt`1 ă

p
2 ,

˘

ˆ

t
ř

i“1

αi

pi
` 1

pt

˙

¨ pb, αt`1 ą
p
2 .

The special case of αt`1 “
p
2 is not uniquely determined via (5.5). There, we

have, e.g., the following options:
Round up: Handle γpxq as if αt`1 ą

p
2 .

“Round-to-even”: Rounds towards the closestmachine numberwith anαt thatis even.
For example for p “ 2, t “ 3:

γp0.1001q “ 0.100 (round down)
γp0.1011q “ 0.110 (round up)

The advantage as compared to rounding up is a (statistically) more equal
distribution of rounding errors (they are partially negating each other).
Positive effects have among others been observed in astro-physical long
term computations as, e.g., in the investigation of the “Big Bang” theory.

Overflows and Underflows It still remains to specify γpxq for x R Z. Here we
have to distinguish two cases:
|x| ă xmin: This case is called underflow. There are two ways to deal with this

exception. On the one hand, we can round towards the closest valid ma-
chine number:

γpxq “

"

0 or rather
signpxqxmin

On the other hand, one can use the so called gradual underflow. There we
use representable but non-normalized floating point numbers, i.e., float-
ing point numbers allowing α1 “ 0 to circumvent the underflow. The
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smallest number representable in this way is 0. 0 . . . 01
loomoon

t

¨pemin . In this case
the same rounding rules as for x P Z are used.

|x| ą xmax: This case is called overflow. Here we have the two variants
γpxq “

"

signpxqxmax

signpxq ¨ 8.

The latter of which needs to extend our definition of Mpp, t, emin, emaxqby a symbol for8. This is used in the IEEE 754 standard for floating point
arithmetic (see also p. 107ff.).

After having defined a proper rounding function we have to ask ourselves how
large the rounding errors can actually get. Here and in the following, for an
exact quantity x and its machine number approximation x̃, we distinguish the
absolute error

}x´ x̃}

and the relative error
}x´ x̃}

}x}
.

Therein } . } for a scalar entity in general means the absolute value, whereas
otherwise it stands for a suitable norm.
For the rounding errors in Mpp, t, emin, emaxq we have the following important
results:

Lemma 5.6: The absolute rounding error fulfills
|γpxq ´ x| ď

p´t

2
¨ pb @x P Z.

Proof. Let x :“ ˘
8
ř

i“1

αi

pi
pb and define

y1 :“ signpxq
t
ÿ

i“1

αi
pi

pb (round towards zero)

y2 :“ signpxq

˜

t
ÿ

i“1

αi
pi
`

1

pt

¸

pb (round away from zero)
Then apparently we have γpxq P ty1, y2u and

x P

#

ry1, y2s, x ą 0,

ry2, y1s, x ă 0.
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Let a1 ă a2 P ty1, y2u, since |x´ aj | ď 1
2 |a2´ a1| “

1
2 |y2´ y1| either for j “ 1,

or for j “ 2, or both, if x P ra1, a2s, we find
|γpxq ´ x| ď

1

2
|y2 ´ y1| “

1

2

pb

pt
.

Lemma 5.7: Let Z “ r´xmax,´xminsY t0uY rxmin, xmaxs, as above. Therelative rounding error for all x P Zzt0u fulfills
|γpxq ´ x|

|x|
ă

1

2
p1´t.

Proof. The significand a of x fulfills |a| ě 1
p . Thus we have |x| ě 1

p ¨ p
b. From

Lemma 5.6 we, therefore, find
|γpxq ´ x|

|x|
ď

1

pb´1

1

2
pb´t “

1

2
p1´t.

From |x| ą 1
pp
b we have strict inequality unless x “ ˘1

p ¨ p
b. In the latter case,

however, x PMpp, t, emin, emaxq and so γpxq “ x, i.e., |γpxq´x|
|x| “ 0.

Remark 5.8: Note thatx P Zzt0u, excludes the case of gradual underflow.

Definition 5.9: The quantity u :“ 1
2p

1´t is called “unit round off”.
The unit round off describes the relative error that can result from rounding
operations. It should not be mistaken for themachine epsilon eps.

eps :“ mint|x̃´ 1| | x̃ PMpp, t, emin, emaxq, x̃ ą 1u “ p1´t “ 2u,

determines the distance of 1 to the next larger machine number.

Remark 5.10: To be able to talk about the accuracy of an approximate
quantity we have to estimate the relative error.
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For example
x “ 25.317, x̃ “ 25.313 (i.e., x̃ has 4 correct digits)
ùñ

|x´ x̃|

|x|
“

0.004

25.317
« 0.16 ¨ 10´3.

It is an easy argumentation to find that the number of correct digits coin-
cides with the negative exponent of the relative error p˘1q.
The absolute error does not carry any information about the accuracy! For
example for y “ 0.001, ỹ “ 0.002: |y ´ ỹ| “ 10´3 is rather small, but ỹ
has no correct digit as we can see from the relative error

|y ´ ỹ|

|y|
“ 1.

Remark 5.11: In C99 a set of commands and settings for influencing the
computation with floating point numbers have been added to the C stan-
darda. Especially the behavior of the rounding function γp.q can be influ-
enced using the functions
int fegetround(void);
int fesetround(int round);

Available rounding models, i.e. values for the round argument, are
• FE_DOWNWARD,
• FE_UPWARD,
• FE_TONEAREST (default),
• FE_TOWARDZERO.

asee, e.g., http://openbook.galileocomputing.de/c_von_a_bis_z/
030_c_anhang_b_005.htm for a list

5.2.2 Computer Arithmetic

We have introduced the relative and absolute rounding errors in the previous
section andprovedbasic results regarding their sizes in Lemma5.6 and Lemma5.7.

How do these rounding errors evolve under elementary arithmetic
operations (`, ´, ¨, {)?

This question is investigated in the following.

http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm
http://openbook.galileocomputing.de/c_von_a_bis_z/030_c_anhang_b_005.htm
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As a direct consequence of Lemma 5.7 it follows
γpxq “ xp1` εq, |ε| ď u @x P Z.

This is the error resulting from simply storing the number in the computers
memory. For example for p “ 2 we have seen before that p0.1q2 “ 0.00011. In
normalized representation this is 0.110011 ¨2´3. Now rounding to six digits (i.e.
t “ 6) we get

pγp0.1qq2 “ 0.110011 ¨ 2´3,

whichmeans that in decimal representation we have γp0.1q “ 51
512 which equalsthe decimal fraction 0.099609375.

Computers are only equipped with a so called pseudo arithmetic, since we can
not expect in general that the result of x4y for 4 P t`,´, ¨, {u and machine
numbers x, y P Mpp, t, emin, emaxq will also be a number inMpp, t, emin, emaxq.This becomes obvious in the following example.
Example 5.12: Both x “ 0.12 and y “ 0.34 are from the set of machine num-
bersMp10, 2, emin, emaxq, but for their product we easily see

x ¨ y “ 0.0408 “ 0.408 ¨ 10´1,

which requires a 3 digit mantissa and thus is not inMp10, 2, emin, emaxq.
To put the result intoMp10, 2, emin, emaxq we thus need to round. Denoting theresult of a floating point operation, i.e., the result of a calculation x4y in a system
of machine numbers by xo y one usually determines the result as in

xo y “ γpx4yq, 4 P t`,´, ¨, {u. (5.6)
That means the operation is performed exact first and rounded to a valid ma-
chine number afterwards. Doing this we achieve the

Standard Model of the Floating Point Arithmetic: For all floating
point numbers x, y P Mpp, t, emin, emaxq and any arithmetic operation
4 P t`,´, ¨, {u it holds:

xo y “ px4yqp1` δq, for a |δ| ď u. (5.7)

In the following we will always assume the validity of (5.7) and that the same
also holds for?x, i.e., γp?xq “ ?xp1` δq for a δ P R with |δ| ď u.
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Remark 5.13: Note that the standard model is not valid on all computers
or electronic devices. However, on devices fulfilling the IEEE 754 standard,
which are for example most modern CPUs, it is true.

For the realization of the standard model the storage of the intermediate re-
sults (before rounding) requires three extra digits in the significand. This can be
implemented in various manners in the computational units of the CPU. More
details regarding this issue can be found in [4].
5.2.3 Error Propagation

Themain question we are treating next is how the errors we found in the above
are propagating through a more complex computation. Since the standard
model for the floating point arithmetic (5.7) only holds formachine numbers, for
an arbitrary calculation for an elementary operation x4y already up to three
errors play a role. Often in a computation a single elementary operation is not
enough to get the result. Thus the rounding errors accumulate in the course of
the computation.
Let us first treat addition and subtraction. Note that we can safely ignore the
case where either of the involved numbers is 0. Then the final error reduces to
the representation error for the other number, i.e., it is bounded by u.
Addition: Let x, y P Rzt0u, signpxq “ signpyq and

x̃ :“ γpxq “ xp1` δxq, |δx| ď u,

ỹ :“ γpyq “ yp1` δyq, |δy| ď u.

Then we have
x̃‘ ỹ “ px̃` ỹqp1` δx`yq pwhere |δx`y| ď uq

“ pxp1` δxq ` yp1` δyqqp1` δx`yq

“ ppx` yq ` pxδx ` yδyqqp1` δx`yq

and
|x̃‘ ỹ ´ px` yq| “|px` yqδx`y ` pxδx ` yδyqp1` δx`yq|

ď|x` y|u` p|x| ¨ u` |y| ¨ uqp1` uq

“|x` y|u` |x` y|up1` uq pusing signpxq “ signpyqq

“|x` y|p2u` u2q.
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Thus we find
|px̃‘ ỹq ´ px` yq|

|x` y|
ď 2u` u2.

The relative error is (up to a negligible higher order term u2) at most twice as
large as the relative representation errors of the summands x and y. Accord-
ingly, very many additions may lead to a noticeable accumulated error.

Subtraction: Corresponds to the addition of x, y as above, but with signpxq “
signpyq. Instead of adding two numbers with different signs here we treat the
subtraction of two numbers with a common sign.
Let x, y, or x̃, ỹ as above respectively. Without loss of generality we assume
x ‰ y. Since we assume validity of (5.7) we have

x̃a ỹ “px̃´ ỹqp1` δx´yq pwhere |δx´y| ď uq

“ppx´ yq ` pxδx ´ yδyqqp1` δx´yq

It follows
|px̃a ỹq ´ px´ yq| “ |px´ yqδx´y ` pxδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` pxδx ´ yδx ` yδx ´ yδyqp1` δx´yq|

“ |px´ yqδx´y ` px´ yqδx ` ypδx ´ δyq

` px´ yqδxδx´y ` ypδx ´ δyqδx´y|

ď 2|x´ y| ¨ u` 2|y|u` |x´ y| ¨ u2 ` 2|y|u2

and
|px̃a ỹq ´ px´ yq|

|x´ y|
ď

ˆ

2|y|

|x´ y|
` 2

˙

u`

ˆ

2|y|

|x´ y|
` 1

˙

u2.

Thus for x « y we have to expect an especially large relative error. This effect
is called cancellation.
To avoid cancellation it is necessary to try and rewrite the expression in a way
that avoids the subtraction of two almost equal numbers.
Example 5.14: Let

p “ 10, t “ 10, x “ 1.2 ¨ 10´5 “ 0.12 ¨ 10´4

and
y “ fpxq “

1´ cospxq

x2
.
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The evaluation of f in x gives
cospxq “ 0.99999999992800 ¨ 100 “: c « 1
ùñ c̃ :“ γpcq “ 0.9999999999
ùñ ỹ “ p1a c̃q m pxd xq “ 10´10 m p0.144 ¨ 10´9q “ 0.6944444444.

The correct result rounded to ten digits of accuracy, however, is
γpfpxqq “ 0.4999997300.

The reason for the wrong result is the cancellation in the evaluation of 1a c̃. The
result here has only one correct digit. The information about all the other digits
got lost (was canceled) while rounding c. Then the subtraction is performed
exact, but the error 1a c̃ is amplified by a factor of 1010. The second to tenth
digits in the intermediate result are not carrying any information about correct
values.

1a c̃ “ 0.1000000000 ¨ 10´9

Ò information about these values is lost
Using the alternative formulation

fpxq “ 1
2

´

sinpx
2
q

x
2

¯2
,

which uses the identity cosx “ 1´ 2 sin2
`

x
2

˘, one gets the much better result
ỹ “ 0.5.

Multiplication: We are now investigating the multiplication, of x, y, x̃, ỹ as
above, in a similar manner. Note that here the sign does not play a role, and
the case of either x, or y being 0 is even easier, since then the result is 0, too,
and thus exact. With a |δx¨y| ď u we have
x̃d ỹ “ x̃ỹp1` δx¨yq “ xp1` δxqyp1` δyqp1` δx¨yq

“ xyp1` δxqp1` δyqp1` δx¨yq “ xy ` xypδx ` δy ` δx¨yq `Opu2q.

So it immediately follows
|x̃d ỹ ´ x ¨ y|

|x ¨ y|
ď 3u`Opu2q.

We thus find that the multiplication behaves similar to the addition. The case of
an actual division is again following analogously. Note that it should be avoided
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to divide by a very small value, since this might amplify rounding errors accu-
mulated and present in the enumerator analogous to the cancellation in Exam-
ple 5.14. However, in contrast to the case of cancellation in the subtraction, here
only the absolute error is affected, but not the relative.
The most important difference of computer arithmetic as compared to exact
arithmetic is the following:

Computer arithmetic is neither associative nor distributive.

That means in general we have
pxo yq o z ‰ xo py o zq

xd py ‘ zq ‰ pxd yq ‘ pxd zq, etc.

Example 5.15: Given Mp10, 5, emin , emax q and a “ 4.2832, b “ 4.2821, c “
5.7632, we want to evaluate the expression d :“ pa´ bq ¨ c. In exact calculation
we find:

d “ p0.0011q ¨ 5.7632 “ 0.00633952 ùñ γpdq “ 0.63395 ¨ 10´2.

The relative error is
|d´ γpdq|

|d|
« 0.3 ¨ 10´6.

In pseudo arithmetic usingMp10, 5, emin , emax q we have two options:
(i) paa bq d c “ p0.11 ¨ 10´2q d p0.57632 ¨ 101q “ 0.63395 ¨ 10´2 “ γpdq,

which gives the correct rounded result.
(ii) pad cq a pbd cq “: ea f “: g

e “ ad c “ γp0.24684932824 ¨ 102q “ 0.24685 ¨ 102

f “ bd c “ γp0.2467859872 ¨ 102q “ 0.24679 ¨ 102

ùñ g “ ea f “ γp0.00006 ¨ 102q “ 0.6 ¨ 10´2

ùñ
|d´ g|

|d|
« 0.054,

which leaves us with only a single correct digit.
The problem in the second approach is the cancellation in the subtraction of
the two almost equal numbers e and f . During their computation we already
performed rounding, which erased the information about the truncated digits.
This information would have had to take the digits 2–5 in g to get to the correct
result.
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Computer p t emin emaxUnivac 1108 2 27 -128 127
PDP – 11 2 24 -128 127
Cray – 1 2 48 -16384 16383
HP – 45 10 10 -98 100
TI – SR5x 10 12 -98 100
IBM System/360 16 6 -64 63

Table 5.1: Different ancient floating point implementations before IEEE 754.
half: (16 bit)

S EEEEE MMMMMMMMMM
0 1 5 6 15

single: (32 bit)
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
0 1 8 9 31

double: (64 bit)
S EEEEEEEEEEE MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
0 1 11 12 63

Figure 5.1: Storage patterns for half, single and double precision vari-
ables.

In conclusion we recognize that to avoid cancellation one needs to carefully
work with the associativity and distributivity.

5.2.4 The IEEE Standard 754

Manufacturers usually standardize the usage of computer arithmetic to make
computation results comparable. To this end, in 1985 the IEEE1 fixed the stan-
dard 754 that is today used by almost all computer manufacturers.

IEEE 754–1985 The standard prescribes that M should be closed under the
operations `, ´, ¨, {, ? . That means any of these operations has to lead to a
result inM. Further contributions of the standard are:
• rounding is performed as “round-to-even”.
• the standardmodel for floating point arithmetic holds, i.e., the result of an
elementary operation is behaving as if the exact result had been rounded.
• overflows result in γpxq “ ˘8.
• underflows are treated using subnormal numbers as described with the
gradual underflow above.

1The Institute of Electrical and Electronics Engineers.
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• two data types have been fixed: double (8 byte) and single (4 byte),
both using p “ 2.
• Sinceα1 “ 1 has to hold due to normalization, it is not stored, which gives
an extra bit for the significand.
• The single data type has the following properties; for double the cor-
responding values in Table 5.3 have to be inserted.

– An exponent E “ 255 is used to encode the elements ˘8 or NaN
(not-a-number) that are necessary to ensure closedness ofM.

– The exponent b of the machine number is derived from E via b “
E ´ 127, which saves another bit for the sign of the exponent.

– E “ 0 is used to encode subnormal numbers.
Summarizing we get the representation

x “ p´1qS ¨ p1.γ2 . . . γ24q ¨ p
E´127.

that slightly differs from Definition 5.4. For the minimal value E “ 1 it
follows

xmin “ 1. 0 . . . 0
loomoon

23

¨21´127 “ 0.1 ¨ 2´125 ùñ emin “ ´125.

Further, we get
emax “ 1` p254´ 127q “ 128.

Some examples for numbers in the system of single numbers are:
0 11111111 00000000000000000000000 = `8

1 11111111 00000000000000000000000 = ´8

0 11111111 00000100000000000000000 = NaN

1 11111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = `1.0 ˚ 2128´127 “ 2

0 10000001 10100000000000000000000 = `1.101 ˚ 2129´127 “ 6.5

1 10000001 10100000000000000000000 = ´1.101 ˚ 2129´127 “ ´6.5

0 00000001 00000000000000000000000 = `1.0 ˚ 21´127 “ 2´126 “ xmin

0 00000000 10000000000000000000000 = `0.1 ˚ 2´126 “ 2´127

0 00000000 00000000000000000000001 = `0.0 . . . 01 ˚ 2´126 “ 2´149

= smallest representable number
0 00000000 00000000000000000000000 = `0

1 00000000 00000000000000000000000 = ´0

0 01111111 00000000000000000000000 = 1.0 ˚ 2127´127 “ 1.0

1 01111111 00000000000000000000000 = ´1.0 ˚ 2127´127 “ ´1.0
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Flag Example Result
invalid 0{0, 0 ¨ 8, ?´1,

8{8, `8` p´8q NaN (“not a number”)
overflow xmax ˚ xmax

˘8usually denoted: ˘Inf
division by zero x{0 for x “ 0 ˘8

underflow xmin{p
s, 1 ă s ă t subnormal number

inexact rdpx ˝ yq “ x ˝ y correctly rounded result
Table 5.2: IEEE Standard 754, Exception Handling.

bfloat16
S EEEEEEEE MMMMMMM
0 1 8 9 15

Figure 5.2: Storage pattern for bfloat16 half precision variables.

• The value of a variable can be tested for NaN since this is the only “num-
ber” for which x ‰ x is true.
• Whenever an incorrect result or a number that is not covered by Defini-
tion 5.4 is encountered this is causing an exception. Then a flag is raised,
which can be checked by the toolchain to create the appropriate warnings
according to Table 5.2.

IEEE 754–2008 The revised edition of the standard serves a multitude of pur-
poses:
• It merges IEEE 754–1985 with IEEE 845 (a standard defining decimal float-
ing point numbers important in finance).
• It reduces the possible implementation alternatives, as well as ambiguous
formulations.
• It adds two additional p “ 2-based precision levels for half (also known
as fp16) (2 byte) and quadruple (16 byte) precision.
• It extends min and max for the special cases ˘0 and ˘8.
• The formerly denormalized numbers for gradual underflow treatment are
now consistently called subnormal numbers.
• Also, a combined multiplication and addition operation called fused mul-
tiply add and performing a Ð a ˘ pb ˆ cq was added to the set of basic
operations fulfilling the standard model for floating point arithmetic.
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precision p t emin emax u xmin xmax

half 2 10` 1 ´13 16 « 4.88 ¨ 10´4
« 6 ¨ 10´5

« 1 ¨ 105

single 2 23` 1 ´125 128 « 5.96 ¨ 10´8
« 1 ¨ 10´38

« 3 ¨ 1038

double 2 52` 1 ´1 021 1 024 « 1.11 ¨ 10´16
« 10´308

« 10308

quad 2 112` 1 ´16 381 16 384 « 9.63 ¨ 10´35
« 10´4 932

« 104 932

Table 5.3: IEEE standard 754-2008, data types.

5.2.5 An alternate 16-bit floating point format

The IEEE 754 fp16 half precision format has drawbacks for scientific computa-
tions. Themain one being its very limited number range due to the rather small
representable exponents (see Table 5.3). In an attempt to overcome this is-
sue, the Google Brain project, an artificial intelligence research group at Google,
created their own 16bit floating point format brain floating point, or in short
bfloat16.
The key properties of this format are closely related to the fp32 or single
format, as it preserves the first 16 bit of its layout. Consequently, it uses the
same exponent range and sacrifices 16 bit from the significand, ending up with
only 7 bit left (+1 bit again due to the leading implicit 1 from normalization). In
turn, bfloat16 inherits the good range of real numbers that single precision
can cover with a a lot less numbers in that range in total due to the shorter
significand. The handling of exceptions is following that of the IEEE numbers.
A second attractive consequence of the close relation to fp32 is that format
conversion fromfp32 single precision tobfloat16 half precision is especially
easy as it only requires a copy of the leading 16 bit of the 32-bit number with
manipulations only necessary for proper rounding.
While other lower precision number formats have been introduced by hardware
manufacturers (see [1] for a comparison), the bfloat16 format appears to be
the most widely accepted quasi standard. For an early discussion of the format
we also refer to [5].

5.3 Error Analysis

This section is dedicated to the derivation of a general framework for the ap-
praisal of the quality of numerically generated results of computations. The
computed result can differ from the real result due to a number of errors from
different categories:
data errors The data used in the computations are not known exactly, e.g., due

to measurement inaccuracies.
rounding errors Errors resulting from thenecessity toworkwith numbers from
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Mpp, t, emin, emaxq instead of R and the evaluation of expressions with a
finite significand. The propagation and accumulation of these kinds of
errors was already discussed in the above.

methodological errors Methodological errors dependondifferent factors. On
theonehand, the accuracy of themodel underlying the computationplays
a role. On the other hand, also the solution method applied to solve or
evaluate the model has a crucial contribution to this type of error.

The methodological error in any case strictly depends on the task at hand and
the way it is solved. In the following we will therefore restrict to the impact of
data and rounding errors on the computed result.
To this end, we will mainly employ the two concepts of conditioning (or condition
numbers) and stability.

5.3.1 Conditioning/Condition Number

The concept of conditioning or condition numbers is a property of the mathe-
matical problem only. It is independent of the actual algorithm or method used
for solving the problem. Thus it provides the ability to derive statements about
the maximum possible quality of the numerical results. Consider the following
example. We want to compute the root of a linear affine function, i.e., the in-
tersection with the x-axis. The steeper the function is the better, i.e., the more
accurate, we can derive the x value of the root. This is due to the fact that small
perturbations in the function value for a steep function lead to even smaller
perturbation of the corresponding x value. The problem is said to be well con-
ditioned in this case. On the other hand, if the function is very flat already small
perturbations in the y values lead to large perturbations in the position of the
computed root. This corresponds to a very bad conditioning of the problem.
We thus see that the conditioning may depend on both the problem and the
data.
To put this in more mathematical terms, we consider the problem of evaluating
y “ fpxq, where the function f : D Ñ V maps the data x P D to the result
y P V and y ` ∆y “ fpx ` ∆xq is the result for the perturbed data x ` ∆x.
Then the relative error for an optimal result to be expected is bounded as in:

}∆y}

}y}
ď cpf, xq ¨

}∆x}

}x}
,

where cpf, xq is called the condition number for the problem of evaluating fpxq.



112 Chapter 5. Error Analysis and Machine Numbers

5.3.2 Stability

The corresponding property for the algorithm is called stability. Itsmain purpose
is to guarantee that the algorithm at least gives

}∆y}

}y}
Æ cpf, xq ¨

}∆x}

}x}
.

That means we get as close to the optimal result as possible. Such an algo-
rithm is then called numerically stable (We will give a precise definition in Defini-
tion 5.18). A bad algorithmwould give a larger error. It is then called numerically
unstable.
In the following we will use the notation from above:
• x P D are the data for the problem,
• f : D Ñ V is the mathematical problem mapping data to values,
• and y “ fpxq P V is the exact result, whereas
• ŷ is the numerically computed result.

5.3.3 Forward Error Analysis

The first and obvious question that arises is how far apart y and ŷ are, i.e.,
}y ´ ŷ} “?,

}y ´ ŷ}

}y}
“?

This question is answeredby a forward error analysis. Here oneproceeds through
the computation step by step analyzing the propagation and accumulation of
rounding errors by means of the methods discussed in Section 5.2. The basic
procedure is best explained using a small example.
Example 5.16: Let the mathematical problem be that of solving the simple
quadratic equation y2 ´ 2ay ` b “ 0, for given a, b P Mpp, t, emin, emaxq. Thetwo solutions are known to be

y1 “ a´
a

a2 ´ b, and y2 “ a`
a

a2 ´ b.

Weconcentrate on the computation of y1. Exactly following the solution formula
above is giving the below algorithm in exact and finite arithmetic (following the
standard model for floating point arithmetic):

exact computation numerical realization
1. c :“ a ¨ a ùñ ĉ “ a2p1` δ1q

2. d :“ c´ b ùñ d̂ “ pĉ´ bqp1` δ2q

3. e :“
?
d ùñ ê “

a

d̂p1` δ3q

4. y1 :“ a´ e ùñ ŷ1 “ pa´ êqp1` δ4q
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Here we have |δi| ď u, i “ 1, . . . , 4 due to the standard model assumption.
Now inserting all computed quantities we find
ŷ1 “

!

a´
a

pa2p1` δ1q ´ bqp1` δ2qp1` δ3q

)

p1` δ4q

“ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooooooooomooooooooooooooooooooon

“ 1` δ1 ` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε1, |ε1| ď 6u`Opu2q

´b p1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooomooooooooooooooon

1` δ2 ` 2δ3 ` 2δ4 `Opu2q

“: 1` ε2, |ε2| ď 5u`Opu2q

)
1
2

“ a` aδ4 ´
a

pa2 ´ bq ` pa2ε1 ´ bε2q

“ a` aδ4 ´
a

a2 ´ b´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q `Opu2q

The last step exploits that using a Taylor expansion of gpxq :“
?
x at

x`∆x “ a2 ´ b
loomoon

“:x

` a2ε1 ´ bε2
loooomoooon

“:∆x

,

we get
gpx`∆xq “

?
x`∆x “

?
x`

1

2
?
x

∆x`Opp∆xq2q,

where |∆x| ď 6p|a2| ` |b|qu “ Opuq.
Using this knowledge for the numerical result it follows

ŷ1 “ y1 ´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q ` aδ4 `Opu2q

and thus for the relative error we get
|ŷ1 ´ y1|

|y1|
“

1

|a´
?
a2 ´ b|

¨
1

2
?
a2 ´ b

ˇ

ˇ

ˇ
a2ε1 ´ bε2 ` 2aδ4

a

a2 ´ b
ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

ďa2¨6u` |b|¨5u
loomoon

ă|b|¨6u

`|a|
?
a2´b¨2u

`Opu2q

ď 3
a2 ` |b| ` |a|

?
a2 ´ b

?
a2 ´ b ¨ |a´

?
a2 ´ b|

u`Opu2q

The forward error may be large if the denominator is small. This can happen in
two cases that can both be traced back to cancellation happening in the com-
putation of y1.

piq a2 « b ùñ cancellation in 2. d :“ a2 ´ b,
piiq |b| ! a2 ^ a ą 0 ùñ cancellation in 4. y1 “ a´ e.



114 Chapter 5. Error Analysis and Machine Numbers

This example shows againwhy cancellation can lead to large errors in the overall
computation. To avoid this effect we have to use adapted formulas, i.e. improve
the numerical method. (See exercises)
5.3.4 Backward Error Analysis

The second and less obvious question that we want to investigate is the follow-
ing. Given the result of the computation ŷ — can we express ŷ as the exact
solution of a mathematical problem for slightly perturbed data? That means:

Does there exist a ∆x, such that ŷ “ fpx`∆xq?
Asking this question makes sense, since for inaccurate data xwe only know the
correct value up to, e.g., measurement errors. If the analysis for ŷ “ fpx`∆xq
now provides a ∆x that is of the magnitude of the data errors (i.e., measure-
ment inaccuracies), then the computation result is as good as we can expect. An
answer to the above question is derived by a so called backward error analysis.

Definition 5.17: η :“ inft}∆x}; ŷ “ fpx`∆xqu is the (absolute) backward
error of ŷ, ηrel :“ η{}x} is called the relative backward error, where } . } is
a suitable norm in the set of dataD.

The relation of forward and backward errors is best described by the diagram
in Figure 5.3.
The concepts of forward and backward error now enable us to give a precise
definition of the corresponding notions of numerical stability as introduced in
the beginning of this section.

Definition 5.18: If for any x P D a method for computing y “ fpxq pro-
duces a ŷ “ fpx `∆xq for a small relative backward error ∆x

x , then the
method is said to be (numerically) backward stable. The concrete definition
of small depends on the problem, but might, e.g., mean ∆x is of the size
of the unavoidable data errors.
On the other hand, a method is called (numerically) forward stable if it pro-
duces a relative forward error ∆y

y of the samemagnitude that a backward
stable method would.

Remark 5.19: Note that a forward stable method does not necessarily
have to be backward stable to fulfill the definition. Also the definition is
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D V

x ‚

x`∆x ‚

‚ y

‚ y `∆y

f

f

backward
error forward

error
numerical
computation

Figure 5.3: Forward/Backward Error Relations in Numerical Computations

mainly expressing the rule of thumbs that a forward stable algorithm pro-
duces an error that is approximately proportional to the data error via the
condition number. Even if the backward error of the computed solution
is small, this error can be amplified by a factor as large as the condition
number when passing to the forward error, for a foward stable method.
We always have:

backward stableñ forward stable

The opposite implication does, however, in general not hold.
The verification of backward stability is performed by a backward error analysis.
The backward error analysis treats the computed result ŷ as that of the exact
computation for perturbed data. Afterward the perturbed data and the original
data are compared. The approach is introduced by revisiting the Example 5.16
and performing the analog procedure for the backward analysis.

Example 5.20 (Example 5.16 continued): Consider y1 “ a´
?
a2 ´ b and ŷ1 thecorresponding solution of the quadratic equation for perturbed data a and b

y2 ´ 2pa`∆aqy ` pb`∆bq “ 0

To this end, we require an expression of the form
ŷ1 “ pa`∆aq ´

b

pa`∆aq2 ´ pb`∆bq.
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As for the forward error analysis in Example 5.16 we get
ŷ1 “ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2

looooooooooooooomooooooooooooooon

“1`δ1`δ2`2δ3`Opu2q

“:1`ε1, |ε1|ď4u`Opu2q

p1` δ4q
2
´ b p1` δ1qp1` δ3q

2
p1` δ4q

2
looooooooooooooomooooooooooooooon

“:1`ε2, |ε2|ď5u`Opu2q

)
1
2

“ a` aδ4 ´

!

pa` aδ4q
2
´ b p 1` ε2 ´

a2

b
ε1p1` δ4q

2

looooooooooooomooooooooooooon

“1`ε2´
a2

b
ε1`Opu2q

“:1`δb, |δb|ď5u` 4a2

|b|
u`Opu2q

q

)

1
2

“ pa` aδ4q ´

b

pa` aδ4q
2
´ pb` bδbq

Nowdefining∆a :“ aδ4,∆b :“ bδb we can estimate the relative backward error
as

|ηa|

|a|
ď

|∆a|

|a|
ď |δ4| ď u,

|ηb|

|b|
ď |δb| ď

ˆ

5`
4a2

|b|

˙

looooomooooon

amplification factor
u`Opu2q.

Note that the relative error is the infimum over all possible errors ∆x “

∆ ra, bs. A small backward error, as we would expect it from a numerically
backward stable algorithm, is derived if a2 « |b|. The error may get large in
case a2 " b.

Remark 5.21: The separate consideration of the backward errors in a and
b is called component-wise error analysis. For a norm-wise consideration
one tries to estimate 1

}rab s}2
η.

5.3.5 Perturbation Analysis

Knowing the limitations on the range of small expected errors, we need to find
out next, whether the problematic error amplification is problem immanent or
caused by the specific algorithmic approach we chose for solving the problem.
The question thus is, if we can reformulate the algorithm to avoid the problem.
This question is answered employing a perturbation analysis that is used to find
the condition number of the problem. Wewill introduce theprocedure following
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the steps for an abstract (scalar) model example again.
To this end, let

f : D Ñ V, f P C2pDq, y “ fpxq, ŷ “ fpx`∆xq.

Thequestion, thatwe are going to answer now, is inwhat sense the perturbation
of the data is transported to the result. Geometrically, it is easy to see that the
value of ŷ is deviating from y the more, the larger the slope of the tangent of
f in x, i.e., |f 1pxq| is. In the general case we use the total differential type of
definition of the derivative of f in x to estimate the deviation. That means,

fpx`∆xq “ fpxq ` f 1pxq∆x` op∆xq.

Here, g P op∆xqmeans that lim∆xÑ0
gp∆xq

∆x “ 0. Then
ŷ ´ y “ fpx`∆xq ´ fpxq

“ fpxq ` f 1pxq∆x` op∆xq ´ fpxq

“ f 1pxq ¨∆x` op∆xq « f 1pxq ¨∆x.

This approximationmeans that (neglecting an asymptotically vanishing remain-
der term) the factor |f 1pxq| amplifies the data errors in the result ŷ.
This treatment is called asymptotic or local perturbation analysis since it asymp-
totically gets better when successively narrowing in on x and obviously the ap-
proximation is only good in a local neighborhood of x.
Let y “ 0 then we have

ŷ ´ y

y
“
f 1pxq∆x

y
` op∆xq

“
f 1pxq ¨ x

fpxq
¨

∆x

x
` op∆xq

and thus
|ŷ ´ y|

|y|
“

ˇ

ˇ

ˇ
f 1pxq ¨ x

ˇ

ˇ

ˇ

|fpxq|
loooomoooon

“:cpf,xq

¨
|∆x|

|x|
` op|∆x|q. (5.8)

Note that in (5.8) we are not applying the triangular inequality, but equality may
hold since op|∆x|q is allowed to be negative.
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Definition 5.22: Let f P CpDq, x, x ` ∆x P D and fpx ` ∆xq “ ŷ. The
infimum of all numbers cabspf, xq for which

‖y ´ ŷ‖ ď cabspf, xq ‖∆x‖` op‖∆x‖q

holds, is called (absolute) condition number of f in x.
Analogously, the infimum of all numbers cpf, xq “ crelpf, xq, such that

‖y ´ ŷ‖
‖y‖

ď crelpf, xq‖∆x‖
‖x‖

` o

ˆ

‖∆x‖
‖x‖

˙

is true, is denoted as (relative) condition number of f in x.

If f is differentiable then in analogy to (5.8)

cabspf, xq “
∥∥f 1pxq∥∥ , cpf, xq “ crelpf, xq ď ‖x‖

‖fpxq‖
∥∥f 1pxq∥∥ ,

where f 1 is the Jacobi matrix of f : D Ñ V in x and the norms have to be
compatible. That means, ideally, for the Jacobian the operator norm (see Defi-
nition 6.10) induced by the vector norms on V andD should be used.
Note that in (5.8) equality holds. For an inequality we would only have an upper
bound to the condition number. This would only then become the condition
number when it can be shown to be a sharp bound, i.e., when we can find at
least one x P D such that equality holds (minimum case), or for every δ ą 0
there exists an ŷ “ fpx` x̂q P V , such that for cpf, xq ¨ x̂´ δ violates the bound
(infimum case).
Example 5.23 (Examples 5.16, 5.20 continued): Let us get back to the example
quadratic equation. Here we have x “ “

a
b

‰

P R2 and
fpa, bq “ a´

a

a2 ´ b, y “ fpa, bq, ŷ “ fpa`∆a, b`∆bq.

Further, let us assume
max

"

|∆a|

|a|
,
|∆b|

|b|

*

ď ε ! 1.

For the evaluation of the Taylor expansion we require the partial derivatives of
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f with respect to the data a, b:
Bf

Ba
pa, bq “ 1´

1

2
pa2 ´ bq

´ 1
2 ¨ 2a “ 1´

a
?
a2 ´ b

“

?
a2 ´ b´ a
?
a2 ´ b

“ ´
fpa, bq
?
a2 ´ b

,

Bf

Bb
pa, bq “

1

2
¨

1
?
a2 ´ b

.

Further assuming that a2 ą b ą 0 or b ă 0, such that?a2 ´ b P R, we find
ŷ ´ y “ fpa, bq `

Bf

Ba
pa, bq ¨∆a`

Bf

Bb
pa, bq ¨∆b` opεq ´ fpa, bq

“ ´
fpa, bqa
?
a2 ´ b

¨
∆a

a
`

1

2
¨

b
?
a2 ´ b

∆b

b
` opεq

and thus
|ŷ ´ y|

|y|
ď

|a|
?
a2 ´ b

looomooon

“:capf,a,bq

¨
|∆a|

|a|
`

|b|

2
?
a2 ´ b ¨ |a´

?
a2 ´ b|

looooooooooooooomooooooooooooooon

“:cbpf,a,bq

¨
|∆b|

|b|
` opεq(5.9)

ď
1

?
a2 ´ b

ˆ

|a| `
|b|

2|a´
?
a2 ´ b|

˙

¨ ε` opεq. (5.10)
The inequality (5.9) here represents the component-wise perturbation analysis
and (5.10) the norm-wise one. A norm-wise consideration also follows from the
Cauchy-Schwarz-Inequality applied to

ŷ ´ y “ p∇fpa, bqqT
„

∆a
∆b



` opεq,

such that
|ŷ ´ y| ď ‖∇fpa, bq‖ ¨

∥∥∥∥„ ∆a
∆b

∥∥∥∥` opεq.
Here, we are only interested in the (usually more precise) component wise con-
sideration. The two cases of major interest are the ones that we have investi-
gated to lead to large errors in the forward analysis (Example 5.16) and back-
ward analysis (Example 5.20).
case 1: a2 « b For a2 Ñ b it follows capf, a, bq Ñ 8 and also cbpf, a, bq Ñ 8.

The problem thus is ill-conditioned, i.e., we can not expect “good” results.
A large forward error is “unavoidable”. The large forward errors in this
case are therefore caused by the bad conditioning of the problem. This
corresponds to the observation in Example 5.20 that the backward error
is still small in this case.
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case 2: a2 " b In this case capf, a, bq « 1. The same can easily be seen for
cbpf, a, bq when considering b

a2
Ñ 0 ô b Ñ 0 and applying L’Hôpitals

rule. That means, we find that the problem is well conditioned in this
case. Having large forward and backward errors here, therefore, means
that our computation method is unstable.

Since our method for computing y1 in the above examples was performing well
in most cases and only misbehaved in the case where a2 " b, we also call the
method conditionally stable.
We conclude this section with a couple of facts that we should be aware of when
trying to evaluate the quality of numerical computations.

1. cpf, xq in general not only depends on the problem but also on the data
supplied to it. A mathematical problem thus is not generally good or bad,
but it depends on where inD we evaluate it.

2. Condition numbers can be categorized as follows:
cpf, xq « 1 ñ well conditioned.
cpf, xq " 1 ñ ill-conditioned.
cpf, xq ! 1 may be bad as well since we can easily “lose infor-

mation” due to the large possible backward errors.
3. An unstable algorithm can result from the decomposition of a (possibly

well conditioned)mathematical problem into a concatenation of sub-tasks,
i.e.,

fpxq “ pgk ˝ gk´1 ˝ . . . ˝ g1qpxq,

where one or more of the gj are ill-conditioned. For example, if the gj areelementary operations and one of them is suffering from cancellation,
then the loss of information resulting from the cancellation may prevail
the remaining computation.

4. The main property of the connection between forward error, backward
error and condition number is sketched by the rough rule:

forward error « condition numberˆ backward error.
This again illustrates the implication

backward stabilityñ forward stable

The following rule of thumb gives a good assessment of the numerically com-
puted results:
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good conditioning & stable algorithm ùñ reliable result.
bad conditioning or unstable algorithm ùñ unsure result.
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Mathematics is the queen of the sciences.
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6.1 Vector Norms and Inner Products

Definition 6.1: LetX be a linear space over the field F. A mapping
‖.‖ : X Ñ R,

with
i) ‖x‖ ě 0 @x P X , (positivity)
ii) ‖x‖ “ 0 ðñ x “ 0, (definiteness)
iii) ‖αx‖ “ |α| ‖x‖ @α P F, @x P X , (homogeneity)
iv) ‖x` y‖ ď ‖x‖` ‖y‖ @x, y P X , (triangle inequality)

is called norm on X . A linear space together with a norm pX, ‖.‖Xq iscalled normed linear space.

Example 6.2: LetX “ Rn, p P N. The functions

‖x‖p :“ p

g

f

f

e

n
ÿ

i“1

|xi|p p P N

‖x‖8 :“ max
i

|xi|

define norms onX .

Definition 6.3: LetX be a linear space over the field F P tR, Cu. An inner
product onX is defined by a sesquilinear form

p., .q : X ˆX Ñ F

with properties
i) px, xq P Rě0 @x P X , (positivity)
ii) px, xq “ 0 ðñ x “ 0, (definiteness)
iii) px, yq “ py, xq @x, y P X , (symmetry)
iv) pαx`βy, zq “ αpx, zq`βpy, zq @x, y, z P X , @α, β P F(linearity)

A linear space with an inner product pX, p., .qq is called a pre-Hilbert space.
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Theorem 6.4: Let pX, p., .qq be a pre-Hilbert space. Then
‖x‖ :“

a

px, xq @x P X

defines a norm inX .

Proof. Homework

Definition 6.5: Twonorms ‖x‖a , ‖x‖b ona linear spaceX are called equiv-
alent, if and only if any sequence converging with respect to ‖x‖a alsoconverges with respect to ‖x‖b and vice versa.

Theorem 6.6: ‖.‖a , ‖.‖b on the linear spaceX are equivalent
ô Dα, β ą 0 : α ‖x‖a ď ‖x‖b ď β ‖x‖a @x P X (6.1)

Idea of the proof.

“ð”: direct consequence of (6.1) applied tox “ yn´y8 for a sequence pynqnPN Ñ
y8 in either ‖.‖a, or ‖.‖b.

“ñ”: Assume we can not find a γ such that ‖x‖a ă γ for all x P X with ‖x‖b “
1. Then there exists a sequence pxnqnPN with ‖xn‖a Ñ8 for nÑ8 and
‖xn‖b “ 1 for all n. Now we define yn :“ xn

‖xn‖a
, which in ‖.‖b obviouslyconverges to 0, but ‖xn‖a “ 1 and thus it does not converge in ‖.‖a, whichcontradicts our assumption.

Thus, we can find such γ P Rą0 and @y P Xzt0u we have
‖y‖a “

∥∥∥∥‖y‖b y

‖y‖b

∥∥∥∥
a

“ ‖y‖b

∥∥∥∥ y

‖y‖b

∥∥∥∥
a

ď ‖y‖b γ

This proves the left inequality with α “ 1
γ . The other half can be shown

analogously.

As another direct consequence of equation (6.1) we get
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Corollary 6.7: The limits of a sequence with respect to equivalent norms
coincide.

Theorem 6.8: LetX be a finite dimensional linear space over R, or C. All
norms onX are equivalent.

Proof. Literature

6.2 Linear Operators, Operator and Matrix Norms

Definition 6.9: Let pX, ‖.‖Xq, pY, ‖.‖Y q normed linear spaces. An opera-
tor A : X Ñ Y is called

i) continuous in x P X , if for all sequences pxnqnPN inX with xn Ñ x
for nÑ8 we have

Axn Ñ Ax for nÑ8

ii) continuous, if A is continuous in all x P X .
iii) linear if it fulfills

Apαx` βyq “ αAx` βAy

iv) bounded if A is linear and DC ě 0, such that
‖Ax‖Y ď C ‖x‖X @x P X

Any C with this property are called upper bound of A.
The norms ‖.‖X , and ‖.‖Y allow to measure distances in X and Y . We need
similar norms to measure distances of matrices or linear operators mapping
between them. The most important among those norms are the induced oper-
ator or matrix norms introduced in the following definition.

Definition 6.10: LetA : X Ñ Y be a linear operator pX, ‖.‖Xq, pY, ‖.‖Y q
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normed linear spaces. The operator norm of A is defined as
‖A‖ :“ sup

‖x‖X“1
‖Ax‖Y “ sup

xPXzt0u

‖Ax‖Y
‖x‖X

‖A‖ is also called induced operator norm. In case A is a matrix, one also
speaks of an induced matrix norm.

In Chapter 5 we saw that those norms compatible with a vector norm are of
special importance. We can now define this precisely.

Definition 6.11: Let pX, ‖.‖Xq, pY, ‖.‖Y q normed linear spaces and de-
note the space of linear operators from X to Y by LpX,Y q. A norm ‖.‖
on LpX,Y q is called consistent with ‖.‖X and ‖.‖Y , if for any x P X and
A P LpX,Y q we have ‖Ax‖Y ď ‖A‖ ‖x‖X .
In case Y “ X , i.e. ‖Ax‖X ď ‖A‖ ‖x‖X , the norm ‖.‖ is called compatible
with ‖.‖X .

Remark 6.12:

• Thenorms inDefinition 6.10 fulfill the consistency, and compatibility
condition by definition.
• They are not the only norm that do so.

We have talked about upper bounds to the operator A in the sense of norms
of images and preimages. The operator norm takes a distinguished position
among those bounds.

Theorem 6.13: ‖A‖ is the smallest upper bound of A and A is bounded
if and only if ‖A‖ ă 8.

Proof. “ñ”: Let A be boundedÑ D8 ą C ě 0 with
‖Ax‖Y ď C @x P X, ‖x‖X “ 1

and
‖A‖ “ sup

‖x‖X“1
‖Ax‖Y ď C ă 8.

Especially ‖A‖ ď C for all upper bounds C.
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“ð”: Let A be linear with ‖A‖ ă 8. Then, for arbitrary x P Xzt0u, we have
‖Ax‖Y “

∥∥∥∥‖x‖X Aˆ

x

‖x‖X

˙
∥∥∥∥
Y

“ ‖x‖X

∥∥∥∥Aˆ

x

‖x‖X

˙
∥∥∥∥
Y

ď ‖x‖X sup
‖z‖X“1

‖Az‖Y “ ‖x‖X ‖A‖ .

That means, A is bounded with upper bound ‖A‖.

Matrices are a special type of linear operator. The linear operators, as part of the
operators from one linear space to another, have some very distinct properties
that we will collect next.

Theorem 6.14: Let pX, ‖.‖Xq and pY, ‖.‖Y q be normed linear spaces, and
A : X Ñ Y a linear operator.
The following are equivalent:

i) A is continuous in x “ 0

ii) A is continuous
iii) A is bounded

Proof. i)ñii): Let x P X , pxnqnPN Ď X with xn Ñ x, nÑ8

ñ Axn
A linear
“ A pxn ´ xq

looomooon

‖.‖X
Ñ 0, nÑ8

`Ax
‖.‖Y
Ñ Ax for nÑ8

ii)ñiii): We prove this part using a contradiction argument. Assume A contin-
uous, but unbounded. Then there exists pxnqnPN Ď X with ‖xn‖X “ 1
and ‖Axn‖ ě n. Define:

yn :“
xn

‖Axn‖Y
.

Then we immediately get
‖yn‖X “

∥∥∥∥ xn
‖Axn‖Y

∥∥∥∥
X

“
‖xn‖X
‖Axn‖Y

“
1

‖Axn‖Y
ď

1

n

and thus
yn

‖.‖X
ÝÑ 0 nÑ8.
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On the other hand,
‖Ayn‖Y “

∥∥∥∥A xn
‖Axn‖Y

∥∥∥∥
Y

“
‖Axn‖Y
‖Axn‖Y

“ 1

for all n P N, which contradicts continuity of A in x “ 0.
iii)ñi): Let A be bounded and pxnqnPN Ď X with xn ‖.‖X

Ñ 0 for nÑ8. Then
‖Axn‖Y ď ‖A‖ ‖xn‖X Ñ 0 as nÑ8

and thus A continuous in x “ 0.

An especially appealing feature of linear operators is that their properties are
inherited to product operators, since these are established through simple con-
catenation of the application of the involved linear operators, as we can see
from the following lemma.

Lemma 6.15 (Submultiplicativity): Let pX, ‖.‖Xq, pY, ‖.‖Y q, pZ, ‖.‖Zq benormed linear spaces.
A :X Ñ Y

B :Y Ñ Z

bounded linear operators, then the operator concatenation
BA : X Ñ Z

is bounded with
‖BA‖ ď ‖B‖ ‖A‖ . (6.2)

Proof. First we note that for any x P X due to boundedness of A and B we
have

‖BAx‖ ď ‖B‖ ‖Ax‖Y ď ‖B‖ ‖A‖ ‖x‖X
The lemma, thus, is a direct consequence of

‖BA‖ “ sup
‖x‖X“1

‖BAx‖ ď sup
‖x‖X“1

‖B‖ ‖Ax‖Y

ď sup
‖x‖X“1

‖B‖ ‖A‖ ‖x‖X “ ‖B‖ ‖A‖
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A bounded linear operator from one finite dimensional linear space into an-
other one can always be expressed as a matrix. This is due to the fact that an
evaluation of the operator on a basis immediately provides the matrix repre-
sentation. We collect some notation to classify matrices.

Definition 6.16: Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m... . . . ...
an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Rnˆm,

i) the transposedmatrix AT is defined as

AT “

»

—

–

a11 ¨ ¨ ¨ an1... . . . ...
a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Rmˆn,

ii) If AT “ A, then A is called symmetric pn “ mq

iii) If ATA “ I , then A is called orthogonal pn ě mq

iv) If ATA “ AAT, then A is called normal pn “ mq

Definition 6.17:

i) Given
A “

»

—

–

a11 ¨ ¨ ¨ a1m... . . . ...
an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Cnˆm,

the conjugate transposedmatrix AH is defined as

AH “

»

—

–

a11 ¨ ¨ ¨ an1... . . . ...
a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Cmˆn,

ii) If AH “ A, then A is called hermitian pn “ mq

iii) If AHA “ I , then A is called unitary pn ě mq

iv) If AHA “ AAH, then A is called normal pn “ mq
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Definition 6.18: LetX “ Rn, orX “ Cn. A matrix A : X Ñ X is called
i) upper triangular, if aij “ 0 @i ą j,
ii) lower triangular, if aij “ 0 @i ă j,
iii) diagonal, if aij “ 0 @i “ j,
iv) positive semidefinite if pAx, xq2 ě 0 @x P X ,
v) positive definite if pAx, xq2 ą 0 @x P Xzt0u,
vi) negative (semi)definite if ´A is positive (semi)definite.

Two linear systems of equations are called equivalent if and only if their sets of
solutions coincide.

Lemma 6.19: Let P P Cnˆn be invertible and A P Cnˆn, then the linear
systems of equationsAx “ y andPAx “ Py forx, y P Cn are equivalent.

Proof.

P is invertibleñ “Px “ 0 ðñ x “ 0”
ñ “P pAx´ yq “ 0 ðñ Ax´ y “ 0”

Lemma 6.20: The linear system Ax “ b permits a solution if and only if
rankpAq “ rankprA bsq

Proof. Homework
Some structural properties of matrices are preserved in products of matrices.
This is often exploited to generate structure preserving algorithms or limit error
amplification. The following two Lemmas collect such properties and will be
proved in the exercises.

Lemma 6.21: Products of lower (upper) triangular matrices are lower (up-
per) triangular.
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Lemma 6.22: Products of orthogonal matrices are orthogonal matrices.
Some matrix norm examples:

i) ‖A‖ :“ max
i,j
|aij | (induced by the pair (‖.‖1, ‖.‖8) of norms, not sub-

multiplicative)
ii) ‖A‖F :“

d

n
ř

i“1

n
ř

j“1

∣∣∣a2
ij

∣∣∣ (not induced, compatible with the vector ‖.‖2-
norm)

iii) ‖A‖1 :“ max
j“1,...,n

n
ř

i“1
|aij | (induced, column sum norm)

iv) ‖A‖8 :“ max
i“1,...,n

n
ř

j“1
|aij | (induced, row sum norm)

v) ‖A‖2 :“ sup
‖x‖2“1

‖Ax‖2 (induced, spectral norm)

Theorem 6.23: Any matrix A P Cnˆn is bounded in every matrix norm.

Proof. Homework
6.2.1 Spectral Norm and Spectral Radius

A complex number λ P C is called eigenvalue of a matrix A if Dx “ 0

Ax “ λx

Then x is called (right) eigenvector ofA. The set of all eigenvalues isΛpAq :“ tλ P
C : Ax “ λxu, it is called spectrum ofA. The value ρpAq “ maxt|λ| : λ P ΛpAqu
is called the spectral radius of A.

Remark 6.24: In the following A˚ denotes either AH when A is complex
or AT when it is real.

Theorem 6.25 (Schur decomposition): LetA P Cnˆn (Rnˆn). There exists
a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

T “ U˚AU
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is a (quasi) upper triangular matrix.
Proof. Homework.

Remark 6.26:

• ΛpAq “ ttii : i “ 1, . . . , nu pA P Cnˆnq, where tii are the diagonalentries in T from Theorem 6.25.
• The Schur decomposition can be computed in a QR-algorithm in
Opn3q floating point operations.

Corollary 6.27: LetA P Cnˆn pRnˆnq hermitian (symmetric). There exists
a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

„

@
@
@



“ diagpλ1, . . . , λnq “ U˚AU

Here λi pi “ 1, . . . , nq is the i-th eigenvalue of A with the i-th column of
U the corresponding eigenvector.

Theorem 6.28: The ‖.‖2 operator norm ofA is called spectral norm since
we have:

i) ‖A‖2 “
a

ρpA˚Aq

ii) ρpAq ď ‖A‖ for an arbitrary induced norm ‖.‖

iii) A “ A˚ ñ ρpAq “ ‖A‖2

Proof. i) pA˚Aq “ pA˚Aq˚ thus Corollary 6.27 tells us that there exists an
orthogonal matrix U with

U˚A˚AU “

»

—

–

λ1 . . .
λn

fi

ffi

fl

Further, for all x P Cn we find coefficients αi, pi “ 1, . . . , nq, such that

x “
n
ÿ

i“1

αiui



134 Chapter 6. Basic Operations, Formats and Matrix-Norms

Thus,
A˚Ax “

n
ÿ

i“1

λiαiui,

and therefore
‖Ax‖2

2 “ pAx,Axq2 “ px,A
˚Axq2

“ p
ÿ

αiui,
ÿ

λiαiuiq
2

“
ÿ

pαiui, λiαiuiq2

“
ÿ

λi|αi|
2pui, uiq2

“
ÿ

λi|αi|
2 ‖u‖2

2

“
ÿ

λi|αi|
2

ď ρpA˚Aq
ÿ

|αi|
2

“ ρpA˚Aq ‖x‖2
2 ,

such that
‖Ax‖2

‖x‖2

ď ρpA˚Aq

and λi ě 0@i. Now let λi0 “ ρpA˚Aq, and ui0 the corresponding eigen-vector, then
‖Aui0‖

2
2

‖ui0‖
2
2

“
λi0 ‖ui0‖

2
2

‖ui0‖
2
2

“ λi0 “ ρpA˚Aq.

So we have proved the first statement.
ii) By definition of the induced norm we have for each pair of eigenvalue λ

and corresponding eigenvector u that
‖A‖ “ sup

‖x‖“1
‖Ax‖ ě ‖Au‖ “ ‖λu‖ “ |λ| ‖u‖ “ |λ|,

and therefore ρpAq ď ‖A‖.
iii) A˚ “ A:

‖A‖2 “
a

ρpA˚Aq “
a

ρpA2q “

b

ρpAq2 “ ρpAq

In fact the last statement is true also for normal matrices. The proof is slightly
more technical, though, since it requires the full eigendecomposition of A and
the knowledge that for normal matrices the left and right eigenbases coincide.
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6.2.2 Condition Number and Singular Values

Recall:
crelpf, xq ď ‖x‖

‖fpxq‖
¨
∥∥f 1pxq∥∥

Now let f ” A and A invertibleñ
y “ Axô x “ A´1y

ñ
‖x‖

‖fpxq‖
“

‖x‖
‖Ax‖

“

∥∥A´1y
∥∥

‖y‖
ď sup

y “0

∥∥A´1y
∥∥

‖y‖
“

∥∥A´1
∥∥ .

Since the Jacobian of a linear operator is the linear operator, we have
f 1pxq “ A

ˇ

ˇ

x
.

Such that we find
crelpA, xq ď ‖A‖

∥∥A´1
∥∥ .

In case A “ I we further have
crel “ ‖x‖

‖x‖
‖I‖ “ 1 “ ‖I‖

∥∥I´1
∥∥ ,

which proves that the bound is indeed sharp. This motivates the following def-
inition.

Definition 6.29: Let A P Cnˆn and ‖.‖a an induced operator norm
κapAq :“ ‖A‖a

∥∥A´1
∥∥
a

denotes the a-condition number of A.

Lemma 6.30: For any induced operator norm ‖.‖a it holds
κapAq ě κapIq “ 1

Proof.

κapIq “ ‖I‖a
∥∥I´1

∥∥
a
“ 1 “ ‖I‖a “

∥∥AA´1
∥∥
a

Lemma 6.15
ď ‖A‖a

∥∥A´1
∥∥
a
“ κapAq

In the following we will, for ease of notation, leave out the index a if a property
holds for all possible values of a.
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Theorem 6.31: LetA P Rnˆn, b P Rn. Let x be the exact solution ofAx “
b and x `∆x the exact solution of the perturbed Apx `∆xq “ b `∆b.
Then

‖∆x‖
‖x‖

ď κpAq
‖∆b‖
‖b‖

.

Theorem6.32: LetAx “ b, as in Theorem6.31. Moreover define the error
ek :“ A´1b´ xk, and the residual rk :“ b´ Axk in step k of an iterativesolver for Ax “ b. It holds:

1

κpAq

‖rk‖
‖r0‖

ď
‖ek‖
‖e0‖

ď κpAq
‖rk‖
‖r0‖

ď κpAq2
‖ek‖
‖e0‖

. (6.3)

Proof. Note
‖rk‖ “ ‖b´Axk‖ “

∥∥ApA´1b´ xkq
∥∥ “ ‖Aek‖ ď ‖A‖ ‖ek‖

and analogously
‖ek‖ “

∥∥A´1b´ xk
∥∥ ď ∥∥A´1

∥∥ ‖rk‖
Thus

1

κpAq

‖rk‖
‖r0‖

“
1

‖A‖ ‖A´1‖
‖rk‖
‖r0‖

ď
1

‖A‖
‖rk‖

‖A´1r0‖
“

1

‖A‖
‖Aek‖
‖e0‖

ď
‖ek‖
‖e0‖

.

This proves the leftmost inequality in (6.3). The others can be shown similarly.

6.2.3 Some Remarks on κ2pAq

Theorem 6.33: Let A P Rnˆn. There exist orthogonal matrices U, V P

Rnˆn such that
UTAV “

¨

˚

˝

σ1 0. . .
0 σn

˛

‹

‚

(6.4)

where 0 ď σn ď ¨ ¨ ¨ ď σ1. For i “ 1, . . . , n we further have
detpATA´ σ2

i Iq “ 0 (6.5)
i.e. σ2

i “ λi with λi P ΛpATAq.
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Proof. ATA is symmetric and positive semidefinite, so there exists V P Rnˆn,
such that

VTATAV “ diagpλ1, . . . , λnq

where λ1 ě ¨ ¨ ¨ ě λn ě 0. Thus σi “ ?
λi is well defined in Theorem 6.33

and (6.5) follows from Corollary 6.27. For (6.4) we define U “ AVD´1, where
D “ diagpσ1, . . . , σnq. Since we have

UTU “ D´TVTATAVD´1 “ D´1 diagpλ1, . . . , λnqD
´1 “ I

U is ortogonal and
UTAV “ D´TVTATAV “ D´1 diagpλiq “ D

In addition for invertible A we have σn ą 0 and λn ą 0.

Definition 6.34: The σi in Theorem 6.33 are called singular values of A.
The corresponding columns in U , V are called the i-th left/right singular
vectors.

Now from
sup
x “0

‖Ax‖2
2

‖x‖2
2

“ sup
x “0

pAx,Axq2
px, xq2

“ sup
x “0

xTATAx

xTx

V reg.
“ sup

V x “0

xTVTATAV x

xTVTV x

U,V orth.
“ sup

x “0

xTVTATUUTAV x

xTx
“ sup

x “0

xTDTDx

xTx
“ σ2

1,

we analogously find for the infimum
inf
x “0

‖Ax‖2

‖x‖2

“ σn.

Further we have
UTAV “ diagpσ1, . . . , σnq ,

and
VTA´1U “ diag

ˆ

1

σ1
, . . . ,

1

σn

˙

and thus ‖A‖2 “ σ1 and ∥∥A´1
∥∥

2
“ 1

σn
, which proves the following Corollary.
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Corollary 6.35: Let A P Rnˆn invertible, σ1, σn its largest and smallest
singular values, then we have

κ2pAq “
σ1

σn

If A is in addition normal and λ1 and λn are its largest and smallest mag-
nitude eigenvalues, then we also have

κ2pAq “
|λ1|
|λn|

Here the second part uses the fact thatA P Cnˆn normal guarantees that DU P
Cnˆn unitary, such that U˚AU is diagonal (compare, e.g., [3, Corollary 7.1.4]).

Definition 6.36: (compare Theorem 6.6)
‖.‖a , ‖.‖b vector norms on Rn. The condition numbers κa, κb are called
equivalent if one can find α, β ą 0 such that

ακapAq ď κbpAq ď βκapAq @A P Rnˆn invertible
The equivalence constants α and β coincide with the constants α, β in Theo-
rem 6.6.

6.3 Matrix Storage Formats

In this sectionwewill introduce differentways of storingmatrices in Cdata struc-
tures. Depending on the type of matrix, judged by the number of non-zero en-
tries, we apply different techniques. The varying suggested storage schemes
will be demonstrated using the example matrix

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

.

6.3.1 Dense Matrices

Definition 6.37: Amatrix is called dense, or densely populated if essentially
all its entries are non-zero.
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Dense matrices should be stored as some storage type that resembles a 2d
array.
2d Arrays in C We have seen this in Chapter 3. In principle for the C program-
ming language two definitions of 2d arrays are available:
• double A[5][10] (static array),
• double **A + malloc() (dynamic array).

Both versions result inA being a 2d array. In both cases it is stored “rowmajor”,
i.e., the order of elements follows the model:

Differences of Static and Dynamic 2d Array in C

i) A static array in C is essentially one big row vector:
double A[5][10]

a00, . . . , a09 a10, . . . , a19 a20, . . . , a29 a30, . . . , a39 a40, . . .

ii) For a dynamic array the rows may be stored somewhere (possibly) not
consecutively arranged
double **A;

a0˚

a1˚

a2˚

a3˚

...

a00, . . . , a09

a10, . . . , a19

a20, . . . , a29

a30, . . . , a39

Option i) is only usable when size is known a priori.
Option ii) is more flexible, but destroys data locality. An advantage of this for-
mat, however, is easy swapping of rows, since no data needs to be copied, but
only pointers are rearranged.
2d Arrays in Fortran Section 6.4 introduces basic mathematical / linear alge-
bra operations based on Fortran 77/90 implementations.
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Static Fortran arrays (all arrays in Fortran 77) are stored “column major”, i.e.,

a00, . . . , an0 a01, . . . , an1 a02, . . . , an2 a03, . . . , an3 a04, . . .

This behavior can be implemented as a 1d array with index transformation in
C, as well. To this end we introduce an important expression that will play an
even more important role in Section 6.4, again.

Definition 6.38: The distance, counted in the number of elements, be-
tween the beginnings of 2 subsequent columns in a 2d array is called the
leading dimension (LD) of the array.

ñ akl“̂Arl ¨ LD ` ks

In Fortran 77 this behavior is already part of the language definition. The ex-
pression ApLD, :q does this mapping automatically.
Advantages:

• Data locality is enforced also for dynamic arrays since the single row/col-
umn pointers can no longer be scattered around the main memory.
• More importantly, the array is now stored in Fortran 77 compliant col-
umnmajor format and can thus be passed directly to (optimized) Fortran
libraries.

Basic Object Oriented Design Although C does not directly support object
oriented programming, structures and functions on structures can be used to
mimic the object oriented behavior and increase code efficiency.
struct my_matrix_st{

INT cols;
INT rows;
INT LD;

double *values;

char structure;
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};

Thereby, INT can either be int or long depending on the application and, if
Fortran libraries are used, the default integer size in Fortran. Typically, this is
realized by a preprocessor define. To use 32-bit integers, being the default in
Fortran, we use
#define INT int;

If 64-bit integers are required we set INT using
#define INT long;

Remark6.39: If a double precisionmatrix needsmore than 16GBmemory
and Fortran libraries, like BLAS and LAPACK, should be used to operate
on this matrix, it is mandatory to use 64 bit integers in both C and Fortran.
Note that due to the non-existence of Fortran unsigned integer types we
also use the signed types int and long in C to avoid conflicts when pass-
ing data to Fortran routines.

The matrix A would thus lead to A.cols“ 4, A.rows“ 4, A.LD“ 4 and
A.values= 1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

The structure entry in this case could be NULL to indicate, that the matrix
is not specially structured. In order to better understand the value of the lead-
ing dimension concept, consider we want to manipulate the 2 ˆ 2 sub-matrix
starting in the (2,2)-position in A, i.e., the matrix

B “

„

3 4
5 0



.

The corresponding values would then be B.cols“ 2, B.rows“ 2, B.LD“ 4,
again B.structure“NULL and the B.values pointer would be set to the
A.values[5]. This way we know that in B.values the entry with value 4 is
4 (B.LD) positions ahead of the one where the 3 is stored.
Tiled Matrix Storage In Chapter 7, we will see that it is essential to work on
small tiles covering the matrix to get optimal performance for several opera-
tions. Therefore, if the matrix is large it becomes mandatory to store it in this
style already. This fact will become even more important when multi– or many-
core considerations come into play. In order to have an easy access to the tiles
and ensure that the tiles are small matices that can be handled using existing
software, we adapt the above storage structure a bit:
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struct tiled_matrix_st{
INT cols;
INT rows;

INT Tcols;
INT Trows;
INT Tsize;

double *tiles;

char structure;
};

Let us revisit the example matrixA. As before we have A.cols“ 4, A.rows“
4. Consider the case of a tile size A.Tsize“ 2, that means, also, A.Tcols“ 2,
A.Trows“ 2, and

A.tiles= 1 2
0 3

0 5
0 0

0 0
4 0

0 6
7 0

Note that this is a very simplified representation of A.tiles, that is supposed
to illustrate the priciple. The actual list is a static or dynamic array of adresses
of small tile matrices. For the single tiles the same considerations as for the
2d array above hold. Again a Fortran style storage should be preferred if high
performance libraries in Fortran are aimed.
6.3.2 Sparse Matrices

Definition 6.40:We call a matrix A P Rnˆn or A P Cnˆn sparse if only a
few entries of A per row or column are non-zero, in average.
Precisely, we want A to be such that storing A uses Opnq storage and
multiplication with A is performed inOpnq effort.

Both conditions boil down to the number of non-zero entries in A (nnzpAq) be-
ing Opnq. Several formats for storing sparse matrices exist. Some important
ones are introduced below. They all follow the same fundamental principle.
Basic idea: In order to save memory we store “only” the non-zero entries and
neglect the zeros.
Coordinate Storage (COO)

StoresA in 3 vectors of length nnzpAq for entry values, row indices, and column
indices:
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. . .vals
0 nnz´1 (float, double)

. . .rows
0 nnz´1 (INT)

. . .cols
0 nnz´1 (INT)

Advantages:

• easy to implement
• easy addition of new entries
• easy elementwise access

Drawbacks:

• non local memory access
• (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the
storage for the matrix Amight look like

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

which is using C indexing starting at 0 to avoid index shifts in, e.g., matrix vector
product implementations, where the indices in the vector are C, i.e., zero based.

Remark 6.41: The coordinate storage format is, for example, the basis of
the sparse matrix version of the Matrix Marketa file exchange format.

ahttps://math.nist.gov/MatrixMarket/

Compressed Sparse Row Storage (CSR/CRS)

As above the format uses three vectors to store the data. Two vectorsvals and
cols store the entry values and column indices. The third vector holding the
row indices (rows) stores, where the corresponding row starts in the vectors
vals and cols. Additionally, the last entry stores the number of non-zero

https://math.nist.gov/MatrixMarket/
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entries nnzpAq. Not that, since the start of the first row is evident, the first entry
is actually not needed, but it simplifies implementations as discussed below.

. . .vals
0 nnz´1 (float, double)

. . .cols
0 nnz´1 (INT)

. . .rows
0 n (INT)

Advantages:

• optimal storage requirements
• can exploit BLAS (Section 6.4) in per row operations
• allows multithreading

Drawbacks:

• non local memory access due to indirect indexing
• (load balancing problem in threaded implementations due to different
row lengths)

Remark 6.42: An equivalent format swapping the roles of row and col-
umn pointers in the above, is used, e.g., in MATLAB. It is called compressed
sparse column storage (CSC/CCS).

As noted above, the first entry in the rows pointer actually contains redundant
information, since it is clear that the corresponding row starts at the first posi-
tion in both other arrays. However, most implementations still use the version
including the redundant value since then loops running over all entries in a row
can simply be written as something like

for ( j = rowptr [i] ; j < rowptr[i+1]; j++) {...}

and the first and last rows do not need any special treatment.
The matrix A in CSR format looks as follows:
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1 2 3 4 5 6 7vals

0 1 1 2 1 3 2cols

0 2 4 6 7rows

Here again we have used zero based indexing of columns as usual in C to avoid
index shifts.
Ellpack and Ellpack-R (ELLR)

This describes a format that was introduced as storage format specially tailored
for vector computers. Themain idea was to automatically balance the workload
and exploit data parallelism1. Letnr be themaximum row length. Ellpack stores
two 2d-arrays vals and cols with size n ˆ nr. The Ellpack-R (ELLR) format
adds an additional vector storing the actual lengths of the single rows in order
to avoid processing of zero elements.

2
3
1
2
1
2
4
2
3
2

vals
(nˆ nr)

cols
(nˆ nr)

r
(n)

(float,
double)

(INT) (INT)

Advantages:

• constant per row length good load balancing properties
• (coalesced memory access (threads k, k+1 access consecutive memory
cells))
• (no synchronization required)

Drawbacks:

• The storage requirement is dominated by the longest row. ñ Possibly,
many zeros are stored.

1Details will be introduced in Term 2.
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¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

good bad

• The zeros are actually processed without leading to new information.
Advantage of the ELLR:

• The unnecessary processing of zeros is avoided.
Drawback of the ELLR:

• Additional n integers for storing of the row lengths are required.
• Load balancing features of the Ellpack format are no longer valid.

Also here we present the matrix A in the form of the stored data for this for-
mat. As in the examples above we again use the C/zero based indexing in the
cols array to avoid index shifts in loops using this matrix together with vectors
implemented as 1d arrays.

1 02 1
3 14 2
5 16 3
7 20 0

2
2
2
1

vals
(4ˆ 2)

cols
(4ˆ 2)

r
(4)

Remark 6.43: In the NVIDIA® CUDA® toolkit for acceleration of codes us-
ing NVIDIA® graphics adapters, or more precisely in the corresponding
cusparse library used for working with sparse matrices, a hybrid matrix
storage format is used. This format is using Ellpack for the short rows,
i.e., rows with only few non-zero entries. The exceptionally long rows that
are causing the storage problems in both Ellpack and ELLR, are stored and
treated separately.

6.3.3 Complex Matrices

In the above sectionswe have focused on the storage schemes for realmatrices.
In the dense case, the structure for a possibly complex matrix could simply be
extended by a second double pointer ivals for storing the imaginary parts
and a second char that indicates whether the matrix is real or complex, i.e.,
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whether ivals contains useful values or is simply NULL. Since the informa-
tion in the additional char is in principle redundant, this could also be hid-
den in the structure field by using clever preprocessor defines indicating
the different structures in addition with the information whether they are real
or complex. However, this version breaks the property of the values field to
be directly passable to the Fortran call. Therefore, in the dense complex case,
the vals array should be twice as large and real and imaginary parts of each
entry should be stored next to each other. This can, e.g., be achieved by using
the double complex, or float complex types from complex.h (in the
C99 standard). These are compatible with the Fortran types COMPLEX*16 and
COMPLEX*8=COMPLEX.
Similarly, for sparse matrices the vals field gets a twin ivals. Also, similar to
the above, special structures togetherwith the indication of real or complex data
storage can be handled by an additional informationmember like structure.

6.4 Linear Algebra Software

One of the most basic tasks in most applications in scientific computing is the
necessity to provide a basic set of routines dealing with the linear algebra sub-
tasks. Due to the foresight of a couple of developers in the mid 1970s this is
a rather easy task, as long as the involved linear operators can be represented
as dense matrices. Then, the related functions and solutions are usually well
approximated by simple vectors in Rn, or Cn. The basic operations that are
required in this case have been grouped in three classes, the so-called levels, in
the basic linear algebra subroutines (BLAS) library introduced in Section 6.4.1.
Those levels are
• basic vector operations,
• matrix-vector operations,
• and matrix-matrix operations.

Each of the levels is described in a separate paragraph below. The BLAS library
only contains the most basic operations like products and weighted sums. The
application of those operations inmore complex tasks, like linear system solves,
eigenvalue computation, matrix factorizations and similar calculations, is imple-
mented in a set of routines gathered in the linear algebra package (LAPACK).
We will briefly sketch its content in Section 6.4.2. There exist several implemen-
tations of these two libraries. The main reference implementation is hosted
at https://www.netlib.org. It provides source codes for both libraries
that can be compiled on basically any machine. Hardware manufacturers have
started early to provide their own implementations. The most well known one

https://www.netlib.org
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today is probably the Intel® Math Kernel Library2 (MKL) that contains optimized
versions of both libraries. AMD provides support in their AMD Optimizing CPU
Libraries3 (AOCL).

6.4.1 Basic Linear Algebra Subroutines (BLAS)

The basic linear algebra subroutines BLAS are sub-divided into three classes,
called levels, that aremainly standing for the involvedmemory and computation
complexities, but also for their historic development.
• Level 1 described in [4]: Opnq operation onOpnq data
• Level 2 described in [2]: Opn2q operations onOpn2q data
• Level 3 described in [1]: Opn3q operations onOpn2q data

While, as mentioned above, the reference implementation is available in the
online library for numerical software at https://www.netlib.org/blas,
vendor versions are available from major hardware manufacturers:
• Intel® Math Kernel Library (MKL)
• AMD BLIS (as part of AOCL)
• Apple Accelerate framework
• IBM Engineering and Scientific Subroutines Library (ESSL)
• ¨ ¨ ¨

BLAS has a Fortran induced naming scheme: (Level 1)4
cblas_
looomooon

X XXXX
prefix datatype operation

Data types (allowed specifiers)

• s— single precision real
• c— single precision complex
• d— double precision real
• z— double precision complex

2https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onemkl.html3https://developer.amd.com/amd-aocl/4We base our presentation on the prefix used, e.g., in the Apple Accelerate framework.

https://www.netlib.org/blas
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://developer.amd.com/amd-aocl/
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Operations (examples)

• axpy y Ð αx` y

• dot r Ð xTy

• nrm2 r Ð ‖x‖2 “
?
xTx

• asum r Ð ‖x‖1 “
ř

i
|xi|

Example 6.44: cblas_daxpy double precision real version of y Ð ax ` y in
the C wrapped format.
The prefix is usually only needed in C versions. It is empty for calling the F77
versions (compare also Section 3.11).
Levels 2 and 3 additionally respect/exploit matrix structures and indicate them
in the correspndign function names:
cblas_
looomooon

X XX XXX
prefix datatype structure operations

Possible values for the structure placeholder are:
GE general GB general banded
SY symmetric SB symmetric banded SP symmetric packed
HE hermitian HB hermitian banded HP hermitian packed
TR triangular TB triangular banded TP triangular packed

Typical arguments For triangular matrix operations the type of triangular
structure is controlled by the argument UPLO. It is taking character values ’L’,
’U’ for lower or upper triangular, respectively.
The operand order (e.g., decision about left or right multiplication) is steered by
the SIDE arguments ’L’ or ’R’.
For triangular matrices the DIAG argument specifies whether they have a unit
diagonal ’U’ or not ’N’.
Transposition is decided via TRANS argument taking either of the following val-
ues:
’N’ non transposed X
’T’ transposed XT

’C’ conjugate transposed XH
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Remark 6.45: Note that ’H’ is not defined by the standard and not under-
stood by the general implementations. Although some implementations
may support it, it should therefore never be used.

As two examples, we report on the double precision and double precision com-
plex matrix-matrix-product routines that perform the operation

C Ð αoppAq ¨ oppBq ` βC,

where opp.q refers to the transposition types above. The Fortran interfaces and
data types are
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
REAL*8 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
REAL*8 A(LDA,*),B(LDB,*),C(LDC,*)

for the real case and
SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
COMPLEX*16 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)

for the complex one. Thus, the corresponding C prototypes look like
void dgemm_(char *transa, char *transb, int *m, int *n, int

*k,
double *alpha, double *A, int *lda,
double *B, int *ldb,
double *beta, double *C, int *ldc);

for the real and
void zgemm_(char *transa, char *transb, int *m, int *n, int

*k,
double complex *alpha, double complex *A, int *lda,
double complex *B, int *ldb,
double complex *beta, double complex *C, int *ldc);

for the complex case.
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Vector Operations (BLAS Level 1)

• scaling and addition: αx, αx` y,
• inner products: x˚y,
• norm expressions: ‖x‖2, ‖x‖1,‖x‖8.

Matrix-Vector Operations (BLAS Level 2)

Let F P tC,Ru, α, β P F, A P Fmˆn, x, y P Fn:
• scaling and addition: αAx` βy, αA˚x` βy,
• rank-1/2 updates: A` αxy˚, A` αxx˚, A` αxy˚ ` βyx˚,
• triangular solves: αT´1x, αT´˚x, T triangular.

Matrix-Matrix Operations (BLAS Level 3)

• αAB ` βC , αAB˚ ` βC , αA˚B˚ ` βC ,
• rank k updates: αAA˚ ` βC , αA˚A` βC
• rank 2k updates: αA˚B ` αB˚A` βC
• triangular multi-solves: αT´1C , αT´˚C , T triangular.

Idea Behind the Level 3 Performance Gain The performance of Level 3 op-
erations increases by block sub-structuring the operations. The special case
C Ð C `ABT of the above GEMM operation, evaluated in a simple 2ˆ 2 block
structured form becomes

„

C11 C12

C21 C22



`

„

A11

A21



“

BT
11 B

T
21

‰

,

which allows to compute the single blocks in the result as:
C11 Ð C11 `A11B

T
11, C12 Ð C12 `A11B

T
21,

C21 Ð C21 `A21B
T
11, C22 Ð C22 `A21B

T
21.

Analogous formulas result from further refinement of the block-subdivision.
Optimal block sizes depend on the processors cache hierarchy (see Chapter 4).
They are intended to keep data in the caches as long as they are required. This
way the implementation aims at minimizing the transfers of single data ele-
ments between cache and main memory. This is paying off since each data
element is involved Opnq-times in the operation. Also the order of operations
during calculations can influence the amount of data copied per time unit.
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Tuning is done by exploiting knowledge about the hardware specifications in
vendor implementations (MKL, ESSL, but also OpenBLAS), or by optimizing the
block sizes at compilation time as in ATLAS5 (automatically tuned linear algebra
subroutines).
6.4.2 Linear Algebra PACKage (LAPACK)

LAPACK is a Fortran 90 based library that provides routines for
• solution of linear systems of equations,
• least squares solutions of linear systems of equations,
• solutions of eigenvalue problems,
• and singular value problems.

The associated matrix factorizations that are underlying these algorithms are
also provided, as are related operations (e.g., reordering of Schur factorizations
to achieve other orderings of the eigenvalues.)
LAPACK was first released Feb 1992. The latest version is 3.9.0 and was pub-
lished November 24, 2023. The library is in conception an add-on to BLAS, es-
pecially BLAS Level 3. It uses the appropriate BLAS routines wherever possi-
ble. That especially means that LAPACK supports the same data types asBLAS
and uses, respectively, exploits the same matrix structures as described for the
BLAS above.
Just like for the BLAS, the reference implementation is available at https:
//netlib.org/lapack.
Optimized vendor versions are for example included in:
• Intel® MKL
• Apple Accelerate framework (ATLAS based)
• IBM Engineering and Scientific Subroutines Library (ESSL)
• AMD AOCL-LAPACK

The automatically tuned linear algebra subroutines (ATLAS) also cover the op-
erations defined in LAPACK.
LAPACK routines are divided in 3 Categories

i) auxiliary routines
ii) computational routines
5https://math-atlas.sourceforge.net/

https://netlib.org/lapack
https://netlib.org/lapack
https://math-atlas.sourceforge.net/
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iii) driver routines
The general naming scheme follows the BLAS Level-2/3 approach.
• auxiliary routines: these routines in LAPACK provide common helper
functionality: scaling, reordering, machine specifications. Examples are:

– disnan, sisnan— check the argument for NaN
– dlamch, slamch— retrieve machine parameters, i.e., getM, eps,
base, length of mantissa, emin, emax

– cerbla— error handling in case of invalid inputs
• computational routines: perform simple specific tasks

– factorizations: LU , LL˚, LDL˚,QR, LQ, . . .
– eigenvalue and singular value computations
– recovery of eigenvectors, Schur vector

• driver routines: these routines call a set of computational routines to
solve linear algebra problems

– linear equations: Ax “ b

– linear least squares: min
x

‖b´Ax‖2

– generalized linear least squares
– eigenvalue decompositions
– generalized eigenvalue/singular value decompositions

Related software:

• CLAPACK (C wrapper to LAPACK)
https://www.netlib.org/clapack/

• ScaLAPACK (distributed parallel version)
https://www.netlib.org/scalapack/

• PLASMA (Parallel Linear Algebra for Scalable Multicore Architectures)
https://icl.cs.utk.edu/plasma/software/

• MAGMA (Matrix Algebra on GPU and Multicore Architectures)
https://icl.cs.utk.edu/magma/

• LAPACK95 (Fortran 95)
https://www.netlib.org/lapack95/

• JLAPACK (rather outdated Fortran-Java LAPACK)

https://www.netlib.org/clapack/
https://www.netlib.org/scalapack/
https://icl.cs.utk.edu/plasma/software/
https://icl.cs.utk.edu/magma/
https://www.netlib.org/lapack95/
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• lapack++ (native C++ implementation last update in 2000)
https://math.nist.gov/lapack++/

6.4.3 SuiteSparse

SuiteSparse is a collection of software packages/tools related to sparse factor-
izations (LU, Cholesky and QR) and direct solution of sparse linear systems. The
UMFPACK tool from the collection is working behind the application of back-
slash to sparse linear systems in MATLAB. The main authors are T. A. Davis and
his team at the Texas A&M University6.
6.4.4 ITPACK

This package is intended for solving large sparse linear systems by iterative
methods. It is hosted at https://www.netlib.org/itpack.
The main library consists of three sub-packages for
• single precision,
• double precision,
• vector machines.

It uses CG, PCG, Chebyschev acceleration and generalized CG for systems with
non-symmetric matrices.
The development of this Fortran based package takes place at Center for Nu-
merical Analysis at University of Texas at Austin.
6.4.5 Trilinos

“Trilinos is a collection of open source software libraries intended to be used as
building blocks for the development of scientific applications”.7
Trilinos is developed at the Sandia National Labs. The current version is 15.0.0
from Nov. 2023. The package is licensed under the terms of the LGPL8 and
covers:
• construction andusage of sparse anddensematrices, graphs and vectors.
• iterative and direct solution of linear systems
• parallel multilevel and algebraic preconditioning
• and many more . . .

6https://faculty.cse.tamu.edu/davis/suitesparse.html7https://en.wikipedia.org/wiki/Trilinos8see, e.g., https://opensource.org/licenses/lgpl-license

https://math.nist.gov/lapack++/
https://www.netlib.org/itpack
https://faculty.cse.tamu.edu/davis/suitesparse.html
https://en.wikipedia.org/wiki/Trilinos
https://opensource.org/licenses/lgpl-license
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The basic library is written in C++ with Fortran kernels. Moreover Python bind-
ings are provided via SWIG. Trilinos can be found online at:
https://trilinos.org

6.4.6 Native Packages for other Programming Environments and
Languages

• C++
– boost — supports threading as well
https://www.boost.org/

– MTL — The Matrix Template Library
https://www.simunova.com/en/node/24

* The library uses boost and BLAS in kernels.
* A single computer version available as OpenSource.
* MTL4 has distributed computing capabilities, but those are con-
nected to a payed license release.

• Python
– NumPy — provides proper n-d array for Python
https://www.numpy.org/

– SciPy — amongst many others provides LAPACK functionality (call-
ing F90 LAPACK)
https://www.scipy.org/

• Java
– JaMa — Java Matrix Package provides basic linear algebra in Java
https://math.nist.gov/javanumerics/jama/

– JaMPack — same as JaMa
– maintenance questionable: latest release Nov 2012, previous ver-
sion July 2005.
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An algorithm must be seen to be believed.
Donald Ervin Knuth
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The Solution of Moderate Size Dense Linear Systems
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7.1 Important Preliminaries

In this section we collect some facts that should be known fromNumerical Anal-
ysis I

Theorem 7.1 (LU decomposition): LetA P Rnˆn and for k “ 1, . . . , n´ 1,
Ak “ Ap1 : k, 1 : kq P Rkˆk the leading k ˆ k sub-matrix.

i) If @k “ 1, . . . , n´ 1 it holds detpAkq “ 0, then DL,U P Rnˆn such
that

A “ LU

157
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with
L “ @

@

1

1

@@ (unit lower triangular)
and

U “ @
@
@

(upper triangular).
ii) IfA “ LU exists andA is regular then the LU factorization is unique.
iii) If A “ LU as in (ii) then

detpAq “ u11 ¨ ¨ ¨unn

Proof. homework.

Note that the simple regular 2ˆ2 matrixA “
„

0 1
1 0



does not allow for an LU
decomposition, but applying a single row permutation we get:

Ã :“ PA “

„

1 0
0 1



, where P “
„

0 1
1 0



Ã has an LU decomposition by Theorem 7.1. This observation motivates the
following theorem.

Theorem 7.2: Let A P Rnˆn regular. There exists a permutation matrix
P P Rnˆn such that

PA “ LU

for L,U as in Theorem 7.1.

idea of the proof. Exploit properties of Gaussian elimination procedure, that de-
fines the L and U matrices, and permutation matrices. The full proof can be
found, e.g. in [1, 3]

Gaussian elimination is used to compute the L and U matrices. It consists of
a triple loop procedure. The straight forward row-by-row elimination version
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reads:

Algorithm 7.1: Gaussian Elimination “kij”-formulation
Input: A P Rnˆn
Output: A overwritten by L,U

1 for k “ 1 : n´ 1 do
2 Apk ` 1 : n, kq “ Apk ` 1 : n, kq{Apk, kq;
3 for i “ k ` 1 : n do
4 for j “ k ` 1 : n do
5 Api, jq “ Api, jq ´Api, kqApk, jq;

There are 5 other versions kji, ikj, ijk, jik, jki. The jki version is sometimes
called left looking LU. It will become important for sparse matrices in Chapter 8.

Clever data arrangement (vector formulation) inkij-version leads to the so called
outer product Gaussian Elimination:

Algorithm 7.2: Outer product Gaussian Elimination
Input: A P Rnˆn fulfilling Theorem 7.1
Output: L,U P Rnˆn such that A “ LU as in Theorem 7.1 A is

overwritten by the factors.
1 for k “ 1 : n´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk, kq;
4 Aprows, rowsq “ Aprows, rowsq ´Aprows, kqApk, rowsq;

Algorithm 7.2 is a rank-1 update, i.e., BLAS Level 2 operation formulation of the
Gaussian elimination process. It involves 2

3n
3`Opn2q flops. SolvingAx “ b for

x P Rn given A P Rnˆn, b P Rn now is performed as in

Algorithm 7.3: Linear System solver using Gaussian Elimination and
forward/backward substitution
Input: A P Rnˆn, b P Rn
Output: x P Rn

1 Compute L,U as in Theorem 7.1, such that
A “ LU (e.g. via Algorithm 7.2);

2 Solve Ly “ b by forward substitution (e.g., using Algorithm 7.5);
3 Solve Ux “ y by backward substitution;
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Algorithm 7.4: Forward Substitution (Row Version)
Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 bp1q “ bp1q
Lp1,1q ;

2 for i “ 2 : n do
3 bpiq “ bpiq´Lpi,1:i´1qbp1:i´1q

Lpi,iq

7.2 Cache/BLAS Exploitation

7.2.1 Triangular System

Consider
a11x1 “ b1,

a21x1 ` a22x2 “ b2.

In case a11 “ 0 and a22 “ 0 this leads to

x1 “
b1
a11

,

x2 “
b2 ´ a21x1

a22
“
b2 ´

a21
a11
b1

a22

In the i-th equation in a system Lx “ b in Algorithm 7.3 we find:

xi “

bi ´
i´1
ř

j“1
lijxj

lii

For the computation of all xi we find a complexity ofOpn2q flops.
An accuracy discussion can be found in [2]. It states that the rounding error in
each element of the solution vector is smaller than n ¨ u.
Note that row-wise access to L is “bad” in column major storage, since it de-
stroysmemory locality. Algorithm7.5 presents a columnmajor storage oriented
version of the procedure.
Note further that the backward substitution can be derived completely analo-
gously.
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Algorithm 7.5: Forward Substitution (Column Version)
Input: L P Rnˆn (unit) lower triangular, b P Rn
Output: y “ L´1b (stored in b)

1 for j “ 1 : n´ 1 do
2 bpjq “ bpjq

Lpj,jq ;
3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;
4 bpnq “ bpnq

Lpn,nq ;

Algorithm 7.6: Block Forward Substitution
Input: L,B as in (7.1)
Output: X solving LX “ B

1 for j “ 1 : N do
2 Solve LjjXj “ Bj forXj ;
3 for i “ j ` 1 : N do
4 Bi “ Bi ´ LijXj

7.2.2 Triangular Systems with Multiple Right Hand Sides and BLAS
Level 3 formulation

Let B P Rnˆq leading to a family of linear systems LX “ B withX P Rnˆq . L
is (unit) lower triangular and we consider the block substructure as in

»

—

—

—

–

L11 0 ¨ ¨ ¨ 0
L21 L22 ¨ ¨ ¨ 0... ... . . . ...
LN1 LN2 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X1

X2...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B1

B2...
BN

fi

ffi

ffi

ffi

fl

. (7.1)

We apply Algorithm 7.5 with the Lp1, 1q element replaced by the L11 block toget
»

—

—

—

–

L22 0 ¨ ¨ ¨ 0
L32 L33 ¨ ¨ ¨ 0... ... . . . ...
LN2 LN3 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X2

X3...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B2 ´ L21X1

B3 ´ L31X1...
BN ´ LN1X1

fi

ffi

ffi

ffi

fl

after computingX1 fromL11X1 “ B1 by Algorithm 7.5. Now, successively, con-
tinuing with L22X2 “ B̃2 and so forth, we derive the block forward elimination
scheme given in Algorithm 7.6
We can optimize the block sizes in (7.1) such that we get optimal performance
out of the BLAS Level 3 block operations.
Again the backward substitution case allows for the analogous approach. This
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allows to accelerate the last two steps in Algorithm 7.3 by fast BLAS Level 3
operations.

7.2.3 BLAS Level 3 based Gaussian Elimination

The above raises the obvious question:
Can we do something similar for the Gaussian elimination process?

In fact we can. The following derivation will provide the block outer product
formulation of the outer product Gaussian elimination in Algorithm 7.2. To this
end, let A P Rnˆn with partitioning

A “

„

A11 A12

A21 A22



(7.2)

Here A11 P Rrˆr , A12 P Rrˆpn´rq, A21 P Rpn´rqˆr , A22 P Rpn´rqˆpn´rq, for a
blocking parameter 1 ď r ď n. Now we can computeA11 “ L11U11, e.g., usingAlgorithm 7.2 and solve the triangular systems

L11U12 “ A12 for U12,

L21U11 “ A21 for L21.

Then it follows:
„

A11 A12

A21 A22



“

„

L11 0

L21 Ã22

 „

U11 U12

0 In´r



,

where
Ã22 “ A22 ´ L21U12. (7.3)

Now if Ã22 “ L22U22 were the LU of the updated p2, 2q block, then
„

A11 A12

A21 A22



“

„

L11 0
L21 L22

 „

U11 U12

0 U22



Since we did not post special assumptions on the matrix A in Equation (7.2)
other than the existence of the LU-decomposition, we can proceed with Ã22 asabove. This leads to the procedure summarized in Algorithm 7.7.
Algorithm 7.7 requires 2

3n
3 ` Opn2q flops, just like Algorithm 7.2 but the rank-

r update is a BLAS Level 3 operation, so optimizing the size of r according to
our CPUs cache hierarchy we can expect superior performance. However, for
N “ n

r , [1] shows that the fraction of BLAS Level 3 operations in Algorithm 7.7
is 1´ 1

N2 ; and 1´ 1
N for the block-triangular solves. Note that this contradicts

choosing r as large as possible and requires an additional level of optimization.
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Algorithm 7.7: Panel Outer Product LU
Input: A P Rnˆn as in Theorem 7.1, r as above
Output: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 l “ minpn, k ` r ´ 1q;
4 Compute Apk : l, k : lq “ L̃Ũ via Algorithm 7.2;
5 Solve L̃Z “ Apk : l, l ` 1 : nq and store Z;
6 SolveWŨ “ Apl ` 1 : n, k : lq and storeW ;
7 Perform the rank-r update:

Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´WZ;
8 k “ l ` 1;

Algorithm 7.8: iterative refinement
Input: A P Rnˆn, b P Rn, x̂ an approximate solution
Output: x̂ a solution (approximation)

1 repeat
2 r “ b´Ax̂;
3 solve Ad “ r;
4 update x̂ “ x̂` d

5 until x̂ accurate enough;

7.3 Iterative Refinement

Iterative refinement is a fixed point type approach that seeks to improve the
computed result of a linear system solve. In the notation of Chapter 5 let x̂ be
the computed solution of Ax “ b. The iterative refinement process is summa-
rized in the Algorithm 7.8. A common application is the iterative refinement of
single precision results on a double precision architecture. This is, e.g., used in
connection with accelerator devices such as graphics processing units, that are
usually working a lot faster in single precision, than in double precision.
Motivation: Let r “ b´Ax̂ and d “ A´1r, x̃ “ x̂`d. Then in exact arithmetic
we have

Ax̃ “ Apx̂` dq “ Ax̂`Ad “ pb´ rq `AA´1r “ b´ r ` r “ b

Thus in exact arithmetic the updated x̂ in Algorithm 7.8 would be the exact so-
lution after 1 step.
The literature distinguishes mainly 2 approaches:

i) fixed precision refinement
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ii) mixed precision refinement
In fixedprecision refinement all steps in Algorithm7.8 are computed in the same
precision (u).
For mixed precision refinement the residual r is computed in a higher precision
pûq. Classically û “ u2, i.e.,u corresponds to single precision, and û then stands
for double precision.
Notation: Let A P Rnˆn be a square matrix. The absolute value of A is de-
fined component-wise:

|A| “ p|aij |qi,j“1,...,n.

Under the assumption
pA`∆Aqx̂ “ b |∆A| ď uw (7.4)

for W non-negative depending on A, n, and u (but not on b), [2] proves the
following two theorems based on forward analysis:

Theorem 7.3 (Mixed Precision Refinement): LetAx “ b be a non-singular
linear system solvedwith amethod satisfying (7.4) and residuals in double
the working precision. Moreover

η “ u
∥∥|A´1| p|A| ` wq

∥∥
8

If η ă 1 ´ δ for δ large enough, then iterative refinement reduces the
forward error by approximately a factor of η at each stage until

‖x´ x̂‖8
‖x‖8

« u

Theorem 7.4 (Fixed Precision Refinement): Setting as in Theorem 7.3 but
with residual computation inworking precision. The same reductionholds,
but with limit

‖x´ x̂‖8
‖x‖8

ď 2nu

∥∥|A´1||A||x|
∥∥
8

‖x‖8
loooooooomoooooooon

condpA,xq

(7.5)

Remark 7.5:

• (7.5) is essentially the best we can expect in fixed precision.
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• Note that the solver need not be of LU type and û is not limited to
u2.
• When working in û “ u2, i.e., system solves in single precision
and residual in double precision, one can reuse the LU decompo-
sition from the outer solve. That means the iterative refinement is
ofOpn2q complexity, i.e., one order of magnitude cheaper than the
actual solve and the amount of data copied is reduced due to single
precision storage.
• Fixed precision iterative refinement may be used to stabilize unsta-
ble solvers forAx “ b, e.g.,LU “ PA computed with poor pivoting
(see [2, Section 12.2]).
• rule of thumb:
machine precision: 10´d “ u, κ8pAq « 10q  k steps of mixed
precision refinement lead to approximatelyminpd, kpd´qqq correct
digits in x.

Convergence of iterative refinement from the splitting method point of
view: Splitting Methods: A “ B ` pA´Bq

ñ Ax “ bô B´1pB ` pA´Bqqx “ B´1bô pI ` pB´1A´ Iqqx “ B´1b

ô x` pB´1A´ Iqx “ B´1b

 xi`1 “ B´1b´ pB´1A´ Iqxi (*)
“ xi `B

´1 pb´Axiq
loooomoooon

ri
looooooomooooooon

di

IfB´1 “ pL̂Ûq
´1 this reflects a refinement of theLU . From (*) we immediately

find xi`1 “ B´1b ` B´1pB ´ Aqxi. As for the splitting methods in general,
by the Banach fixed point theorem we then have that the iteration converges if
M :“ B´1pB ´Aq is a contraction, i.e. ρpMq ă 1.
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• storage:
– only non-zero entries are stored,
– indirect indexing is mandatory for minimal storage requirements,
– e.g., CSR (compressed sparse row storage, with C/zero based index-ing)

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

Ñ

»

–

1 2 3 4 5 6 7
0 1 1 2 1 3 2
0 2 4 6 7

fi

fl

values (double)
column indices (long)
row-pointers (long)

number of non-zeroes

Issues

“Cache” Indirect indexing requires the value, index and row-pointer vectors to
reside in the cache simultaneously for optimal performance.
Consider:
• 64 bit architecture
• in average 10 entries per row
• 4MB cache
• A P R24 000ˆ24 000

Required storage:1
p24 000` 240 000` 240 000q ˆ 8 Bytes “ 504 000ˆ 8 Bytes

“ 4032 kBytes
That means we have p4 096 ´ 4 032q kBytes“ 64 kByte of cache left for
instructions in y “ Ax. In applications one easily wants to work with
n “ 106 . . . 108, which on modern computers usually easily fits into RAM.
The execution speed of operations withA are thus strictly limited by data
transfer rate from the main memory to the caches.

“Fill in” Another important issuewith sparsematrices ariseswith direct solvers.
These require matrix factorizations. However, it can not be guaranteed
that the factors stay sparse if the matrix A is sparse. Usually the factors
get a certain amount of new entries. The new entries are referred to as
fill or fill-in. We will see more details on this phenomenon in Section 8.4.

1neglecting the nnz entry for the sake of simpler numbers
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Example 8.1 (Fill-In): The diagrams below show the non-zero en-
try distribution in A, L and U for A sparse and A “ LU .

A L U

worst case

best case

Definition 8.2 (pattern): Let A P Rnˆn be a matrix.
We call the set

PpAq “ tpi, jq : aij “ 0u

the pattern of A.
Furthermore, we define

PRpA, iq “ tj : aij “ 0u

as the pattern of the i-th row of A.

Definition 8.3 (structural rank): Let PpAq Ă N2 be a pattern of a matrix
A P Rnˆn. The number

rkSpAq “ maxtrankpBq : B P Rnˆn with PpBq “ PpAqu

is called the structural rank of A.
If rkSpAq ă n, then A is called structural rank deficient

Example 8.4:

A “

„

1 1
1 1



, C “

„

0 1
0 0



,

rkSpAq “ 2 “ 1 “ rankpAq , rkSpCq “ 1 “ rankpCq .
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Remark 8.5: The structural rank of A is:
• a property related to the pattern PpAq,
• much cheaper to compute than the (numerical) rank,
• available via sprank() in MATLAB,
• an upper bound to the rank of A.

8.1 Preconditioning

In everything presented here, we will only use the so-called left preconditioning.
Other versions like right, or two-sided preconditioning also exist. The ideas are
very similar there, therefore we restrict the presentation to the most simple
case.
Recall Lemma 6.19:

P P Cnˆn non-singular, A P Cnˆn, x, b P Cn
Ax “ bô PAx “ Pb

The matrix P can be used to lower the condition number for finding x. The
perfect candidate for such a matrix P is obviouslyA´1, since then PA “ I and
κpPAq “ 1.
However,A´1 is not accessible and especially has evenworse “fill in” restrictions
than the factorizations. Good approximations toA´1 are thus required that are:
• cheap to generate,
• easily and efficiently applicable,
• able to get stored with similar memory requirement as A.

P does not need to be a matrix, e.g., sometimes other (iterative) solvers are
used.
8.1.1 Diagonal Preconditioning

P´1 “ diagpAq

• also called Jacobi preconditioning
• very simple and cheap
• might improve certain problems, e.g., diagonal dominant systems
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• generally not sufficient
• more sophisticated variants use diagonal kˆ k (k ą 1) blocks or multiple
diagonals (e.g., tridiagonal preconditioning)

8.1.2 Splitting Methods

Recall Section 7.3. Set A “ B ` pA´Bq, then
Ax “ bô Bx “ b` pB ´Aqx.

This motivates to define:
xi`1 “ B´1b`B´1pB ´Aq

loooooomoooooon

M

xi.

If we can ensure ρpMq ă 1 then by a fixed point argument we can guarantee
convergence.
Example 8.6: Two common examples of splitting methods are:
• B “ diagonal of A  Jacobi method
• B “ lower triangle of A  Gauß Seidel method

Splitting methods are often considered to be smoothers rather than precon-
ditioners. They mainly damp out high frequency parts of the error. Therefore,
often they are used in combinationwithmultigrid techniques in order to smooth
interpolation errors.

8.1.3 Multigrid approaches

If A was generated by a hierarchical approach (e.g., the finite element method
(FEM) with successive mesh refinement), the multiple layers (FEM grids) can be
used to successively restrict the current iterate of the outer iteration to the
coarsest grid/mesh. Then one gets a good solution there and performs interpo-
lation to get back to the finest level.
Splitting methods are used to smooth out the high frequency interpolation er-
rors. If the hierarchy is unknown or unusable, algebraic approaches can be used
to generate the hierarchy from the connectivity graph of the matrix, i.e., the
graph with nodes 1, . . . , n and edges from i to j if pi, jq P PpAq. Clusters and
subclusters of nodes then produce the required hierarchy.
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8.1.4 Incomplete Factorizations

Computation of LU “ A is often infeasible due to fill-in.
Basic idea: Only allow entries in L,U corresponding to PpAq. This leads to the
ILUp0q often written simply as ILU.
• usually only provides poor approximation
• variants allow:

– “levels (k) of fill” (ILUpkq)
– fill-in that exceeds a drop tolerance ε (ILUpεq)
– adding dropped fill to the diagonal (MIC)

8.1.5 Sparse Approximate Inverses (SPAI)

The basic idea of the sparse approximate inverse (SPAI) is to find the matrix
M P Rnˆn that best approximatesA´1 among allmatrices withPpMq “ PpAq,
in the sense

min
M

‖AM ´ I‖2
F “ min

M

n
ÿ

j“1

‖Amj ´ ej‖2
F

looooooooomooooooooon

n independent least squares problems

.

The SPAI preconditioner is especially attractive in parallel computing due to the
independent column-wise computation.
In order to improve the approximation quality, similar pattern-extension con-
siderations as for the incomplete factorizations can be used.
In any case, only matrix vector products are required for the application of the
preconditioner, since PAx would be evaluated as P pAxq, i.e., two subsequent
matrix vector products.

8.2 Krylov Subspaces and Projection Methods

Definition 8.7: A P Cnˆn regular, b P Cn. A projection method for Ax “ b
is a procedure for approximation of x by xm P x0 `Km, which satisfies

pb´Axmq K Lm. (8.1)
Here, x0 P Cn is an arbitrary initial vector andKm,Lm arem-dimensional
subspaces of Cn.
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Condition (8.1) represents orthogonality in the Euclidean sense.
In caseKm “ Lm, (8.1) is called Galerkin-condition and one has an orthog-
onal projection method. In case Km “ Lm, (8.1) is called Petrov-Galerkin-
condition and one has an oblique projection method.

Definition 8.8: A P Cnˆn regular, y P Cn.
i) KmpA, yq “ spanty,Ay,A2y, . . . , Am´1yu is called them-th Krylov
subspace of A for a seed vector y.

ii) A projection method with Km “ KmpA, yq is called Krylov subspace
(projection) method.

Definition 8.9 (minimal polynomial of A): Let pνpλq “ ν
ř

j“0
ajλ

j . The poli-
nomial pν is called minimal polynomial of A if ν P N is the smallest degree
such that pνpAq “ 0.

In exact arithmetic we get the exact solution withm “ ν, since
ν
ÿ

j“0

ajA
j “ 0 ô A

ν
ÿ

j“1

ajA
j´1 “ ´a0I.

Thus
A´1 “ ´

1

a0

ν
ÿ

j“1

ajA
j´1,

which, in turn, means
x “ A´1b “ ´

1

a0

ν
ÿ

j“1

ajA
j´1b P KνpA, bq.

Nowwe let x0 P Cn be the initial vector and r0 :“ b´Ax0 the corresponding ini-tial residual. Further, let Km “ KmpA, r0q, Lm be subspaces, and the columns
of Vm,Wm P Cnˆm bases of Km and Lm, respectively.
Then, for xm P x0`Km there exists a σm P Cm with xm “ x0`Vmσm and (8.1)
holds if and only if

ô 0 “WH
mpb´Apx0 ` Vmσmqq

ô 0 “WH
mpb´Ax0q ´W

H
mAVmσm

ôWH
mAVmσm “WH

mr0

ô σm “ pW
H
mAVmq

´1
WH
mr0.
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Thus xm “ x0 ` VmpW
H
mAVmq

´1
WH
mr0

rm “ b´Axm

“ b´Apx0 ` VmpW
H
mAVmq

´1
WH
mr0q

“ r0 ´AVmpW
H
mAVmq

´1
WH
mr0

The projection Pm to them-th subspace is then given as Pm “ I ´Qm, where
Qm “ AVmpW

H
mAVmq

´1
WH
m. The above derivation proves the following simple

lemma.

Lemma 8.10: If WH
mAVm is invertible, then (8.1) has a unique solution

given as
xm “ x0 ` VmpW

H
mAVmq

´1
WH
mr0

with corresponding residual
rm “ r0 ´AVmpW

H
mAVmq

´1
WH
mr0

The invertibility assumption is sometimes easily guaranteed. For example if A
is symmetric positive definite (s.p.d.) with Km “ KmpA, r0q “ Lm

ñWm “ Vm and dimKm “ m

ñWH
mAVm “ V H

mAVm s.p.d.
Analogously, for A invertible and Lm “ AKm ñ Wm “ AVm with dimKm “

m “ dimLm, we immediately see thatWH
mAVm “ V H

mA
HAVm is s.p.d..

8.3 Conjugate Gradients

Different choices of Km and Lm lead to different methods. Let A P Rnˆn be
symmetric and positive definite. If we choose Km “ Lm “ KmpA, r0q then
Vm “ Wm and, as we have investigated xm P x0 ` KmpA, r0q and rm K

KmpA, r0q andWH
mAVm “ V H

mAWm is s.p.d. for allm. The resulting method is
called conjugate gradients (CG) method and is summarized in Algorithm 8.1. We
have discussed the necessity of preconditioning in Section 8.1 above. The algo-
rithm that results from the application of left preconditioning in Algorithm 8.1
is the preconditioned CG, presented in Algorithm 8.2. Note that the algorithm
can be formulated such that we only need one additional matrix vector prod-
uct at the cost of one additional vector in memory, namely the preconditioned
residual.
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Algorithm 8.1: Conjugate Gradient Method
Input: A P Rnˆn, b P Rn, x0 P Rn
Output: x “ A´1b

1 p0 “ r0 “ b´Ax0, α0 “ ‖r0‖2
2;

2 form “ 0, . . . , n´ 1 do
3 if αm “ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq

;
6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 αm`1 “ ‖rm`1‖2

2;
9 pm`1 “ rm`1 `

αm`1

αm
pm;

10 else
11 STOP;

Remark 8.11: The CG method is often derived from minimization of the
functional

F : Rn Ñ R,

x ÞÑ
1

2
pAx, xq2 ´ pb, xq2

In fact CGminimizes the error em :“ xm´A
´1bwith respect to the norm

‖x‖A :“
b

pAx, xq2

induced by the matrix A due to symmetry and positive definiteness.

Theorem 8.12: Let
em “ xm ´A

´1b

denote the error in them-th step of the CG algorithm. Then it holds
‖em‖A ď 2

ˆ

κ2pAq ´ 1

κ2pAq ` 1

˙m

‖e0‖A .

Proof. any textbook on iterative methods.
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Algorithm 8.2: Preconditioned Conjugate Gradient Method
Input: A P Rnˆn, b P Rn, x0 P Rn, A´1 « P P Rnˆn
Output: x “ A´1b

1 r0 “ b´Ax0, p0 “ z0 “ Pr0, α0 “ pr0, p0q;
2 form “ 0 : n´ 1 do
3 if αm “ 0 then
4 vm “ Apm;
5 λm “

αm
pvm,pmq2

;
6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 zm`1 “ Prm`1;
9 αm`1 “ prm`1, zm`1q2;
10 pm`1 “ zm`1 `

αm`1

αm
pm;

11 else
12 STOP;

8.4 Direct Solvers for Sparse Symmetric Systems

In the following, to ease the presentations, we will follow the general assump-
tions that
• A P Rnˆn is sparse and symmetric,
• and no pivoting is used.

For non-symmetric matrices the presented concepts have to be generalized
from undirected to directed graphs. We leave these details out to get a bet-
ter view on the basic ideas and avoid the additional technical difficulties that
would distract readers.

Definition 8.13: Two graphs are easily related to the matrix A P Rnˆn.
i) V “ t1, . . . , nu is called the set of vertices, i.e., variable indices.
ii) The set of edges E Ď V 2 is the set of pairs pi, jq P E ô aij “ 0.
iii) The directed connectivity graph of A GdpAq “ pV, Eq associates a di-rection to an edge by the order of indices in the pair.
iv) The undirected connectivity graph of A GpAq “ pV, Eq identifies the

pairs pi, jq and pj, iq, i.e. considers pi, jq “ pj, iq, and thus neglects
the direction.
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Remark 8.14:We collect some properties of the symmetric case treated
in this chapter.
• A symmetricñ aij “ aji ñ “pi, jq P E ô pj, iq P E”
ñ its is sufficient to the treat the undirected graph
• If A s.p.d. then @i aii ą 0 ñ pi, iq P E , i.e., the graph contains
the trivial edges (usually not included in graphical representations
of the graph)
• The number of nonzero elements in column i equals the number of
neighbors of the vertex i in the graph GpAq.
• Symmetric permutations, i.e., permutations of thematrixwhere both
columns and rows are swapped simultaneously, are equivalent to
renumbering the graph, i.e., application of a permutation to the el-
ements of V .
• E“̂PpAq

8.4.1 The Elimination Graph Model for Symmetric Matrices

Idea: Compute LLT from a sequence of rank-1 reductions, following the lines
of the derivation of Algorithm 7.2

A “ A0 “ H0 “

„

d1 vT1
v1 H̃1



, H̃1 P Rn´1ˆn´1

“

« ?
d1 0

1?
d1
v1 In´1

ff

loooooooomoooooooon

L1

„

1 0
0 H1



looomooon

A1

«?
d1

1?
d1
vT1

0 In´1

ff

loooooooomoooooooon

LT
1

A “ pL1L2L3 . . . Ln´1qInpL
T
n´1 . . . L

T
3L

T
2L

T
1 q

“ pL1L2L3 . . . Ln´1qInpL1L2L3 . . . Ln´1q
T

“ LLT

vjv
T
j influence the structure, i.e., pattern of Hj . It is a usually dense (but prob-

ably scattered) sub-block of Hj . If PpvjvTj qzpPpvjvTj q X PpHj´1qq “ H then
step j leads to fill-in inHj .
What does this proceduremean in terms of the graphs? The answer is best
understood following a simple example.
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Example 8.15: This example demonstrates the graph elimination procedure
and resulting fill-in for the Cholesky decomposition of a simple 6 ˆ 6 exam-
ple. Actual values are unimportant and thus replaced by ˚’s. The indices are
indicated on the diagonal.

1
2

34

6 5
(a) initial graph G0

H0 “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) corresponding submatrix 0
2

34

6 5
(c) elimination graph G1

H1 “

»

—

—

—

—

–

2 ˚ ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

fl

(d) corresponding submatrix 1
34

6 5
(e) elimination graph G2

H2 “

»

—

—

–

3 ˚ ˚ ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ ˚ 6

fi

ffi

ffi

fl

(f) corresponding submatrix 2
4

6 5
(g) elimination graph G3

H3 “

»

–

4 ˚ ˚

˚ 5 ˚

˚ ˚ 6

fi

fl

(h) corresponding submatrix 3
Figure 8.1: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition
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Algorithm 8.3: graph eliminations process
Input: GpAq “ pV, Eq undirected graph of A
Output: G1, . . . ,Gn´1 sequence of eliminations graphs

1 for k=1:n-1 do
2 V “ Vztku (remove vertex k);
3 E “ pEztpk, lq : l neighbor of kuq Y tpx, yq : x, y neighbors of ku;

8.4.2 The filled graph G`pAq

The procedure above introduces new elements. Let F “ L ` LT, then PpF q
is the filled pattern of A and GpF q ist called the filled graph of A denoted by
G`pAq. For the example above we have:

1
2

34

6 5
(a) The filled graph G`pAq “ GpF q

F “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚ ˚

˚ 3 ˚ ˚ ˚

˚ ˚ 4 ˚ ˚

˚ ˚ 5 ˚

˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) The final matrix F “ L` LT with fill.
Figure 8.2: The filled graph and matrix of a Cholesky decomposition example.

Obviously, the filled graphG`pAq is the unionof the elimination graphsG0,G1, . . .In fact one can prove:

Lemma 8.16 ([3]): pi, jq P G`pAq ô pi, jq P GpAq, or there exists k ă
minpi, jq, such that pi, kq P G`pAq and pk, jq P G`pAq.

8.4.3 Characterization of Fill-in

Let L “ plijqi,j“1,...,n be a Cholesky factor of A, i.e., A “ LLT.

Theorem 8.17 (Fill-path-theorem [4]): lij “ 0 ô D path in GpAq between
i and j such that all nodes (vertices) in the path have indices smaller than
both i and j.
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We have seen in the introduction of Chapter 8, that reordering of variables can
have strong impact on the amount of fill-in and consequently on the subsequent
operations.

Definition 8.18: Theminimumfill-in problemdescribes theproblemof find-
ing the optimal permutation of vertex labels that produces the smallest
possible number of new edges in G`pAq compared to GpAq.

The article [7] shows that the minimum fill-in problem is NP-complete and thus
NP-hard in general. Several heuristic approaches exist that come up with sub-
optimal solutions.
8.4.4 Heuristic Fill Reduction

Mainly 3 classes of methods exist.
i) Global approaches

• Structured permutation
• Fill-in only in the resulting structure
• Examples: (reverse) Cuthill-McKee, nested dissection

ii) Local heuristics
• Incorporated into pivoting strategies
• Symmetric case: minimum degree, minimum fill
• General case: Markowitz criterion

iii) Hybrid variants
(a) Permutation to block structure
(b) Local heuristic applied on the single blocks

(Reverse) Cuthill-McKee Reordering (RCM)

A global strategy that approaches the minimum fill problem by bandwidth pnbqminimization is the (Reverse) Cuthill-McKee reordering. Its general aim is to find
a symmetric permutation such that

nb “ max
i

max
aij “0

|i´ j|

is minimized. Recall that a symmetric permutation is just the same as a vertex
relabeling.
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Example 8.19: Influence of the ordering of the degrees of freedom on the re-
sulting fill-in in the Cholesky decomposition is demonstrated in the following
two figures.

1 2 3

4

56
(a) Graph before reordering.

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Bandwidth 5 pattern.
Figure 8.3: Graph and sparsity pattern before reordering.

5 3 2

1

46
(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚

2 ˚ ˚

˚ ˚ 3 ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 2 pattern.
Figure 8.4: Graph and sparsity pattern after RCM reordering.

Basically, RCM reordering selects a root node, forms the tree that consists of
all shortest paths to all other vertices in GpAq and then performs an ordered
breadth first search on that tree to fill the permutation vector.
In contrast to a standard breadth first search, here the vertices are ordered with
respect to their increasing degree.
Step 10 in Algorithm 8.4 is mandatory for the reverse reordering, when avoided
the algorithm implements Cuthill-McKee reordering. Both versions lead to the
same bandwith, but the reverse version is observed to have better properties
wth respect to fill-in. Selection of a good root node in Step 3 is crucial for a
good reordering. This is demonstrated for some good starting nodes in the
next example. As a rule of thumb, the root node should be chosen such that
it has preferably long paths to all other nodes in the graph. We leave it as an
excercise to derive the reorderings for root node 2, which is a particularly bad
choice.
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Algorithm 8.4: Reverse Cuthill-McKee (RCM) reordering
Input: A P Rnˆn with PpAq symmetric
Output: p P Rn such that Ã “ App, pq has reduced bandwidth

1 Q “ rs, R “ rs;
2 repeat
3 Select root node P R R;
4 R “ rR,P s;
5 Q “ rQ, nodes adjacent to P ordered by increasing degrees;
6 while Q “ H do
7 R “ rR,Qp1qs,
8 Q “ rQp2 : endq, nodes adjacent ofQp1q not contained in R by

increasing degrees;
9 until all nodes are contained in R;
10 p “ Rpn : ´1 : 1q;

Example 8.20: This example shows the importance of the selection of the root
node in Step 3 of Algorithm 8.4.

1

6 2

5 4 3

6

1

2

4

5

3

R “ r1s Q “ r6, 2s
R “ r1, 6s Q “ r2, 5s
R “ r1, 6, 2s Q “ r5, 4, 3s
R “ r1, 6, 2, 5s Q “ r4, 3s
R “ r1, 6, 2, 5, 4, 3s Q “ rs

p1 “ r3, 4, 5, 2, 6, 1s

R “ r6s Q “ r1, 5s
R “ r6, 1s Q “ r5, 2s
R “ r6, 1, 5s Q “ r2, 3s
R “ r6, 1, 5, 2s Q “ r3, 4s
R “ r6, 1, 5, 2, 3, 4s Q “ rs

p6 “ r4, 3, 2, 5, 1, 6s

Here the right column shows exactly the procedure that leads to the bandwidth
2 representation in Example 8.19, while the permutation on the left gives a
bandwidth 3 pattern. This is the one produced by the current implementations
in MATLAB and GNU Octave. Note that the matrix A is transformed into the
reduced-bandwidth matrix Ã as Ã “ App, pq, while the graph uses the inverse
permutation. That means the permutation p̃ such that p̃ppq “ r1, . . . , 6s, i.e.
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Algorithm 8.5: Generic local strategy
Input: A P Rnˆn sparse,m a metric on the nodes in GpAq, p “ rs
Output: p P Rn such that Ã “ App, pq is the reordered matrix

1 repeat
2 Select a node P (the pivot element) with minimal metric value

mpP q: p “ rp, P s;
3 Update elimination graph erasing P ;
4 Update metric for all non-selected nodes;
5 until all nodes selected;

p̃1 “ r6, 4, 1, 2, 3, 5s, p̃6 “ r5, 3, 2, 1, 4, 6s.

Local heuristics

Let A P Rnˆn sparse symmetric, GpAq “ pV, Eq the corresponding undirected
graph ofA andm : V Ñ R a metric, such thatmpiq ă mpjq implies that vertex
i is “better” than vertex j. Algorithm 8.5 presents a generic local strategy.

Remark 8.21:

• Step 4 in Algorithm 8.5 should be restricted to those nodes where
m changed due to the graph update.
• The local pivot search allows combination with classic pivot strate-
gies to improve the numerical results.

Minimum degree idea: The basic strategy behind minimum degree reorder-
ing is to choose the degree of a vertex as the metric. That meansmpiq ă mpjq
if node i has less neighbors than node j. Especially, the degrees only change
for adjacent nodes of P during the elimination of P , i.e., we have a very local
metric updated.
Step 3 of Algorithm 8.5 is performed as in Section 8.4.1.
Minimum degree reordering is not always optimal as we see from the following
example.



184 Chapter 8. Solving Linear Systems With Sparse Matrices

Example 8.22:We consider the following matrix A P R9ˆ9

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ˚ ˚ ˚

˚ 2 ˚ ˚

˚ ˚ 3 ˚

˚ ˚ ˚ 4 ˚

˚ 5 ˚

˚ 6 ˚ ˚ ˚

˚ 7 ˚ ˚

˚ ˚ 8 ˚

˚ ˚ ˚ 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, for which, by construction, factorization is possible without fill-in. GpAq looks
like this

1

2

3

4 5 6

7

8

9

Now the minimum degree metric suggests to choose node 5 (of degree 2) for
elimination, which results in:

1

2

3

4 6

7

8

9

This obviously introduces a new edge from node 4 to node 6, i.e., results in fill-
in. This is still better than choosing node 4 or 6 (both degree 3), which would
lead to two new edges each, i.e. more fill-in. On the other hand, all other nodes
(also degree 3) could obviously be removed without causing additional edges.

All heuristic approaches to the minimum fill problem in general only produce
suboptimal solutions. This is however clear, since the optimal solution is usually
not accessible since it is the solution to an NP-hard problem.
Example 8.23 (minimumdegreemetric versusminimum fill metric): The follow-
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ing simple graph ( edges) shows thediscrepancies betweenminimumdegree
and minimum fill as metrics.

1

2

3

4

5

67

8

9

The potential fill is indicated by the colored edges. The edges indicate the
fill resulting from the removal of node 4. The edges show that all edges that
are required to preserve paths after removal of node 9 do already exist. That
means, the degree and the fill measures of node 4 are both 3, while the degree
of node 9 is 4, but the fill measure is 0. Below we collect a comparison of the
two metrics on the entire graph.

node degree metric value fill metric value
1 1 0
2 2 1
3 2 1
4 3 3
5 5 4
6 4 0
7 4 0
8 5 4
9 4 0

Hybrid method and graph components

Definition 8.24 (connected): In an undirected graph G two vertices u and
v are called connected if G contains a path from u to v. Otherwise, they
are called disconnected.
A Graph G is said to be connected if each pair of vertices is connected. A
connected component is a maximal connected subgraph of G.

That means, if u, v are vertices in G from different connected components, then
u, v are disconnected. Thus, the corresponding degrees of freedom in the linear
system are independent of each other.



186 Chapter 8. Solving Linear Systems With Sparse Matrices

Especially, reordering A corresponding to the connected components leads to
a block diagonal matrix. The resulting diagonal blocks can then be treated by
local strategies or dense solvers.
For general non-symmetric matrices strongly connected components have to be
used. That means, both directed paths between two vertices need to exist.
Therefore, not all diagonal blocks decouple completely, since only one direc-
tion may exist for a pair of vertices in two components. Nonetheless strongly
connected componentsmay formso-called supernodes that can beused to local-
ize the memory access. This idea leads to the SuperLU algorithm and software
package2.

Sparse Matrix Vector Products and Reordering

Consider the matrix vector product of a matrix A stored in CSR format and a
dense vector x.
Naively looking at the problem one might think: Even if the elements in A are
scattered all over the row, in the CSR format they are stored one after the other,
anyway. This would lead us to the expectation that we get no advantage due to
reordering.
However, this is only half the truth. Consider an RCM reordered matrix with
small bandwidth. The relevant indices corresponding to the entries are local,
as well. Thus, a local portion of x is used. Additionally, the next row has a very
similar set of indices containing entries. That means, in the next row product
almost the entire portion of x can be reused, which leads to only little cache
misses on x.
In contrast to this, scattered row entries will lead to a rather irregular and espe-
cially non-sequential access to x possibly causing lots of cache misses.

8.4.5 Related Software

• SuiteSparse (Section 6.4.3)
– CSparse— Introductory basic direct solver library used for “The sparse
backslash book” [2]

– UMFPACK — The library behind the sparse “z” in MATLAB and the
sparse direct solver in SciPy3

– ApproximateMinimum Degree related reordering
• ITPack — see Section 6.4.4

2https://portal.nersc.gov/project/sparse/superlu/3https://www.scipy.org

https://portal.nersc.gov/project/sparse/superlu/
https://www.scipy.org


Bibliography 187

• Trilinos — see Section 6.4.5
• METIS4 / SCOTCH5—2 libraries for graphpartitioning, clustering and com-
putation of fill reducing reorderings.
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