
Scientific Computing I
Concise Introduction to the C Programming Language

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

This Lecture:

The C Basics

History

History

I 1972: C was developed by Dennis Ritchie at Bell Labs as an evolution of the B
programming language to reimplement MULTICS as UNIX.

I 1978: The first edition of ”The C Programming Language” book by Brian Kernighan and
Dennis Ritchie was published, often referred to as ”K&R C.”

I 1983: The American National Standards Institute (ANSI) formed a committee to
establish a standard specification for C, leading to the development of ANSI C.

I 1989: The ANSI C standard, known as C89, was officially published, providing a
standardized version of the language.

I 1990: The International Organization for Standardization (ISO) adopted the ANSI C
standard, resulting in the ISO C standard, also known as C90.

I 1999: A major update to the C standard, known as C99, introduced new features such as
inline functions, variable-length arrays, and new data types.

I 2011: The C11 standard was released, adding features like multi-threading support,
improved Unicode support, and type-generic macros.

I 2018: The C18 standard was published, mainly focusing on bug fixes and clarifications
without introducing new features.

The Programming Environment

Overview

The Programming Environment
Overview

Four steps are necessary to transform the human readable source code to an executable
program:

1. The Preprocessor searches the source code for special directives beginning with #. The
output of this phase stays human readable but the code is filled with additional statements
and data from other files.

2. The Compiler is the main tool. It checks whether the source code is syntactically correct
and translates it into assembler code. The assembler output is still human readable and it
expresses the same instruction as the C source on a much lower abstraction level.

3. The Assembler turns the assembler output into machine code. This can theoretically be
executed by the CPU, but missing external libraries prevent this.

4. The Linker finally combines the object files and the libraries to an executable program.

These four steps are usually performed by a single compiler call in GCC.

Compiler Invocation

The Programming Environment
Compiler Invocation

The C compiler is invoked in the shell:

gcc <opts> -o outputfilename input1.c ... <libs>

This compiles all given input files to one executable. If the output filename is omitted the
compiler uses a.out.

If a program consists of many source files or they need different compiler options it is more
convenient to create the single object files first:

gcc -c input1.c
gcc -c input2.c
...

Afterwards the object files are linked with libraries to the final executable:

gcc -o output input1.o input2.o ... <opts> <libs>

The Programming Environment
Compiler Invocation: External Libraries

I External libraries are added using the -l option.

I A library named libNAME is linked using -lNAME.

I Libraries must be specified in the order they depend on each other.

I Cyclic dependencies are resolved by adding the libraries more than once, to the linker
invocation.

Example
A program depends on libone, libtwo and libthree, where libtwo depends on
libone. The resulting compiler call is:

gcc -o output input.c -ltwo -lone -lthree.

Two types of libraries exist.

I static libraries (.a) may result in large binaries

I shared object libraries (.so) included only upon execution of the program

The Programming Environment
Compiler Invocation: External Libraries

I External libraries are added using the -l option.

I A library named libNAME is linked using -lNAME.

I Libraries must be specified in the order they depend on each other.

I Cyclic dependencies are resolved by adding the libraries more than once, to the linker
invocation.

Example
A program depends on libone, libtwo and libthree, where libtwo depends on
libone. The resulting compiler call is:

gcc -o output input.c -ltwo -lone -lthree.

Two types of libraries exist.

I static libraries (.a) may result in large binaries

I shared object libraries (.so) included only upon execution of the program

The Programming Environment
Compiler Invocation: External Libraries

I External libraries are added using the -l option.

I A library named libNAME is linked using -lNAME.

I Libraries must be specified in the order they depend on each other.

I Cyclic dependencies are resolved by adding the libraries more than once, to the linker
invocation.

Example
A program depends on libone, libtwo and libthree, where libtwo depends on
libone. The resulting compiler call is:

gcc -o output input.c -ltwo -lone -lthree.

Two types of libraries exist.

I static libraries (.a) may result in large binaries

I shared object libraries (.so) included only upon execution of the program

The Programming Environment
Compiler Invocation: External Libraries

I .so libraries are loaded dynamically

I these libraries need to be in default locations

I the search path can be extended by setting the LD_LIBRARY_PATH environment variable

Example
A program uses a library in a non standard location. It is compiled and linked using

gcc -o output input.c -L/path/to/the/library -lthelib

and executed with adding the path to LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/path/to/the/library:$LD_LIBRARY_PATH
./output

Development Tools

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

The Programming Environment
Development Tools

Many tools exists to support the programmer during development and debugging. The basic
ones are:

gdb The GNU Debugger is a command line tool that helps executing a program step by step,
enables to look into variable values at runtime, or view the machine code. It allows a deep
analysis of what is going on in the program.

ddd The Data Display Debugger is a graphical user interface for gdb.

valgrind Is a suite of debugging tools which analyze the memory access, check for memory leaks,
create call graphs,. . .

nm Lists all symbols (functions or variables) in an object file or a library.

ldd Lists all external libraries required by a program. It also checks if they are found in the
current search paths and shows which ones will be used upon execution of the program.

make An automatic build utility.

Other Compilers

The Programming Environment
Other Compilers

Beside the GNU Compiler Collection, there a set of other compilers for the C programming
language:

I Clang Part of the LLVM project. Known for its fast compilation and useful error messages.

I MSVC (Microsoft Visual C++) Provided by Microsoft for Windows development.

I Intel OneAPI C++ Compiler Optimized for Intel processors. Known for high
performance.

I Nvidia HPC SDK (formerly PGI) Optimized for Nvida ARM CPUs. Advanced GPU
offloading features.

I TinyCC (TCC) Lightweight and fast.

I PCC (Portable C Compiler) One of the oldest C compilers. Focuses on simplicity and
portability.

I IBM XLC Compiler with focus on Power CPUs for Linux and AIX.

C Statements, Types and Operators

The Basic Structure of a C Program

C Statements, Types and Operators
The Basic Structure of a C Program

The basic structure of a C program looks like

#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 3.4)
...
// function definitions (see Section 3.5)
...
int main (int argc, char **argv) {
// Here comes the code.
return 0;

}

stdio.h and stdlib.h are two header files from the standard C library (described later).
They provide basic input and output, access to files, and other basic actions. They are
necessary for essentially every program.

C Statements, Types and Operators
The Basic Structure of a C Program

The basic structure of a C program looks like

#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 3.4)
...
// function definitions (see Section 3.5)
...
int main (int argc, char **argv) {
// Here comes the code.
return 0;

}

stdio.h and stdlib.h are two header files from the standard C library (described later).
They provide basic input and output, access to files, and other basic actions. They are
necessary for essentially every program.

C Statements, Types and Operators
The Basic Structure of a C Program

The basic structure of a C program looks like

#include <stdio.h>
#include <stdlib.h>
// more includes
...
// type definitions (see Section 3.4)
...
// function definitions (see Section 3.5)
...
int main (int argc, char **argv) {
// Here comes the code.
return 0;

}

main() is the function that is called when a program starts. All statements are executed in
the order in which they appear. The return 0; statements exits the main() function and
returns the status code 0 to the operating system.

Comments

C Statements, Types and Operators
Comments

Possible comment structures are:

// A single line comment

/* Another single line comment */

/* This
is
a multi-line comment */

#ifdef GRAPHICS
Some code fragment

#endif /*GRAPHICS*/

Statements and Blocks

C Statements, Types and Operators
Statements and Blocks

A statement in C can be one of the four kinds:

variable declaration

data-type varname;

function call

dosomething();

assignment

x = 3;

or control structure (decribed later)

C Statements, Types and Operators
Statements and Blocks

Statements are grouped to code blocks using { and }:

{ // begin of the code block
Statement1;
Statement2;
...

} // End of the code block

Basic Data Types and Variable Declaration

C Statements, Types and Operators
Basic Data Types and Variable Declaration

Rules for Variables
I Variables need to be declared before they may be used.

I Declarations consist of a data type followed by a variable name.

I Valid variable names begin with alphabetic charactes and contain no special characters
except _.

I The name may not be used for another variable or function in the context.

I Variables need to be declared at the begin of a block or a function following the C89
standard.

I The C99 standard allows this everywhere.

C Statements, Types and Operators
Basic Data Types and Variable Declaration

Basic Data Types
int Stores one signed integer value. Normally this is 4 byte large, that

means it can store one 32-bit number.
long Stores one large signed integer value. This must have at least the size

of an int variable but it can be larger. On a 64-bit architecture this is
normally 8 byte.

unsigned int Stores an integer without a sign, that means only positive but larger
numbers.

unsigned long Stores a long without a sign, that means only positive but larger num-
bers.

C Statements, Types and Operators
Basic Data Types and Variable Declaration

Basic Data Types ctd.
char Stores one character from the ASCII table. Internally it is a one-byte integer value

and holds values from -127 to 128.
size t An unsigned integer value which is large enough to store the size of the largest

theoretically possible memory object. Its size depends on the hardware of the
platform used.

float A single precision floating point number, 4 Bytes.
double A double precision floating point number, 8 Bytes.
void Non specified type for function with no return value or generic pointers.

C Statements, Types and Operators
Basic Data Types and Variable Declaration

There was no boolean data-type in C until the C99 standard. Boolean values are, therefore,
expressed as integers where zero means false and all other values are evaluated as true. The
definitions of variables of basic data types can also contain initial assignments.

int x = 1, y;

The above definition declares two integers x and y and initializes x with the value 1. The
character type char is assigned using single quotes:

char c = 'A';

The single quotes implicitly convert the given character in to the corresponding ASCII value.
We introduce strings in the complex data types section.

Operators

C Statements, Types and Operators
Operators

Binary Arithmetic Operators

I These are +, −, ∗, and /.

I For integers additionally % (modulo).

I Integer arithmetic is used when both arguments are integers.

I Basic arithemtic evaluation rules apply.

I () influence evaluation order.

Example

int x,y,z,r; // Declares x,y,z, and r to be integers
x = 4; // Sets x to 4
y = 3; // Sets y to 3
z = x / y; // Integer Division of x and y
r = x % r; // Modulo, the remainder of the division

C Statements, Types and Operators
Operators

Short Form of Binary Operations
If the left side of an assignment is the same as the first operand of a binary operation this can
be abbreviated as in:

x += y; // same as x = x + y;

This is possible with all binary operators.

C Statements, Types and Operators
Operators

Unary Operators

I The ++ and -- operators increment or decrement a variable by one.

I Used as pre- or postfix to a variable.

I The prefix increments the variable before its value is used.

I The postfix does it the other way around.

Example

int x = 1, y;
x++; // x = 2;
y = ++x; // y = 3; x = 3;
y = x++; // y = 3; x = 4;

C Statements, Types and Operators
Operators

Bitwise Operators

x & y Perform a bit-wise and operation.
x | y Perform a bit-wise or operation.
x ˆ y Perform a bit-wise xor operation.
˜x Perform a bit-wise not operation.
x << y Bit-Shift on x. Move y bits to the left.
x >> y Bit-Shift on x. Move y bits to the right.

Typecasts
A typecast is used to convert one data-type into another one. It is performed by putting the
new data-type in parentheses in front of a variable.

int y; double x;
x = (double) y; // converts y from int to double

Control Structures

Conditionals

Control Structures
Conditionals

The if-statement realizes an alternative. The simplest one is:

if (condition) {
Statements; // evaluated if the condition is true

}

The if statement can be extended to an if-else construct. This full alternative is:

if (condition) {
Statements; // evaluated if the condition is true

} else {
Statements; // evaluated if the condition is false

}

Control Structures
Conditionals

If more than two cases are necessary this extends to:

if (condition1) {
Statements; // evaluated if the condition1 is true

} else if (condition2) {
Statements; // evaluated if the condition2 is true

} else {
Statements; // evaluated if the condition1 and condition2 are false

}

This concept works for more than two conditions analogously.

Control Structures
Conditionals

A conditional assignment

if (condition) {
a = value1;

} else {
a = value2;

}

can be reduced with the help of the ?-operator to:

a = (condition)? value1:value2;

This is the only ternary operator in C.

Control Structures
Conditionals

The discrete decision statement in C is switch. The syntax is

switch (variable) {
case const_1:

Statements; // evaluated if variable == const_1
break;

case const_2:
Statements; // evaluated if variable == const_2
break;

default:
Statements; // evaluated if none of the other cases matched

}

I If there is no break-statement the program runs trough all other following cases.

I switch only works on discrete data. Interval conditions like x>4 && x<4.5 require an
if-else construction.

Control Structures
Conditionals

Conditions
I Expressions that are evaluated to zero (false) or non-zero (true)

I Comparison operators exist for all numerical data-types such as int or double

< smaller than
<= smaller than or equal to
== equal to
!= not equal to
>= greater than or equal to
> greater than

Control Structures
Conditionals

Conditions
I Expressions that are evaluated to zero (false) or non-zero (true)

I Comparison operators exist for all numerical data-types such as int or double

Boolean operators combine different conditions:

&& boolean and
|| boolean or
! boolean negation, prefix operator

Loops

Control Structures
Loops

C provides three different loop constructions:

I for,

I while, and

I do-while.

A loop repeats a group of statements until certain conditions are met.

Control Structures
Loops

While Loop

I checks condition on entry,

I repeats execution of statements until condition is no longer met.

The syntax is

while (condition) {
statements; // executed as long as the condition is true

}

The condition works exactly as in the if-statements.

Control Structures
Loops

Do-While Loop

I Executes the statements at least once,

I checks the condition upon exiting the loop block.

The syntax is:

do {
Statements; // executed as long as the condition is true

} while (condition);

The semicolon at the end of the statement is untypical but mandatory.

Control Structures
Loops

For Loop

I Most general loop concept

I mostly used for enumerated loops

I can emulate both other loops

The syntax is:

for (initialization; condition; action){
Statements; // inside the loop

}

I initialization executed before first loop block entry

I condition for continues as long as this is true, i.e., non-zero

I action executed at the end of every iteration.

Control Structures
Loops

A for-loop is equivalent to a while-loop of the form:

initialization;
while (condition){
Statements; // inside the loop
action;

}

Each of the three parts inside the for-definition can be made up of multiple expressions
separated by commas. They are evaluated from left to right and represent the value of the last
expression.

Control Structures
Loops

Example
Output all numbers squared for the sequence from 1 to 10:

int i;
for (i = 1; i <= 10; i++){
printf(" %d * %d = %d\n", i, i, i * i);

}

Control Structures
Loops

break-statement
I An emergency exit inside a loop.

I Exits the loop immediately ignoring the condition.

I The program continues with the first statement after the loop.

while (condition) {
Statements;
if (special condition) {

break; // Exits the loop regardless of the while-condition
}

}
// Control jumps here on the break

Control Structures
Loops

continue-statement
I causes the control to jump to the end of the code block defining the loop

I Skips the remaining statements

I Inside a for-loop it still evaluates the action statements

while (condition) {
Statements;
if (special condition) {

continue;
}
Statements;
// Control jumps here on the continue;

}

Control Structures
Loops

Remark 1
Control structures can be nested inside each other as often as desired.

Remark 2
If a control structure only executes one statement, the surrounding brackets {} defining the
code block can be omitted.

This Lecture:

Advanced C Topics

Complex Data Types and Arrays

Structures

Complex Data Types and Arrays
Structures

Data-structures are collections of different variables with in a common context. They are
defined using the struct-statement:

struct NameOfTheStructure {
data-type1 variable1;
data-type2 variable2;
...

};

Variables of this type are defined by:

struct NameOfTheStructure variable;

The .-operator provides access to the components of a structure:

variable.member = ...;
x = variable.member;

Complex Data Types and Arrays
Structures

Example
We define a structure representing a point in R3 and let P = (0, 1,−1) ∈ R3 of this type:

struct point3d {
double x, y, z;

};

struct point3d P;
P.x = 0.0;
P.y = 1.0;
P.z = -1.0;

Assignment is performed using: struct1 = struct2;

Complex Data Types and Arrays
Structures

Example
We define a structure representing a point in R3 and let P = (0, 1,−1) ∈ R3 of this type:

struct point3d {
double x, y, z;

};

struct point3d P;
P.x = 0.0;
P.y = 1.0;
P.z = -1.0;

Assignment is performed using: struct1 = struct2;

Complex Data Types and Arrays
Structures

Example
We define a structure representing a point in R3 and let P = (0, 1,−1) ∈ R3 of this type:

struct point3d {
double x, y, z;

};

struct point3d P;
P.x = 0.0;
P.y = 1.0;
P.z = -1.0;

Comparison via == does not work.
It has to be performed member by member.

Arrays

Complex Data Types and Arrays
Arrays

Arrays provide a multi-dimensional storage for data of the same data-type.
A one-dimensional (static) array is declared using:

data-type name[NumberOfElements];

The bracket []-operator provides the access to the elements:

x[0] = y; // Assignment of the first element
h = x[i-1]; // Access to the i-th element

The array-elements are indexed from 0 up to NumberOfElements − 1.

Example
We declare a vector a ∈ R4:

double a[4];

It consists of four values a[0], a[1], a[2], and a[3].

Complex Data Types and Arrays
Arrays

Multidimensional Arrays

I defined and accessed via repeated use of []
I sorting of elements in memory uses rightmost index

double a[4][5][2];

defines a 3d array with 4× 5× 2 entries.

The element a[2][2][1] and a[2][2][2] are stored next to each other in the memory,
followed by a[2][3][1] and a[2][3][2].

remark
A matrix (2d-array) is stored rowwise. This contrasts Fortran where it is done columnwise.

Complex Data Types and Arrays
Arrays

Every data-type can be made up to an array. Arrays of structures are possible and arrays can
be used as members of structures.

Example
We declare an array of 10 Points in R3:

struct point3d {
double x,y,z;

};
struct point3d points[10];
points[0].x = 10.0; // Set x value of the first point.
points[9].z = -1.0; // Set z value of the last point.

Strings

Complex Data Types and Arrays
Strings

String

I equivalent to array of chars

I length at least number of chars +1

I 0-byte (ASCII NIL) terminates string

I assignment uses double quotes

char string[10] = "Hello!";

will be stored as

Index: 0 1 2 3 4 5 6 7 8 9
Value: ’H’ ’e’ ’l’ ’l’ ’o’ ’ !’ 0 ∗ ∗ ∗

in memory.

Pointers

Complex Data Types and Arrays
Pointers

Pointers are the most powerful concept of C and at the same time the most difficult for
beginners using the language.
Pointers are

I variables containing memory addresses instead of values,

I references to other memory locations where the actual data is located.

Declaration:

data_type *a_pointer_to_data_type;

I A pointer should always be assigned to a valid memory location, or NULL.

I Accessing an illegal memory region may kill the program.

Complex Data Types and Arrays
Pointers

Pointer Operators

& address-of operator returns the address, i.e., the memory location of a variable.

* dereferencing operator the counterpart of the above. Allows to access the value inside
the memory cell pointed to.

int var_x, var_y; // declares two int variables
int *ptr_x; // declares a pointer to an int
var_x = 2; // Sets the value of var_x
ptr_x = &var_x; // Assigns the location of var_x to the pointer
var_y = var_x; // Assings the value of var_x to var_y
var_y = *ptr_x; // equivalent to the previous

Complex Data Types and Arrays
Pointers

Dynamic Array Interpretation
A pointer is simply an array of undetermined size, i.e, a dynamic array.

int field[10];
int *ptr;
ptr = &field[0];
int x = ptr[3];
ptr[4] = 4711;

I Unused pointers should be set to NULL which represents 0 in the pointer context.

I The void * pointer is the generic pointer which can be type cast to any other pointer.

I void * pointers do not allow for the dynamic array style access.

Complex Data Types and Arrays
Pointers

Dynamic Array Interpretation
A pointer is simply an array of undetermined size, i.e, a dynamic array.

int field[10];
int *ptr;
ptr = &field[0];
int x = ptr[3];
ptr[4] = 4711;

Note that in expressions as ptr[3] above the brackets represent a dereferencing operation for
the element chosen by the enclosed index and thus no additional * is needed

Complex Data Types and Arrays
Pointers

Dereferencing the pointer to a struct is done using the *-operator and the access to a
components is uses the .-operator:

struct point3d p;
struct point3d *sptr;
sptr = &p;
(*sptr).x = 0.0;

This type of notation (* sptr).x has an equivalent representation as in:

sptr->x = 0;

I pointers can be nested (int **ptr;)

I this corresponds to multidimensional arrays

I multiply dereferencing accesses the different levels

I dynamic usage requires malloc() and free() (both in stdlib.h) to claim or free
additional memory

Memory Management

Complex Data Types and Arrays
Memory Management

sizeof(type)
I memory allocation needs to be done relative to sizes of data types

I sizeof(type)-operator returns the size of a data-type in bytes

I it can be applied to basic data types as well as structures

Example
Print the size of the double and the struct point3d type:

printf("sizeof(double) = %lu\n", sizeof(double));
printf("sizeof(struct point3d) = %lu\n", sizeof(struct point3d));

Complex Data Types and Arrays
Memory Management

void *malloc(size_t size);

I may allocate contiguous memory blocks of arbitrary size1

I returns void* pointer to a size bytes large memory segment

I needs to be transformed to the desired data-type using a type cast

double *x;
x = (double *) malloc(sizeof(double));

If a memory location is no longer used it should be made available again. The free-function
deallocates the memory referred to by a pointer:

void free(void *ptr);

1Only restricted by the availability of memory.

Complex Data Types and Arrays
Memory Management

Example
Allocate an array with 100 double entries, sum them up, and free the array:

double *array; // declare the pointers

// Allocate 100*sizeof(double) bytes memory
array = (double *) malloc(sizeof(double)*100);

// sum them up
double sum = 0.0;
for (i = 0; i < 100; i++) {
sum += array[i];

}

free(array); // free the memory

Complex Data Types and Arrays
Memory Management

If an allocated memory location is too small or too large it can be resized using the
realloc-function:

(void *) realloc(void *oldptr, size_t newsize);

I inputs: current location and desired size of the segment

I output: (possibly) new location of the resized segment

I data in the part that is kept remains untouched

I if oldptr is NULL, then behavior is as in malloc()

valgrind is an excellent tool to detect errors with wrong access to pointers or wrong usage
of the memory management function.

Functions

Trivia

Functions
Trivia

I The main-function is the starting function of every program.

I It is called automatically when a program is executed.

I Statements like printf and scanf are functions, too.

I Some important standard functions are introduced in Section 2.6.

Functions are called using their name followed by a list of arguments in parentheses. If the
return-value is needed it is used like a variable in an expression or a function in a mathematical
context.

Example
Check if scanf has read two integers correctly:

int i1, i2, r;
r = scanf("%d %d", &i1, &i2);
if (r != 2) {
printf("scanf did not read 2 integers successfully.\n");

}

Definition of Own Functions

Functions
Definition of Own Functions

A function consists of two parts:

I header defines the input/output arguments and the return type

I body code block implementing the functions behavior

return-type function-name(argument-list) {
// Local declarations
Statements;
Statements;
return return-value;

}

I return-type can be any simple data-type, structure, or pointer

I void is used for functions without return value

I naming conventions for variables also apply to functions

I argument list is a comma-separated list of the format data-type variable

Functions
Definition of Own Functions

I function header without the body is called signature of a function

I compiler checks if the calling sequence for a function is compatible with its signature

Example
Define a function named sqr operating on a double precision number and returning the square
of the argument:

double sqr(double x) {
double a;
a = x * x;
return a;

}

The signature of this function is double sqr(double x);

Functions
Definition of Own Functions

Argument Behavior

I By default arguments are copied to the function

I function works on a copy of the data not modifying the original

I behavior is called Call by Value

I to change a given argument at its original location the arguments needs to be a pointer to
the variable

I behaviour is called Call by Reference because only a reference to a variable is passed

I A function can return more than one value or complex data types using this technique

Functions
Definition of Own Functions

We define a function which takes two integer values as arguments and swaps their values.

Example

void swap(int a, int b) {
int tmp;
tmp = a;
a = b;
b = tmp;

}
// in main()
int x = 4;
int y = 5;
swap(x, y);

Wrong!
Only exchanges the local copies inside the function.

Functions
Definition of Own Functions

We define a function which takes two integer values as arguments and swaps their values.

Example

void swap(int *a, int *b) {
int tmp;
tmp = *a;

*a = *b;

*b = tmp;
}
// in main()
int x = 4;
int y = 5;
swap(&x, &y);

Correct!
Call by reference usage changes data in the original location.

Functions
Definition of Own Functions

Example
The main-function of a C program is a special case of a function that takes two arguments:

I int argc contains the number of command line arguments passed to the program

I char **argv is an array of strings

I Each string contains one command line argument

I argv[0] contains the name of the program

int main(int argc, char **argv)

This Lecture:

Advanced C Topics II

Introduction to the Standard Library

The ISO C Standard

Introduction to the Standard Library
The ISO C Standard

I defines a standard library to provide basic functions on every platform and allows portable
programming

I consists of about 20 different header files

I around 200 function for input/output, basic math, string manipulation, and memory
management

POSIX C Library

I important extension to the standard C library

I provides more operating system dependent operations

I contains functions for networking, inter process communication, threading, and many more

Starting with the C11 standard, threading has also become part of the standard C library.

stdio.h and stdlib.h

Introduction to the Standard Library
stdio.h and stdlib.h

These two headers files provide the basic functionality of the C library. They provide
input/output operations, control statements, and memory management.

The file-io operations will be demonstrated by examples in a separate section.

The input/output functions introduced later in this section contain format strings determining
what is to be read or printed. These format strings contain format specifiers for the
representation of the variables contents. They will be introduced first.

Introduction to the Standard Library
stdio.h and stdlib.h

d integers of the type int
ld integers of the type long
u integers of the type unsigned int
g float pointing numbers of the type float or double
e float pointing number in [-]d.ddde+dd notation
c a single character of type char
s strings (see Section 2.4 in lecture notes)
% the % sign.

The full format specification has the form

% [flags][width][.precision][l]type

The [l]type part is what is shown above. The [flags] influence the alignment and
printing of signs. All bracketed specifiers are optional.

Introduction to the Standard Library
stdio.h and stdlib.h

Example

double pi = 3.14159265;
printf("pi = %8.6g\n",pi);

prints:

pi = 3.141593

Note that the decimal dot is consuming one of the 8 digits.

The placeholders and modifiers are described in man 3 printf

Introduction to the Standard Library
stdio.h and stdlib.h

int printf(const char *formatstring, arguments, ...);
int fprintf(FILE *f, const char *formatstring, arguments, ...);
int sprintf(char *buf, const char *formatstring, arguments, ...);

The printf-function writes a text to the standard output. The fprintf-function is the
equivalent for files, whereas sprintf stores the result in the output string buf. The
return-value is the number of characters written.

stdio.h defines stdout and stderr file descriptors to use fprintf for printing output
and error messages separately.

Introduction to the Standard Library
stdio.h and stdlib.h

int scanf(const char *formatstring, arguments, ...);
int fscanf(FILE *f, const char *formatstring, arguments, ...);
int sscanf(const char *string, const char *formatstring, arguments, ...);

I scanf-function reads a formatted input from the standard input. This is the keyboard in
most cases. The arguments are pointers to the variables where the values read from the
input are stored.

I fscanf-function is the equivalent to read data from a file.

I sscanf reads from another string.

I fscanf stops reading when either the end of a line, or the end of the file is reached.

I sscanf terminates upon reaching the 0-byte.

Introduction to the Standard Library
stdio.h and stdlib.h

FILE *fopen(char *filename, char *mode);

The fopen-function opens the file specified by the filename and returns a pointer to the
file stream. mode is a string determining the access to the file:

Mode Meaning Remarks
r open for reading Only possible if the file exists otherwise

NULL is returned.
w create a file for writing If the file already exists the content is

destroyed.
a append data to a file If the file already exists, the new data

is appended to the end. If it does not
exist, the behavior is like ”w”.

fopen returns NULL in case of an error.

Introduction to the Standard Library
stdio.h and stdlib.h

int fclose(FILE *stream);

The fclose-function closes a given file stream. Any buffered data is written to the file. The
stream is no longer associated with the file.

int feof(FILE *stream);

The feof-function returns true if the given file stream reached the end of the file otherwise
false is returned.

void perror(const char *s);

The perror-function displays the most recent error from the C library. The string s is used as
a prefix to the error message.

Introduction to the Standard Library
stdio.h and stdlib.h

void *malloc(size_t size);
void *realloc(void *ptr, size_t new_size);
void free(void *ptr);

The memory management functions explained earlier.

void abort();
void exit(int exit_code);

I abort terminates a program immediately without any clean up

I exit terminates a program immediately with clean up

int atoi(char *s):
double atof(char *s);

The atoi-function converts a string to an integer if possible. The atof-function does the
same with a floating point number.

math.h and complex.h

Introduction to the Standard Library
math.h and complex.h

math.h and complex.h
I Provide common mathematical functions and constants

I A program that uses at least one of them needs to be linked with -lm
I All of the following functions take double arguments and produce double return values

Introduction to the Standard Library
math.h and complex.h

fabs(x) absolute value of x
exp(x) returns ex

exp2(x) returns 2x

log(x) returns ln x
log10(x) returns log10 x
log2(x) returns log2 x
sqrt(x) returns

√
x

hypot(x,y) returns
√
x2 + y2

pow(x,y) returns xy

sin(x) returns sin x
cos(x) returns cos x
tan(x) returns tan x

asin(x) returns sin−1 x
acos(x) returns cos−1 x
atan(x) returns tan−1 x

Introduction to the Standard Library
math.h and complex.h

I The C99 standard introduces the data types float complex and double complex
for handling complex numbers.

I The header file complex.h defines these data types along with the imaginary unit as I
and the following functions for double precision complex arguments and return values.

Introduction to the Standard Library
math.h and complex.h

creal(x) real part of x
cimag(x) imaginary part of x
carg(x) computes the phase angle of a complex number
cabs(x) computes the magnitude of a complex number
conj(x) returns x̄
cexp(x) returns ex

clog(x) returns ln x
csqrt(x) returns

√
x

cpow(x,y) returns xy

csin(x) returns sin x
ccos(x) returns cos x
ctan(x) returns tan x

casin(x) returns sin−1 x
cacos(x) returns cos−1 x
catan(x) returns tan−1 x

Introduction to the Standard Library
math.h and complex.h

I The list of mathematical functions presented here is not complete.

I More can be found in the man pages or the C standard.

I For nearly all double precision functions there exists a corresponding single precision
function with an f as suffix.

I For example the single precision square root is computed by sqrtf(x).

Some predefined constants are:

M PI π = 3.14159265358979323846
M PI 2 π

2 = 1.57079632679489661923
M E e = 2.7182818284590452354

M SQRT2
√

2 = 1.41421356237309504880

string.h

Introduction to the Standard Library
string.h

The string.h-header file contains various functions to manipulate and work with strings.
The important ones are:

size_t strlen(char *s);

The strlen-function returns the length of the string not including the terminating 0
character.

char *strcpy(char *dest, char *src);

I Copies a string from src to dest and returns the dest pointer.

I dest needs to be a preallocated string with at least strlen(src)+1 elements.

I The destination string is not 0-terminated if the source string does not contain the 0-byte
within the length of the destination string.

I The behavior in case the destination is to short is unspecified and may depend on the
actual implementation of the compiler.

Introduction to the Standard Library
string.h

char *strcat(char *dest, char *src);

The strcat-function appends the string from src to dest and returns the dest pointer
again. dest needs to be a preallocated string with at least
strlen(src)+strlen(dest)+1 elements.

int *strcmp(char *lhs, char *rhs);

The strcmp-function compares two strings lexicographically. It returns a negative value if
lhs < rhs, a positive value if lhs > rhs and 0 if they are equal.

Additional Memory Manipulation Functions in string.h

Introduction to the Standard Library
Additional Memory Manipulation Functions in string.h

Beside the string operations string.h defines a variety of memory actions like:

void *memcpy(void *dest, void *src, size_t n);

The memcpy-function copies n bytes from src to dest and returns the dest pointer again.
dest needs to be preallocated with n bytes. src and dest must not overlap each other.
memmove does the same but allows overlapping. It is slower than memcpy.

void *memset(void* dest, int ch, size_t count);

The memset-function converts the value ch to an unsigned char and copies it into each
of the first count characters of the location referred by dest.

File I/O

Examples

File I/O
Examples

fopen
opens a specified file in the desired mode. To avoid undefined behavior we have to check if
NULL was returned.

Example
We create file "test.txt" for writing:

FILE *fp;
fp = fopen("test.txt","w");
if (fp == NULL) {
perror("can not open test.txt for writing.");
return -1;

}

If we want to read data from a file we have to use "r" instead.

File I/O
Examples

The fprintf and fscanf functions in the following are only useful for human readable files.
For individual access to binaries we refer to fread, fwrite and other functions from
stdio.h.

Example
The access modes "w" and "a" open files for writing. fprintf is used like printf on this
file:

int x = 10;
double y = 145.1;
fprintf(fp, "x = %d , y = %lg\n", x, y);

File I/O
Examples

The access mode "r" allows fscanf to read data from it. If the feof()-function evaluates
to true, no more data can be read from the file.

Example
We consider a human-readable file with the following layout:

x1 y1
x2 y2
...

File I/O
Examples

Example
The code-snippet to read all values and print them to the screen will be:

FILE *fp;
double x, y;
fp = fopen("test.txt","r");
if (fp == NULL) {
perror("can not open test.txt for reading.");
return -1;

}
while (!feof(fp)){
fscanf(fp, "%g %g",&x,&y);
printf("x=%g \t y=%g\n",x,y);

}

After reading or writing to a file it needs to be closed by fclose(fp).

The Preprocessor and Header Files

#include

The Preprocessor and Header Files
#include

I used to include other files into the current source code

I mostly used for header files of libraries containing function-headers, data-structures or
constants

I entire content of the included file is temporarily copied to the position of the
include-statement

Two Versions of Includes
I

#include <header.h>

searches default include path first and then all directories specified with -I at the gcc
command line for header.h

I
#include "header.h"

checks the local project directory and afterwards the default and the -I paths. Can also
be used to include other .c-files.

#define

The Preprocessor and Header Files
#define

1.) Constants:

Example
The preprocessor statements:

#define PI 3.14519
#define SQRT2 sqrt(2)

will replace any occurrence of PI with 3.14159 and of SQRT2 with sqrt(2) in the current
source file.

The Preprocessor and Header Files
#define

2.) Preprocessor Macros

Example
The following macro will give the absolute value of the parameter:

#define ABS(X) (((X)>0)?(X):(-(X)))

This replaces y = ABS(z+1); with:

y = (((z+1)>0)?(z+1):(-(z+1)));

If X is not enclosed with parentheses this is evaluated to:

y = ((z+1>0)?z+1:-z+1));

This is not the desired behavior because the minus in the second part is only applied to z and
not to the whole expression as it was intended.

The Preprocessor and Header Files
#define

3.) boolean variables for the #ifdef-statement.

I evaluates to true when the define exists

I preprocessor variables can be set using the -D command line option of the compiler, i.e.,
gcc -DDEBUG ..., makes the Macro-variable DEBUG set, i.e., evaluate to true, in the
preprocessor.

Remark
The preprocessor acts stupid on all replacements of define. It does not check whether or not
the resulting code is valid C code. The programmer has to make sure that the define
statements are extended to correct C code.

The Preprocessor and Header Files
#define

3.) boolean variables for the #ifdef-statement.

I evaluates to true when the define exists

I preprocessor variables can be set using the -D command line option of the compiler, i.e.,
gcc -DDEBUG ..., makes the Macro-variable DEBUG set, i.e., evaluate to true, in the
preprocessor.

Remark
The preprocessor acts stupid on all replacements of define. It does not check whether or not
the resulting code is valid C code. The programmer has to make sure that the define
statements are extended to correct C code.

#if

The Preprocessor and Header Files
#if

if-directive
I allows conditional compiling of the source code based on a conditional

I the conditional must consist on boolean operations or integer math

I else and elif (else-if) available as well

I works like the if-else construct, but is evaluated by the preprocessor at compile time

#if CONDITION1
// Code compilied if CONDITION1 is true
#elif CONDITION2
// Code compiled if CONDITION2 is true
#else
// Code compiled otherwise
#endif

#ifdef

The Preprocessor and Header Files
#ifdef

ifdef-directive
I allows conditional compiling of the source code based on the definition of a preprocessor

variable

I if the variable does not exists or evaluates to 0, false is assume

I short-hand for if defined(...)

#ifdef PREPROCESSOR_DEFINE
// Code compilied if PREPROCESSOR_DEFINE exitsts
#else
// Code compiled otherwise
#endif

This technique is used to handle different environment situations in a single source file

The Preprocessor and Header Files
#ifdef

Example
In order to debug a program easily somebody defined an INFO-macro which prints the given
parameter to the screen. In the final version of the program this is not necessary. However,
removing all outputs in the code may be unwanted to be able to insert them again for later
debugging purposes:

#ifdef DEBUG
#define INFO(X) printf(X)
#else
#define INFO(X)
#endif

If DEBUG is defined the INFO-macro is expanded to a printf-statement, otherwise it is
replaced with nothing.

The #ifndef statements is the opposite of #ifdef. It simply negates the condition of the
#ifdef statement.

Header-Files

The Preprocessor and Header Files
Header-Files

Header-Files
I tell the compiler which functions, data-structures, and constants exist in other source files

I compiler can only check the function headers and the calling sequence in the current file

I similar to a normal source file but consist only of definitions

I come without any implementation

Cyclic inclusions should be avoided using the preprocessor commands #define and #ifndef

#ifndef MY_HEADER_H
#define MY_HEADER_H
// Your header code
#endif

In the literature: Header Fence, Include Guard

The Preprocessor and Header Files
Header-Files

Example
exfct.c implements the function something:

#include <math.h> // for sqrt
#include "exfct.h" // Ensure that the function header

// fits to the one from exfct.h
double something(double x, double y, double z){
return sqrt(x*x+y*y+z+z*z);

}

The Preprocessor and Header Files
Header-Files

Example
exfct.h contains:

I the function header (its signature)

I a preprocessor trick preventing double inclusion in one file:

#ifndef EXFCT_H
#define EXFCT_H
double something(double x, double y, double z);
#endif

The main program can now include the header and knows how the function something is
called correctly.

The Preprocessor and Header Files
Header-Files

C and C++ compilers understand the same code, but symbol names are not compatible.

#ifdef MY_HEADER_H
#define MY_HEADER_H

#ifdef __cplusplus
extern "C" {
#endif

//Your C header codes goes here

#ifdef __cplusplus
} // extern "C"
#endif
#endif

The extern "C" statement is only evaluated by the C++ compiler and tells him to treat the
following code with the naming rules of the C compiler.

Makefiles

Make

Makefiles
Make

I automates build procedures

I controlled by a textfile usually called Makefile
I Makefile contains the build instructions and interdependencies

I deals with dependencies

I only recompiles files that really changed

Different Vendor Versions
I GNU Make

I BSD Make

I Microsoft nmake

Makefiles
Make

Makefile
I works as a simple dependency tree

I compiles the files that are outdated in the order they depend on each other

I consists of so called targets, which may depend on each other

A target is defined by a rule:

targetname: dependencies
command1
command2
...

The indentation in front of the commands must be a <tab> and not spaces!

Makefiles
Make

Makefile
I works as a simple dependency tree

I compiles the files that are outdated in the order they depend on each other

I consists of so called targets, which may depend on each other

A target is defined by a rule:

targetname: dependencies
command1
command2
...

The targetname should be equal to or closely related to the output file generated by the
commands.

Makefiles
Make

Makefile
I works as a simple dependency tree

I compiles the files that are outdated in the order they depend on each other

I consists of so called targets, which may depend on each other

A target is defined by a rule:

targetname: dependencies
command1
command2
...

dependencies is a space separated list of other targets that need to be compiled prior to the
target or names of files which need to exist.

Makefiles
Make

Example
Consider a small software project consisting of main.c, file1.c and file1.h. A makefile
to create the final program prog looks like:

prog: main.c file1.c file1.h
gcc -c main.c
gcc -c file1.c
gcc -o prog main.o file1.o

If the makefile is named Makefile or makefile, use:

make targetname

If the makefile has another name, use:

make -f makefilename targetname

If no targetname is specified, the first one in the makefile is used.

Makefiles
Make

Variables
I make supports definition of variables

I often they contain lists of files

I or they are used to inherit compiler settings from include files

A variable is set by

VARNAME=VALUE

and accessed with $(VARNAME). To change the extension of all files listed in a variable the
substitute command is used. The syntax is

NEWVAR = ${OLDVAR:.old=.new}

This replaces the extension of every file ending with .old in OLDVAR to .new and stores the
list to NEWVAR. This is normally used to create a list of object files form the list of source files.

Makefiles
Make

Suffix Rules
I avoid separate rules for all input files

I create targets for all files matching the suffix

I apply to all files that have not been processed by a separate rule before

.SUFFIXES: .in .out

.in.out:
command1
command2
...

I create a target for every file ending on .in
I transform it into the same filename with the extension .out
I used to compile source code from file.c to an object file file.o

Makefiles
Make

I Two placeholders exist referring to the input and the output filenames. The input file is
referred to using $< and the output file using $@.

I Finally, we define a clean up target. The target clean removes all object files or
intermediate outputs. Because this target does not produce an output file and does not
depend on a file called clean, it needs to be declared as .PHONY target.

I Other techniques extend the make file such as automatic dependency creation using the
GCC compiler, pattern rules as a generalization of the suffix rules, include statements, if
directives, and many more.

I Other tools like CMake2 or the GNU Autotools3 provide high level scripting languages to
create complex makefiles automatically.

2https://www.cmake.org
3https://en.wikipedia.org/wiki/GNU_build_system

https://www.cmake.org
https://en.wikipedia.org/wiki/GNU_build_system

Makefiles
Make

Example

SRC=main.c file1.c
OUTPUT=prog
CC=gcc
CFLAGS= -O2
OBJECTS=${SRC:.c=.o}
.PHONY: clean
.SUFFIXES: .c .o

$(OUTPUT): $(OBJECTS)
$(CC) -o $(OUTPUT) $(CFLAGS) $(OBJECTS)

.c.o:
$(CC) -c -o $@ $(CFLAGS) $<

clean:
rm -f $(OBJECTS)

This Lecture:

Advanced C Topics III

Writing own Libraries

General Reminder

Writing own Libraries
General Reminder

Libraries
I collections of precompiled functions, datastructures and predifined constants together with

the header files providing their signatures

I do not provide a main function

I standard C library is the most prominent and important example for a library

I Two different types of libraries exists
I static libraries are easy to create but need more space on the mass storage and cause

problems with cyclic dependencies between libraries
I dynamic libraries are a bit more complicated to create but take less space on the mass

storage and can in some cases be exchanged without recompiling the program

Static Libraries

Writing own Libraries
Static Libraries

Static Libraries
I collection of object files combined in a specially structured archive

I classical UNIX ar-file containing all .o-files of the library and a search index.

I source code needs to be compiled to object code using the -c option

I all object files are combined to a .a-file together:

ar crs libNAME.a *.o

I c option creates an archive
I r option replaces existing files inside the archive
I s option adds an object index to speed up linking procedures

Writing own Libraries
Static Libraries

A static library is linked to a program by adding the .a-file to the compiler call:

gcc -o program main.c libname.a

Example
We consider the minimal external function example again. The following steps create a static
library and link it against a program.

gcc -c -fPIC exfct.c
...
ar crs libexfct.a *.o
gcc -o prgm main.c libexfct.a

Remark
Static libraries used in conjunction with dynamic ones or on a 64-bit architecture must be
compiled with the -fPIC flag.

Dynamic/Shared Libraries

Writing own Libraries
Dynamic/Shared Libraries

Dynamic/Shared Libraries

I are almost the same as standard programs

I contain no main() function

I when linked to a program only a crossreference is added

I dynamic loader loads the symbols from the library to the address space of the program
upon execution

I external functions from the library are then called from the program memory and the
library code is executed

I The dynamic linker/loader typically searches /lib, /usr/lib/, and
/usr/local/lib/ for shared libraries.

I The LD_LIBRARY_PATH environment variable is used tospecify additional search paths

Writing own Libraries
Dynamic/Shared Libraries

I Dynamic libraries can be replaced without relinking program as long as they use a
compatible binary interface.

I If at least one function head, i.e. signature, changed or a data structure in a header file
has changed, the program needs to be recompiled and relinked.

Writing own Libraries
Dynamic/Shared Libraries

Creation
I created using compiler and linker

I source code needs to be compiled with -fPIC
I the -shared option advises the compiler and the linker options to create a shared library

I output file name must follow the libNAME.so naming convention

Example
We reconsider the minimal external function:

gcc -shared -fPIC -o libexfct.so exfct.c
gcc -o prgm -L. -lexfct main.c

The libexfct.so can be modified without relinking it to the output program as long as the
function signature does not change.

Interfacing Fortran

Fortran

Interfacing Fortran
Fortran – Why?

I A high-level programming language used primarily for numerical and scientific
computing.

I Developed: In the 1950s by IBM, led by John Backus. First release 1957.

I Key Features:
I Strong support for numerical computation and scientific computing.
I Efficient execution of mathematical operations.
I Extensive libraries for scientific calculations (BLAS, LAPACK, SCALAPACK, ARPACK,

FFTPACK, ELPA, . . . , FEM Package)

I Compilers produce more efficient code compared to C by default.

I Internal support for Vectors and Matrices.

Interfacing Fortran
Fortran

I recent Fortran provides an interface to C4

I however, this is not supported by all compilers and only works with recent standards

I mathematical software typically relies on Fortran 77 (an old standard) or Fortran 90

I Fortran files usually end on .f, .f90, or .f95
I the compiler for Fortran in the GCC is gfortran and supports most of the switches that

we know from gcc

4https://de.wikibooks.org/wiki/Fortran:_Fortran_und_C

https://de.wikibooks.org/wiki/Fortran:_Fortran_und_C

An Example

Interfacing Fortran
An Example

The DAXPY5 operation from the Basic Linear Algebra Subroutine library (BLAS)6 is used as an
example to explain how a Fortran subroutine is called from C. The DAXPY operation computes

y = y + αx

for two vectors x , y ∈ Rn and a scalar α ∈ R. The Fortran function header is

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
DOUBLE PRECISION DA
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(*),DY(*)

5https://www.netlib.org/blas/daxpy.f
6https://www.netlib.org/blas (see also Chapter 6 in Lecture Notes)

https://www.netlib.org/blas/daxpy.f
https://www.netlib.org/blas

Interfacing Fortran
An Example

I Fortran passes values using Call by Reference

I all arguments will be pointers no matter if they are scalar values or vectors

I data-types of the arguments translate following:

Fortran type C type
INTEGER int
REAL float
REAL*8 double
DOUBLE PRECISION double
COMPLEX float complex
COMPLEX*16 double complex
DOUBLE COMPLEX double complex

Interfacing Fortran
An Example

Function Name Translation
For the GNU Compiler Collection (under Linux, *BSD, MacOS) the rules are:

I The function name is translated to lower case.

I A trailing underscore _ is added to the function name.

I If the function name contains an underscore, a second underscore is added.

I Fortran subroutines compare to C functions with a void return-type

I for Fortran functions instead the return-type needs to be translated according to the
previous list

I return variables are not pointers

Interfacing Fortran
An Example

Applying these rules to the DAXPY subroutine gives:

void daxpy_(int *N, double *DA, double *DX, int *INCX,
double *DY, int *INCY);

This function header is necessary in every C source code which uses the Fortran routine. It can
also be moved to a header file.

The following code computes

y =

(
1
2

)
, y = y + 2 ·

(
4
3

)
using the DAXPY subroutine:

Interfacing Fortran
An Example

#include <stdio.h>
#include <stdlib.h>
void daxpy_(int *N, double *DA, double *DX, int *INCX, double *DY, int *

INCY);

int main (int argc, char *argv){
double x[2] = { 4 ,3 };
double y[2] = { 1 ,2 };
double alpha = 2.0;
int n = 2, incx = 1, incy = 1;

daxpy_(&n, &alpha, x, &incx, y, &incy);

printf("y = [%g, %g]\n",y[0],y[1]);

return EXIT_SUCCESS;
}

Interfacing Fortran
An Example

The program is compiled calling:

gfortran -c daxpy.f
gcc -c main.c
gcc -o prgm main.o daxpy.o -lm -lgfortran

The math (-lm) and the Fortran runtime library (-lgfortran) need to be added to the
program.

Interfacing other Fortran subroutines works analogously.

The lazy way

Interfacing Fortran
The lazy way

If you are using a newer verion of the GNU compiler collection, gfortran assists the
translation of the function name and its arguments:

gfortran -fsyntax-only -fc-prototypes-external daxpy.f > daxpy_header.h

The header file dapy_header.h contains the C compatible header:

#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#else
#endif
void daxpy_ (int *n, double *da, double *dx, int *incx, double *dy,

int *incy);

#ifdef __cplusplus
}
#endif

The include guard is not generated.

Interfacing Fortran
The lazy way

If you are using a newer verion of the GNU compiler collection, gfortran assists the
translation of the function name and its arguments:

gfortran -fsyntax-only -fc-prototypes-external daxpy.f > daxpy_header.h

The header file dapy_header.h contains the C compatible header:

#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#else
#endif
void daxpy_ (int *n, double *da, double *dx, int *incx, double *dy,

int *incy);

#ifdef __cplusplus
}
#endif

The include guard is not generated.

Automatic Generation of Documentations Using
DOXYGEN

DOXYGEN in Short

Automatic Generation of Documentations Using DOXYGEN
DOXYGEN in Short

DOXYGEN
I is a documentation generator tool

I allows to write the documentation directly inside the source code

I extracts the documentation from specially structured comments

I generates HTML files, a LATEX document, an RTF document, or man pages

I supports, e.g.,
I C
I C++
I Java
I Fortran
I Python

Automatic Generation of Documentations Using DOXYGEN
DOXYGEN in Short

I uses modified comments to control the documentation generation

I in C, multiline comments starting with /** are evaluated

I comments in front of objects like structures, functions, . . . refer to those objects

I documentation is improved by special keyword statements inside those comment blocks:

@brief Set the brief documentation of the object.
@param Document a parameter of a function.
@return Document the return value of a function.
@author Set the author of a function.
@version Set the version of an object.
@see Create a cross reference to an other function, struct,. . .

Automatic Generation of Documentations Using DOXYGEN
DOXYGEN in Short

I keywords can start with a \ instead of the @ character

I lines not beginning with a doxygen-command are considered normal documentation text

I standard C comments are not recognized by doxygen
I HTML tags or LATEX-style formulas can be used in the documentation

I a LATEX formula is enclosed by \f$ or \f[and \f]
I for HTML output the LATEX-formulas are rendered and included as images

I if the output is a LATEX document the basic HTML tags are converted to the
corresponding LATEX-commands

Automatic Generation of Documentations Using DOXYGEN
DOXYGEN in Short

/**
\brief Squares a given double value.
\param x Input value.
\return the square of the input value x.

The sqr function returns the square \f$ xˆ2 \f$ of a
given number x. <i>The intermediate result is stored
in an internal variable.</i>

*/
double sqr(double x) {
/* This is not for doxygen. */
double a;
a = x * x;
return a;

}

Automatic Generation of Documentations Using DOXYGEN
DOXYGEN in Short

Beside the special comments inside the source code doxygen is controlled by a so called
Doxyfile. This specifies the source directory, the output format, and other in- and output
related options. A template of this file is generated using:

doxygen -g config_filename

The generated file is well documented and easily customizable using a normal text editor. The
documentation of a software project is created by simply calling

doxygen config_filename

If doxygen is invoked without any configuration file, it searches for a file named Doxyfile
in the current directory.

	
	History
	The Programming Environment
	Overview
	Compiler Invocation
	Development Tools
	Other Compilers

	C Statements, Types and Operators
	The Basic Structure of a C Program
	Comments
	Statements and Blocks
	Basic Data Types and Variable Declaration
	Operators

	Control Structures
	Conditionals
	Loops

	
	Complex Data Types and Arrays
	Structures
	Arrays
	Strings
	Pointers
	Memory Management

	Functions
	Trivia
	Definition of Own Functions

	
	Introduction to the Standard Library
	The ISO C Standard
	stdio.h and stdlib.h
	math.h and complex.h
	string.h
	Additional Memory Manipulation Functions in string.h

	File I/O
	Examples

	The Preprocessor and Header Files
	include
	define
	ipre
	idef
	Header-Files

	Makefiles
	Make

	
	Writing own Libraries
	General Reminder
	Static Libraries
	Dynamic/Shared Libraries

	Interfacing Fortran
	Fortran
	An Example
	The lazy way

	Automatic Generation of Documentations Using DOXYGEN
	DOXYGEN in Short

