
Scientific Computing I
Memory Architecture and Memory Management

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

This Lecture:

Memory Architecture and Memory
Management

Beside algorithmic efficiency, handling memory accesses is a crucial
point for obtaining fast algorithms and programs.

Memory Types

Memory Types

I L3 Cache

I L2 Cache

I L1 Cache

I Registers

I Main Random Access Memory (RAM)

I Network Storage

I Local Storage
I Hard Disk Drive (HDD)
I Solid State Disk (SSD)

I Cloud

fast

medium

slow and
very slow

Memory Types

Hardware sided the relevant memory comes mainly in four types:

I Static Random Access Memory (SRAM),

I Dynamic Random Access Memory (DRAM),

I Flash Electrically Erasable Programmable Read-Only Memory (Flash-EEPROM)
Flash-EEPROM

I Magnetic and optical surfaces

The volatile memory building blocks have the following properties:

Feature SRAM DRAM

Storage Circuit Base Transistor Capacitor
Speed Same as CPU Slower than CPU
Latency Low High
Density Low High
Power Consumption High Low
Cost High Low

Memory Types

Hardware sided the relevant memory comes mainly in four types:

I Static Random Access Memory (SRAM),

I Dynamic Random Access Memory (DRAM),

I Flash Electrically Erasable Programmable Read-Only Memory (Flash-EEPROM)
Flash-EEPROM

I Magnetic and optical surfaces

The volatile memory building blocks have the following properties:

Feature SRAM DRAM

Storage Circuit Base Transistor Capacitor
Speed Same as CPU Slower than CPU
Latency Low High
Density Low High
Power Consumption High Low
Cost High Low

Virtual Memory Concept

General

Virtual Memory Concept
General

Virtual memory is an operating system abstraction layer, that allows to access the various
memory layers as one large device. It usually consists of memory pages, the smallest accessible
units of memory (normally 4 or 64 kBytes).

I every program has its own virtual memory space,

I each virtual memory space is structured in the same way,

I memory is divided into ”pages” which is the smallest manageable unit on the ”physical”
side,

I requires a CPU with a memory management unit (MMU),
I with MMU: x86, x86 64, PowerPC, ARM, RISC-V
I without MMU: AVR, PIC, WDC 6502, Zilog Z80, Intel MSC-51 (8051)

I supported by almost all modern operating systems.

Virtual Memory Concept
General

Definition (swapping and double buffering)
Relocation of potentially unused data to the local storage by the operating system is called
swapping. Moving data to the local storage may cause large overhead in waiting time. Any
technique that moves that data at strategically better times to avoid swapping is called double
buffering.

Virtual Memory Concept
General

Virtual address space Physical address space

0x00000000

0x00010000

0x10000000

0x7fffffff

0x00000000

0x00ffffff

page belonging to process

page not belonging to process

text

data

stack

0Image Source: https://commons.wikimedia.org/wiki/File:
Virtual_address_space_and_physical_address_space_relationship.svg

https://commons.wikimedia.org/wiki/File:Virtual_address_space_and_physical_address_space_relationship.svg
https://commons.wikimedia.org/wiki/File:Virtual_address_space_and_physical_address_space_relationship.svg

Paging

Virtual Memory Concept
Paging

Paging is a memory management scheme that eliminates the need for contiguous allocation of
physical memory, thus minimizing issues like fragmentation.

I paged virtual memory is the most common implementation.

I page size 4 kBytes, with huge pages 64 kBytes.

I generally data can be located anywhere in a page.

I some operations expect the data to be located at the start of a memory page.
→ page aligned memory
→ increases memory fragmentation

I page locked memory is a special type of memory that is not allowed to get swapped

→ fundamental concept in modern operating systems, enabling efficient and flexible memory
management.

Virtual Memory Concept
Paging

Workflow:

1. Logical and Physical Address Space:
I The logical address space is divided into fixed-size units called pages.
I The physical address space is divided into blocks of the same size, called frames.

2. Page Table:
I Each process has a page table that maps logical pages to physical frames.
I The page table keeps track of where each page is stored in physical memory.

3. Address Translation:
I When a process needs to access a memory location, the CPU translates the logical address

into a physical address using the page table.
I The logical address is split into a page number and an offset. The page number is used to

find the corresponding frame in the page table, and the offset specifies the exact location
within the frame.

Memory Related Error Signals

Virtual Memory Concept
Memory Related Error Signals

Memory accesses can cause two memory related error signal:

I SIGSEGV1

I segmentation violation or segmentation fault signal
I usually leads to immediate abortions of the process
I caused by accessing memory segments in foreign address spaces.

I SIGBUS
I Bus error signal
I abortion also immediate
I one common cause: using a processor instruction with an address that does not satisfy its

alignment requirements

1mostly in combination with malloc and free and/or wrong array indices

Volatile Memory

Registers

Volatile Memory
Registers

I very small number

I very fast, access within a single CPU cycle possible

I generic registers typically 8, 16, 32, or 64 bytes

I vector registers for vectors of length 2, 4, 8, 16
I MMX: integer operations (deprecated, ancient)
I SSE2/3/4: integers, floating point numbers (default)
I AVX/AVX2/AVX512: integers, floating point numbers
I AMX: half precision floating point numbers

I managed by the compiler and one mostly relies on the compiler’s capabilities.

I vector registers can be programmed with ASM-intrinsics by hand

Cache

Volatile Memory
Cache

I L1: typically 32 or 64 kBytes, split into a data and an instruction part, installed per
core, direct access to the registers, transfer-rate: 1TB/s.

I L2: ≈ 256−−2048 kBytes, installed per core, keeps frequently used data and
instructions of the current core, transfer-rate: 1TB/s

I L3: ≈ few MBytes per core, same as L2 for a group of cores making a processor,
connects to RAM, transfer-rate: >400 GB/s

I L4: only on few CPU architectures, cache of the memory controller, transfer-rate: 400
GB/s

→ Cache is small, high speed memory made out of SRAM.

→ Arranged in Cache-Lines of 4 to 128 bytes ↗ page.

Volatile Memory
Cache

Data-Lookup:

L1 Cache L2 Cache L3 Cache Main Memory

Successful lookup in the cache is called Cache Hit, otherwise it is a Cache Miss.

Cache Hit:

I data transfer at maximum speed

I no interaction with main memory

Cache Miss:

I data not available in cache

I needs to be loaded from main memory

I results in a miss penalty (Cache
Latency)

Hit ratio: percentage of memory accesses satisfied by the cache (≈ 80− 90%).

Cache-Lines are replaced either randomly or by an LRU(last recently used) principle.

Main Memory

Volatile Memory
Main Memory

I mostly built of DRAM cells

I three main types available:
I asynschronous

(FPRAM, EDORAM) (outdated)
I synchronous

(SDRAM, DDRSDRAM, DDR2SDRAM, DDR3SDRAM, DDR4SDRAM, DDR5SDRAM,
HBM-DDRx)

I Rambus
(RDRAM, XDRDRAM, XDR2DRAM)

Today:

I Desktop PCs, Laptops, Tablets, Smartphones: DDR4SDRAM, DDR5SDRAM

I Servers: DDR4SDRAM, DDR5SDRAM with error correction

I GPUs: DDR5SDRAM

I Data Center GPUs: DDR5SDRAM or HBM DDR5SDRAM with error correction

Volatile Memory
Main Memory

Definition
Columns Address Stroke Latency (CAS Latency): time for waiting between a request of data
and their availability at the memory pins.

Technical Specifications:

Memory clock 2000–4000 MHz
Data rate 4000–6000 MT/s
Peak transfer rate 32–200 GB/s
CAS Latency 30–40 cycles (at best) ≈ 7.5–20ns

Typical memory size:

I Smartphone/Tablet: 2 - 6 GB

I Laptop: 4 - 16 GB

I Desktop: 8 - 64 GB

I Server: 192 GB - 2 TB

Non-Volatile Storage

Local Storage

Non-Volatile Storage
Local Storage

Maximum possible transfer rates are bounded by the capabilities of the bus interface

Type theoretic peak transfer release / introduction
ATA 33/66/100 33/66/100 MB/s

SATA I 150 MB/s =̂ 0.15 GB/s
SATA II 300 MB/s =̂ 0.30 GB/s ≈ 2005

SATA 3.0 600MB/s =̂ 0.60 GB/s 05.2009
SATA 3.2 up to 1969MB/s =̂ 1.97 GB/s 08.2013

SAS 300 MB/s – 22.5 GB/s current developments
NVMe up to 7.5 GB/s 2011 to current

Non-Volatile Storage
Local Storage

Either Solid-State-Drives (SSD) or Harddisk-Drives are used:

Feature/Property SSD HDD
Noise ++ −

Reliabilty, Lifetime − +
Price − +

Capacity − +
Fragmentation + −

mechanical delay + −
environmental influence + −
practical transfer rates 100–900 MB/s ≤ 140 MB/s

random access time 0.1 ms 2.9–12 ms

RAID (Redundant Array of Independent Disks):

I can increase total storage capacity by grouping disks to larger logical volumes

I can increase the performance and data safety by multiply/redundantly storing the same
data.

Non-Volatile Storage
Local Storage

Either Solid-State-Drives (SSD) or Harddisk-Drives are used:

Feature/Property SSD HDD
Noise ++ −

Reliabilty, Lifetime − +
Price − +

Capacity − +
Fragmentation + −

mechanical delay + −
environmental influence + −
practical transfer rates 100–900 MB/s ≤ 140 MB/s

random access time 0.1 ms 2.9–12 ms

RAID (Redundant Array of Independent Disks):

I can increase total storage capacity by grouping disks to larger logical volumes

I can increase the performance and data safety by multiply/redundantly storing the same
data.

Network Storage

Non-Volatile Storage
Network Storage

Local Network

I Ethernet: 100 Mbit/s to 40 Gbit/s

I Infiniband: 40/56/80/100 Gbit/s with
low latency

I Omnipath: 25/100 Gbit/s with low
latency

Filesystems:

I NFS (Network File System, Linux,
*BSD, MacOS)

I SMB/CIFS (Common Internet
Filesystem, Windows)

I LustreFS (HPC Filesystem)

I BeeGFS (HPC Filesystem)

I OrangeFS (HPC Filesystem)

Cloud

I speed depends on the internet
connection of the client and the server

I high latency

I only for final/backup storage, not
feasible for computations

I additional synchronization required

Non Uniform Memory Access

Non Uniform Memory Access

Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessor
systems, where the memory access time varies depending on the memory location relative to
the processor. In NUMA, a processor can access its local memory faster than non-local memory
(memory local to another processor or shared between processors).

→ typical design of systems with two or more CPU sockets

→ also on one CPU possible, e.g. AMD Epyc CPUs with multiple Chiplets

→ CPU + GPU systems can also follow the NUMA design principle

Example
A system is equipped with 2 processors an 16 GB of main memory, which is separated into two
blocks of 16 GB, one for each processor.
The MMUs each organize 16GB locally and need to access the other 16GB via the other MMU.

Non Uniform Memory Access

Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessor
systems, where the memory access time varies depending on the memory location relative to
the processor. In NUMA, a processor can access its local memory faster than non-local memory
(memory local to another processor or shared between processors).

→ typical design of systems with two or more CPU sockets

→ also on one CPU possible, e.g. AMD Epyc CPUs with multiple Chiplets

→ CPU + GPU systems can also follow the NUMA design principle

Example
A system is equipped with 2 processors an 16 GB of main memory, which is separated into two
blocks of 16 GB, one for each processor.
The MMUs each organize 16GB locally and need to access the other 16GB via the other MMU.

Cache Coherence and Memory Consitency

Non Uniform Memory Access
Cache Coherence and Memory Consitency

Example
Consider a dual Core system with L1/L2 caches for each processor core. The situation that a
memory block is present in both caches and one of the copies invalidates the other copy due to
a write access, can appear.

→ results in the cache coherence problem

I CPU designs must keep track of the different copies of the data in the cache

I consistent view required with respect to read operations

I write operations invalidate the consistency.

→ A system that is investing this extra work is called ccNUMA (for cache coherent NUMA)
machines.

Non Uniform Memory Access
Cache Coherence and Memory Consitency

Example
Consider a dual Core system with L1/L2 caches for each processor core. The situation that a
memory block is present in both caches and one of the copies invalidates the other copy due to
a write access, can appear.

→ results in the cache coherence problem

I CPU designs must keep track of the different copies of the data in the cache

I consistent view required with respect to read operations

I write operations invalidate the consistency.

→ A system that is investing this extra work is called ccNUMA (for cache coherent NUMA)
machines.

	
	Memory Types
	Virtual Memory Concept
	General
	Paging
	Memory Related Error Signals

	Volatile Memory
	Registers
	Cache
	Main Memory

	Non-Volatile Storage
	Local Storage
	Network Storage

	Non Uniform Memory Access
	Cache Coherence and Memory Consitency

