
Scientific Computing I
Basic Operations, Formats and Matrix-Norms

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

This Lecture:

Basic Operations, Formats and
Matrix-Norms

Vector Norms and Inner Products

Vector Norms and Inner Products

Definition 6.1

Let X be a linear space over the field F. A mapping

‖.‖ : X Ñ R,

with

1. ‖x‖ ě 0 @x P X , (positivity)

2. ‖x‖ “ 0 ðñ x “ 0, (definiteness)

3. ‖αx‖ “ |α| ‖x‖ @α P F, @x P X , (homogeneity)

4. ‖x ` y‖ ď ‖x‖` ‖y‖ @x , y P X , (triangle inequality)

is called norm on X . A linear space together with a norm pX , ‖.‖X q is called normed linear
space.

Vector Norms and Inner Products

Example 6.2

Let X “ Rn, p P N. The functions

‖x‖p :“ p

g

f

f

e

n
ÿ

i“1

|xi |p p P N

‖x‖8 :“ max
i

|xi |

define norms on X .

Vector Norms and Inner Products

Definition 6.3

Let X be a linear space over the field F P tR, Cu. An inner product on X is defined by a
sesquilinear form

p., .q : X ˆ X Ñ F

with properties

1. px , xq P Rě0 @x P X , (positivity)

2. px , xq “ 0 ðñ x “ 0, (definiteness)

3. px , yq “ py , xq @x , y P X , (symmetry)

4. pαx ` βy , zq “ αpx , zq ` βpy , zq @x , y , z P X , @α, β P F (linearity)

A linear space with an inner product pX , p., .qq is called a pre-Hilbert space.

Vector Norms and Inner Products

Theorem 6.4

Let pX , p., .qq be a pre-Hilbert space. Then

‖x‖ :“
a

px , xq @x P X

defines a norm in X .

Vector Norms and Inner Products

Definition 6.5

Two norms ‖x‖a , ‖x‖b on a linear space X are called equivalent, if and only if any sequence
converging with respect to ‖x‖a also converges with respect to ‖x‖b and vice versa.

Theorem 6.6

‖.‖a , ‖.‖b on the linear space X are equivalent

ô Dα, β ą 0 : α ‖x‖a ď ‖x‖b ď β ‖x‖a @x P X (1)

Vector Norms and Inner Products

Idea of the proof.

“ð”: direct consequence of (1) applied to x “ yn ´ y8 for a sequence pynqnPN Ñ y8 in
either ‖.‖a, or ‖.‖b.

“ñ”: Assume we can not find a γ such that ‖x‖a ă γ for all x P X with ‖x‖b “ 1. Then
there exists a sequence pxnqnPN with ‖xn‖a Ñ8 for nÑ8 and ‖xn‖b “ 1 for all n.
Now we define yn :“ xn

‖xn‖a
, which in ‖.‖b obviously converges to 0, but ‖xn‖a “ 1 and

thus it does not converge in ‖.‖a, which contradicts our assumption.

Thus, we can find such γ P Rą0 and @y P X zt0u we have

‖y‖a “
∥∥∥∥‖y‖b y

‖y‖b

∥∥∥∥
a

“ ‖y‖b

∥∥∥∥ y

‖y‖b

∥∥∥∥
a

ď ‖y‖b γ

This proves the left inequality with α “ 1
γ

. The other half can be shown analogously.

Vector Norms and Inner Products

Theorem 6.7

Let X be a finite dimensional linear space over R, or C. All norms on X are equivalent.

Linear Operators, Operator and Matrix Norms

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Definition 6.8

Let pX , ‖.‖X q, pY , ‖.‖Y q normed linear spaces. An operator A : X Ñ Y is called

1. continuous in x P X , if for all sequences pxnqnPN in X with xn Ñ x for nÑ8 we have

Axn Ñ Ax for nÑ8

2. continuous, if A is continuous in all x P X .

3. linear if it fulfills

Apαx ` βyq “ αAx ` βAy

4. bounded if A is linear and DC ě 0, such that

‖Ax‖Y ď C ‖x‖X @x P X

Any C with this property are called upper bound of A.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

The norms ‖.‖X , and ‖.‖Y allow to measure distances in X and Y . We need similar norms to
measure distances of matrices or linear operators mapping between them. The most important
among those norms are the induced operator or matrix norms introduced in the following
definition.

Definition 6.9

Let A : X Ñ Y be a linear operator pX , ‖.‖X q, pY , ‖.‖Y q normed linear spaces. The operator
norm of A is defined as

‖A‖ :“ sup
‖x‖X“1

‖Ax‖Y “ sup
xPXzt0u

‖Ax‖Y
‖x‖X

‖A‖ is also called induced operator norm. In case A is a matrix, one also speaks of an
induced matrix norm.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

The norms ‖.‖X , and ‖.‖Y allow to measure distances in X and Y . We need similar norms to
measure distances of matrices or linear operators mapping between them. The most important
among those norms are the induced operator or matrix norms introduced in the following
definition.

Definition 6.9

Let A : X Ñ Y be a linear operator pX , ‖.‖X q, pY , ‖.‖Y q normed linear spaces. The operator
norm of A is defined as

‖A‖ :“ sup
‖x‖X“1

‖Ax‖Y “ sup
xPXzt0u

‖Ax‖Y
‖x‖X

‖A‖ is also called induced operator norm. In case A is a matrix, one also speaks of an
induced matrix norm.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Definition 6.10

Let pX , ‖.‖X q, pY , ‖.‖Y q normed linear spaces and denote the space of linear operators from X
to Y by LpX ,Y q. A norm ‖.‖ on LpX ,Y q is called consistent with ‖.‖X and ‖.‖Y , if for any
x P X and A P LpX ,Y q we have ‖Ax‖Y ď ‖A‖ ‖x‖X .
In case Y “ X , i.e. ‖Ax‖X ď ‖A‖ ‖x‖X , the norm ‖.‖ is called compatible with ‖.‖X .

Remark

§ The induced norms fulfill the consistency, and compatibility condition by definition.

§ They are not the only norm that do so.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Definition 6.10

Let pX , ‖.‖X q, pY , ‖.‖Y q normed linear spaces and denote the space of linear operators from X
to Y by LpX ,Y q. A norm ‖.‖ on LpX ,Y q is called consistent with ‖.‖X and ‖.‖Y , if for any
x P X and A P LpX ,Y q we have ‖Ax‖Y ď ‖A‖ ‖x‖X .
In case Y “ X , i.e. ‖Ax‖X ď ‖A‖ ‖x‖X , the norm ‖.‖ is called compatible with ‖.‖X .

Remark

§ The induced norms fulfill the consistency, and compatibility condition by definition.

§ They are not the only norm that do so.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Theorem 6.11

‖A‖ is the smallest upper bound of A and A is bounded if and only if ‖A‖ ă 8.

Proof.

“ñ”: Let A be bounded Ñ D8 ą C ě 0 with

‖Ax‖Y ď C @x P X , ‖x‖X “ 1 and ‖A‖ “ sup
‖x‖X“1

‖Ax‖Y ď C ă 8.

Especially ‖A‖ ď C for all upper bounds C .

“ð”: Let A be linear with ‖A‖ ă 8. Then, for arbitrary x P X zt0u, we have

‖Ax‖Y “
∥∥∥∥‖x‖X A

ˆ

x

‖x‖X

˙∥∥∥∥
Y

“ ‖x‖X

∥∥∥∥Aˆ

x

‖x‖X

˙∥∥∥∥
Y

ď ‖x‖X sup
‖z‖X“1

‖Az‖Y “ ‖x‖X ‖A‖ .

That means, A is bounded with upper bound ‖A‖.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Theorem 6.11

‖A‖ is the smallest upper bound of A and A is bounded if and only if ‖A‖ ă 8.

Proof.

“ñ”: Let A be bounded Ñ D8 ą C ě 0 with

‖Ax‖Y ď C @x P X , ‖x‖X “ 1 and ‖A‖ “ sup
‖x‖X“1

‖Ax‖Y ď C ă 8.

Especially ‖A‖ ď C for all upper bounds C .

“ð”: Let A be linear with ‖A‖ ă 8. Then, for arbitrary x P X zt0u, we have

‖Ax‖Y “
∥∥∥∥‖x‖X A

ˆ

x

‖x‖X

˙∥∥∥∥
Y

“ ‖x‖X

∥∥∥∥Aˆ

x

‖x‖X

˙∥∥∥∥
Y

ď ‖x‖X sup
‖z‖X“1

‖Az‖Y “ ‖x‖X ‖A‖ .

That means, A is bounded with upper bound ‖A‖.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Ñ Matrices are a special type of linear operators.

Theorem 6.12

Let pX , ‖.‖X q and pY , ‖.‖Y q be normed linear spaces, and A : X Ñ Y a linear operator.
The following are equivalent:

1. A is continuous in x “ 0

2. A is continuous

3. A is bounded

Proof.

1ñ2: Let x P X , pxnqnPN Ď X with xn Ñ x , nÑ8

ñ Axn
A linear
“ A pxn ´ xq

looomooon

‖.‖X
Ñ 0, nÑ8

` Ax
‖.‖Y
Ñ Ax for nÑ8

Proof.

2ñ3: We prove this part using a contradiction argument. Assume A continuous, but unbounded.
Then there exists pxnqnPN Ď X with ‖xn‖X “ 1 and ‖Axn‖ ě n. Define:

yn :“
xn

‖Axn‖Y
.

Then we immediately get

‖yn‖X “
∥∥∥∥ xn

‖Axn‖Y

∥∥∥∥
X

“
‖xn‖X
‖Axn‖Y

“
1

‖Axn‖Y
ď

1

n

and thus

yn
‖.‖X
ÝÑ 0 nÑ8.

On the other hand,

‖Ayn‖Y “
∥∥∥∥A xn

‖Axn‖Y

∥∥∥∥
Y

“
‖Axn‖Y
‖Axn‖Y

“ 1

for all n P N, which contradicts continuity of A in x “ 0.

Proof.

3ñ1: Let A be bounded and pxnqnPN Ď X with xn
‖.‖X
Ñ 0 for nÑ8. Then

‖Axn‖Y ď ‖A‖ ‖xn‖X Ñ 0 as nÑ8

and thus A continuous in x “ 0.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Lemma 6.13 (Submultiplicativity)

Let pX , ‖.‖X q, pY , ‖.‖Y q, pZ , ‖.‖Z q be normed linear spaces.

A :X Ñ Y

B :Y Ñ Z

bounded linear operators, then the operator concatenation

BA : X Ñ Z

is bounded with

‖BA‖ ď ‖B‖ ‖A‖ . (2)

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Proof.

First we note that for any x P X due to boundedness of A and B we have

‖BAx‖ ď ‖B‖ ‖Ax‖Y ď ‖B‖ ‖A‖ ‖x‖X

The lemma, thus, is a direct consequence of

‖BA‖ “ sup
‖x‖X“1

‖BAx‖ ď sup
‖x‖X“1

‖B‖ ‖Ax‖Y

ď sup
‖x‖X“1

‖B‖ ‖A‖ ‖x‖X “ ‖B‖ ‖A‖

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Ñ A bounded linear op. on finite dimensional linear spaces can always be expressed as a matrix.

Definition 6.14
Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m

...
. . .

...
an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Rnˆm,

1. the transposed matrix AT is defined as

AT
“

»

—

–

a11 ¨ ¨ ¨ an1

...
. . .

...
a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Rmˆn,

2. If AT
“ A, then A is called symmetric pn “ mq

3. If ATA “ I , then A is called orthogonal pn ě mq

4. If ATA “ AAT, then A is called normal pn “ mq

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Ñ A bounded linear op. on finite dimensional linear spaces can always be expressed as a matrix.

Definition 6.14
Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m

...
. . .

...
an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Rnˆm,

1. the transposed matrix AT is defined as

AT
“

»

—

–

a11 ¨ ¨ ¨ an1

...
. . .

...
a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Rmˆn,

2. If AT
“ A, then A is called symmetric pn “ mq

3. If ATA “ I , then A is called orthogonal pn ě mq

4. If ATA “ AAT, then A is called normal pn “ mq

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Definition 6.15

1. Given

A “

»

—

–

a11 ¨ ¨ ¨ a1m

...
. . .

...
an1 ¨ ¨ ¨ anm

fi

ffi

fl

P Cnˆm,

the conjugate transposed matrix AH is defined as

AH “

»

—

–

a11 ¨ ¨ ¨ an1

...
. . .

...
a1m ¨ ¨ ¨ anm

fi

ffi

fl

P Cmˆn,

2. If AH “ A, then A is called hermitian pn “ mq

3. If AHA “ I , then A is called unitary pn ě mq

4. If AHA “ AAH, then A is called normal pn “ mq

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Definition 6.16

Let X “ Rn, or X “ Cn. A matrix A : X Ñ X is called

1. upper triangular, if aij “ 0 @i ą j ,

2. lower triangular, if aij “ 0 @i ă j ,

3. diagonal, if aij “ 0 @i ­“ j ,

4. positive semidefinite if pAx , xq2 ě 0 @x P X ,

5. positive definite if pAx , xq2 ą 0 @x P X zt0u,

6. negative (semi)definite if ´A is positive (semi)definite.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Lemma 6.17

Let P P Cnˆn be invertible and A P Cnˆn, then the linear systems of equations Ax “ y and
PAx “ Py for x, y P Cn are equivalent.

Proof.

P is invertible ñ “Px “ 0 ðñ x “ 0”

ñ “PpAx ´ yq “ 0 ðñ Ax ´ y “ 0”

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Lemma 6.18

The linear system Ax “ b permits a solution if and only if rankpAq “ rankprA bsq

Lemma 6.19

Products of lower (upper) triangular matrices are lower (upper) triangular.

Lemma 6.20

Products of orthogonal matrices are orthogonal matrices.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Lemma 6.18

The linear system Ax “ b permits a solution if and only if rankpAq “ rankprA bsq

Lemma 6.19

Products of lower (upper) triangular matrices are lower (upper) triangular.

Lemma 6.20

Products of orthogonal matrices are orthogonal matrices.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Lemma 6.18

The linear system Ax “ b permits a solution if and only if rankpAq “ rankprA bsq

Lemma 6.19

Products of lower (upper) triangular matrices are lower (upper) triangular.

Lemma 6.20

Products of orthogonal matrices are orthogonal matrices.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Some matrix norm examples:

1. ‖A‖ :“ max
i,j
|aij | (induced by the pair (‖.‖1, ‖.‖8) of norms, not sub-multiplicative)

2. ‖A‖F :“

d

n
ř

i“1

n
ř

j“1

∣∣∣a2
ij

∣∣∣ (not induced, compatible with the vector ‖.‖2-norm, Frobenius

Norm)

3. ‖A‖1 :“ max
j“1,...,n

n
ř

i“1

|aij | (induced, column sum norm)

4. ‖A‖8 :“ max
i“1,...,n

n
ř

j“1

|aij | (induced, row sum norm)

5. ‖A‖2 :“ sup
‖x‖2“1

‖Ax‖2 (induced, spectral norm)

Theorem 6.21

Any matrix A P Cnˆn is bounded in every matrix norm.

Vector Norms and Inner Products
Linear Operators, Operator and Matrix Norms

Some matrix norm examples:

1. ‖A‖ :“ max
i,j
|aij | (induced by the pair (‖.‖1, ‖.‖8) of norms, not sub-multiplicative)

2. ‖A‖F :“

d

n
ř

i“1

n
ř

j“1

∣∣∣a2
ij

∣∣∣ (not induced, compatible with the vector ‖.‖2-norm, Frobenius

Norm)

3. ‖A‖1 :“ max
j“1,...,n

n
ř

i“1

|aij | (induced, column sum norm)

4. ‖A‖8 :“ max
i“1,...,n

n
ř

j“1

|aij | (induced, row sum norm)

5. ‖A‖2 :“ sup
‖x‖2“1

‖Ax‖2 (induced, spectral norm)

Theorem 6.21

Any matrix A P Cnˆn is bounded in every matrix norm.

Spectral Norm and Spectral Radius

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

A complex number λ P C is called eigenvalue of a matrix A if Dx ­“ 0

Ax “ λx

Then x is called (right) eigenvector of A. The set of all eigenvalues is
ΛpAq :“ tλ P C : Ax “ λxu, it is called spectrum of A. The value ρpAq “ maxt|λ| : λ P ΛpAqu
is called the spectral radius of A.

Remark

In the following A˚ denotes either AH when A is complex or AT when it is real.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

A complex number λ P C is called eigenvalue of a matrix A if Dx ­“ 0

Ax “ λx

Then x is called (right) eigenvector of A. The set of all eigenvalues is
ΛpAq :“ tλ P C : Ax “ λxu, it is called spectrum of A. The value ρpAq “ maxt|λ| : λ P ΛpAqu
is called the spectral radius of A.

Remark

In the following A˚ denotes either AH when A is complex or AT when it is real.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Theorem 6.22 (Schur decomposition)

Let A P Cnˆn (Rnˆn). There exists a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

T “ U˚AU

is a (quasi) upper triangular matrix.

Remark

§ ΛpAq “ ttii : i “ 1, . . . , nu pA P Cnˆnq, where tii are the diagonal entries in T from the
above Theorem.

§ The Schur decomposition can be computed in a QR-algorithm in Opn3q floating point
operations.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Theorem 6.22 (Schur decomposition)

Let A P Cnˆn (Rnˆn). There exists a unitary (orthogonal) matrix U P Cnˆn pRnˆnq such that

T “ U˚AU

is a (quasi) upper triangular matrix.

Remark

§ ΛpAq “ ttii : i “ 1, . . . , nu pA P Cnˆnq, where tii are the diagonal entries in T from the
above Theorem.

§ The Schur decomposition can be computed in a QR-algorithm in Opn3q floating point
operations.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Corollary 6.23

Let A P Cnˆn pRnˆnq hermitian (symmetric). There exists a unitary (orthogonal) matrix
U P Cnˆn pRnˆnq such that

„

@
@@



“ diagpλ1, . . . , λnq “ U˚AU

Here λi pi “ 1, . . . , nq is the i-th eigenvalue of A with the i-th column of U the corresponding
eigenvector.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Theorem 6.24

The ‖.‖2 operator norm of A is called spectral norm since we have:

1. ‖A‖2 “
a

ρpA˚Aq

2. ρpAq ď ‖A‖ for an arbitrary induced norm ‖.‖
3. A “ A˚ ñ ρpAq “ ‖A‖2

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Proof.

i) pA˚Aq “ pA˚Aq˚ thus Corollary 6.23 tells us that there exists an orthogonal matrix U with

U˚A˚AU “

»

—

–

λ1

. . .

λn

fi

ffi

fl

Further, for all x P Cn we find coefficients αi , pi “ 1, . . . , nq, such that

x “
n
ÿ

i“1

αiui .

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Proof.

Thus,

A˚Ax “
n
ÿ

i“1

λiαiui ,

and therefore

‖Ax‖2
2 “ pAx ,Axq2 “ px ,A

˚Axq2

“ p
ÿ

αiui ,
ÿ

λiαiui q
2

“
ÿ

pαiui , λiαiui q2

“
ÿ

λi |αi |
2pui , ui q2

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Proof.

“
ÿ

λi |αi |
2 ‖u‖2

2

“
ÿ

λi |αi |
2

ď ρpA˚Aq
ÿ

|αi |
2

“ ρpA˚Aq ‖x‖2
2 ,

such that

‖Ax‖2

‖x‖2

ď ρpA˚Aq

and λi ě 0@i .

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Proof.

Now let λi0 “ ρpA˚Aq, and ui0 the corresponding eigenvector, then

‖Aui0‖
2
2

‖ui0‖
2
2

“
λi0 ‖ui0‖

2
2

‖ui0‖
2
2

“ λi0 “ ρpA˚Aq.

So we have proved the first statement.

Vector Norms and Inner Products
Spectral Norm and Spectral Radius

Proof.

ii) By definition of the induced norm we have for each pair of eigenvalue λ and corresponding
eigenvector u that

‖A‖ “ sup
‖x‖“1

‖Ax‖ ě ‖Au‖ “ ‖λu‖ “ |λ| ‖u‖ “ |λ|,

and therefore ρpAq ď ‖A‖.

iii) A˚ “ A:

‖A‖2 “
a

ρpA˚Aq “
a

ρpA2q “

b

ρpAq2 “ ρpAq

Ñ The last statement is also true for normal matrices.

Condition Number and Singular Values

Vector Norms and Inner Products
Condition Number and Singular Values

Recall the condition number:

crelpf , xq ď
‖x‖

‖f pxq‖
¨
∥∥f 1pxq∥∥ .

Now let f ” A and A invertible ñ

y “ Ax ô x “ A´1y

ñ
‖x‖

‖f pxq‖
“

‖x‖
‖Ax‖

“

∥∥A´1y
∥∥

‖y‖
ď sup

y ­“0

∥∥A´1y
∥∥

‖y‖
“

∥∥A´1
∥∥ .

Since the Jacobian of a linear operator is the linear operator, we have

f 1pxq “ A
ˇ

ˇ

x
.

Such that we find
crelpA, xq ď ‖A‖

∥∥A´1
∥∥ .

Vector Norms and Inner Products
Condition Number and Singular Values

Recall the condition number:

crelpf , xq ď
‖x‖

‖f pxq‖
¨
∥∥f 1pxq∥∥ .

Now let f ” A and A invertible ñ

y “ Ax ô x “ A´1y

ñ
‖x‖

‖f pxq‖
“

‖x‖
‖Ax‖

“

∥∥A´1y
∥∥

‖y‖
ď sup

y ­“0

∥∥A´1y
∥∥

‖y‖
“

∥∥A´1
∥∥ .

Since the Jacobian of a linear operator is the linear operator, we have

f 1pxq “ A
ˇ

ˇ

x
.

Such that we find
crelpA, xq ď ‖A‖

∥∥A´1
∥∥ .

Vector Norms and Inner Products
Condition Number and Singular Values

Using A “ I “

ˆ

1

1
@@

˙

we further have

crel “
‖x‖
‖x‖

‖I‖ “ 1 “ ‖I‖
∥∥I´1

∥∥ ,
which proves that the bound is indeed sharp.

Definition 6.25

Let A P Cnˆn and ‖.‖a an induced operator norm

κapAq :“ ‖A‖a
∥∥A´1

∥∥
a

denotes the a-condition number of A.

Vector Norms and Inner Products
Condition Number and Singular Values

Using A “ I “

ˆ

1

1
@@

˙

we further have

crel “
‖x‖
‖x‖

‖I‖ “ 1 “ ‖I‖
∥∥I´1

∥∥ ,
which proves that the bound is indeed sharp.

Definition 6.25

Let A P Cnˆn and ‖.‖a an induced operator norm

κapAq :“ ‖A‖a
∥∥A´1

∥∥
a

denotes the a-condition number of A.

Vector Norms and Inner Products
Condition Number and Singular Values

Lemma 6.26

For any induced operator norm ‖.‖a it holds

κapAq ě κapI q “ 1

Proof.

κapI q “ ‖I‖a
∥∥I´1

∥∥
a
“ 1 “ ‖I‖a “

∥∥AA´1
∥∥
a

Submultiplicativity
ď ‖A‖a

∥∥A´1
∥∥
a
“ κapAq

Vector Norms and Inner Products
Condition Number and Singular Values

Lemma 6.26

For any induced operator norm ‖.‖a it holds

κapAq ě κapI q “ 1

Proof.

κapI q “ ‖I‖a
∥∥I´1

∥∥
a
“ 1 “ ‖I‖a “

∥∥AA´1
∥∥
a

Submultiplicativity
ď ‖A‖a

∥∥A´1
∥∥
a
“ κapAq

Vector Norms and Inner Products
Condition Number and Singular Values

Theorem 6.27

Let A P Rnˆn, b P Rn. Let x be the exact solution of Ax “ b and x `∆x the exact solution of
the perturbed Apx `∆xq “ b `∆b. Then

‖∆x‖
‖x‖

ď κpAq
‖∆b‖
‖b‖

.

Theorem 6.28

Let Ax “ b, as above. Moreover define the error ek :“ A´1b ´ xk , and the residual
rk :“ b ´ Axk in step k of an iterative solver for Ax “ b. It holds:

1

κpAq

‖rk‖
‖r0‖

ď
‖ek‖
‖e0‖

ď κpAq
‖rk‖
‖r0‖

ď κpAq2
‖ek‖
‖e0‖

. (3)

Vector Norms and Inner Products
Condition Number and Singular Values

Theorem 6.27

Let A P Rnˆn, b P Rn. Let x be the exact solution of Ax “ b and x `∆x the exact solution of
the perturbed Apx `∆xq “ b `∆b. Then

‖∆x‖
‖x‖

ď κpAq
‖∆b‖
‖b‖

.

Theorem 6.28

Let Ax “ b, as above. Moreover define the error ek :“ A´1b ´ xk , and the residual
rk :“ b ´ Axk in step k of an iterative solver for Ax “ b. It holds:

1

κpAq

‖rk‖
‖r0‖

ď
‖ek‖
‖e0‖

ď κpAq
‖rk‖
‖r0‖

ď κpAq2
‖ek‖
‖e0‖

. (3)

Vector Norms and Inner Products
Condition Number and Singular Values

Proof.

Note
‖rk‖ “ ‖b ´ Axk‖ “

∥∥ApA´1b ´ xkq
∥∥ “ ‖Aek‖ ď ‖A‖ ‖ek‖

and analogously
‖ek‖ “

∥∥A´1b ´ xk
∥∥ ď ∥∥A´1

∥∥ ‖rk‖
Thus

1

κpAq

‖rk‖
‖r0‖

“
1

‖A‖ ‖A´1‖
‖rk‖
‖r0‖

ď
1

‖A‖
‖rk‖

‖A´1r0‖
“

1

‖A‖
‖Aek‖
‖e0‖

ď
‖ek‖
‖e0‖

.

This proves the leftmost inequality in (3). The others can be shown similarly.

Some Remarks on κ2pAq

Vector Norms and Inner Products
Some Remarks on κ2pAq

Theorem 6.29

Let A P Rnˆn. There exist orthogonal matrices U,V P Rnˆn such that

UTAV “

¨

˚

˝

σ1 0
. . .

0 σn

˛

‹

‚

(4)

where 0 ď σn ď ¨ ¨ ¨ ď σ1. For i “ 1, . . . , n we further have

detpATA´ σ2
i I q “ 0 (5)

i.e. σ2
i “ λi with λi P ΛpATAq.

Vector Norms and Inner Products
Some Remarks on κ2pAq

Proof.

ATA is symmetric and positive semidefinite, so there exists V P Rnˆn, such that

VTATAV “ diagpλ1, . . . , λnq

where λ1 ě ¨ ¨ ¨ ě λn ě 0. Thus σi “
?
λi is well defined in Theorem 6.29 and (5) follows from

Corollary 6.23. For (4) we define U “ AVD´1, where D “ diagpσ1, . . . , σnq. Since we have

UTU “ D´TVTATAVD´1 “ D´1 diagpλ1, . . . , λnqD
´1 “ I

U is ortogonal and
UTAV “ D´TVTATAV “ D´1 diagpλi q “ D

Ñ If A is invertible we have σn ą 0 and λn ą 0.

Vector Norms and Inner Products
Some Remarks on κ2pAq

Definition 6.30

The σi in the last Theorem are called singular values of A. The corresponding columns in U,
V are called the i-th left/right singular vectors.

Now from

sup
x ­“0

‖Ax‖2
2

‖x‖2
2

“ sup
x ­“0

pAx ,Axq2
px , xq2

“ sup
x ­“0

xTATAx

xTx

V reg.
“ sup

Vx ­“0

xTVTATAVx

xTVTVx

U,V orth.
“ sup

x ­“0

xTVTATUUTAVx

xTx
“ sup

x ­“0

xTDTDx

xTx
“ σ2

1 ,

we analogously find for the infimum

inf
x ­“0

‖Ax‖2

‖x‖2

“ σn.

Vector Norms and Inner Products
Some Remarks on κ2pAq

Definition 6.30

The σi in the last Theorem are called singular values of A. The corresponding columns in U,
V are called the i-th left/right singular vectors.

Now from

sup
x ­“0

‖Ax‖2
2

‖x‖2
2

“ sup
x ­“0

pAx ,Axq2
px , xq2

“ sup
x ­“0

xTATAx

xTx

V reg.
“ sup

Vx ­“0

xTVTATAVx

xTVTVx

U,V orth.
“ sup

x ­“0

xTVTATUUTAVx

xTx
“ sup

x ­“0

xTDTDx

xTx
“ σ2

1 ,

we analogously find for the infimum

inf
x ­“0

‖Ax‖2

‖x‖2

“ σn.

Vector Norms and Inner Products
Some Remarks on κ2pAq

Further we have
UTAV “ diagpσ1, . . . , σnq ,

and

VTA´1U “ diag

ˆ

1

σ1
, . . . ,

1

σn

˙

and thus ‖A‖2 “ σ1 and
∥∥A´1

∥∥
2
“ 1

σn
, which proves the following Corollary.

Corollary 6.31

Let A P Rnˆn invertible, σ1, σn its largest and smallest singular values, then we have

κ2pAq “
σ1

σn

If A is in addition normal and λ1 and λn are its largest and smallest magnitude eigenvalues,
then we also have

κ2pAq “
|λ1|
|λn|

Vector Norms and Inner Products
Some Remarks on κ2pAq

Further we have
UTAV “ diagpσ1, . . . , σnq ,

and

VTA´1U “ diag

ˆ

1

σ1
, . . . ,

1

σn

˙

and thus ‖A‖2 “ σ1 and
∥∥A´1

∥∥
2
“ 1

σn
, which proves the following Corollary.

Corollary 6.31

Let A P Rnˆn invertible, σ1, σn its largest and smallest singular values, then we have

κ2pAq “
σ1

σn

If A is in addition normal and λ1 and λn are its largest and smallest magnitude eigenvalues,
then we also have

κ2pAq “
|λ1|
|λn|

Vector Norms and Inner Products
Some Remarks on κ2pAq

Definition 6.32

‖.‖a , ‖.‖b vector norms on Rn. The condition numbers κa, κb are called equivalent if one can
find α, β ą 0 such that

ακapAq ď κbpAq ď βκapAq @A P Rnˆn invertible

Ñ Similar to the norm-equivalence, the constants α and β coincide with the constants α, β for
equivalence for norms.

Vector Norms and Inner Products
Some Remarks on κ2pAq

Definition 6.32

‖.‖a , ‖.‖b vector norms on Rn. The condition numbers κa, κb are called equivalent if one can
find α, β ą 0 such that

ακapAq ď κbpAq ď βκapAq @A P Rnˆn invertible

Ñ Similar to the norm-equivalence, the constants α and β coincide with the constants α, β for
equivalence for norms.

Matrix Storage Formats

Matrix Storage Formats

We need data structures to store matrices in a proper way on a computer. Thereby, we have to
take care about “meta” information like

§ the dimensions,

§ structure (lower/upper triangular)

§ a large number of zero entries,

§ symmetry, . . .

For illustrating different approaches we use:

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

.

Matrix Storage Formats

We need data structures to store matrices in a proper way on a computer. Thereby, we have to
take care about “meta” information like

§ the dimensions,

§ structure (lower/upper triangular)

§ a large number of zero entries,

§ symmetry, . . .

For illustrating different approaches we use:

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

.

Dense Matrices

Matrix Storage Formats
Dense Matrices

Definition 6.33

A matrix is called dense, or densely populated if essentially all its entries are non-zero.

Alternative: A matrix is called dense if there is no benefit from handling zero entries differently.

We need to store a 2d object of m ˆ n entries in memory, where each entry pk, lq can be
accessed directly.

Matrix Storage Formats
Dense Matrices

Definition 6.33

A matrix is called dense, or densely populated if essentially all its entries are non-zero.

Alternative: A matrix is called dense if there is no benefit from handling zero entries differently.

We need to store a 2d object of m ˆ n entries in memory, where each entry pk, lq can be
accessed directly.

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Using the C array definitions we can realize a 2d array in two ways:

§ double A[5][10] (static array),

§ double **A + malloc() (dynamic array).

In both cases it is stored “row major”, i.e., the order of elements follows the model:

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Using the C array definitions we can realize a 2d array in two ways:

§ double A[5][10] (static array),

§ double **A + malloc() (dynamic array).

In both cases it is stored “row major”, i.e., the order of elements follows the model:

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Static Arrays in C:

A static array in C is essentially one big row vector:
double A[5][10]

a00, . . . , a09 a10, . . . , a19 a20, . . . , a29 a30, . . . , a39 a40, . . .

§ the size of static arrays is limited by the size of the stack, typically 8MiB.
Ñ maximum size 1024ˆ 1024 in double precision

§ continuous in memory

§ size must be known a-priori

Example 6.34

Our example A turns into:

A = 1 2 0 0 0 3 4 0 0 5 0 6 0 0 7 0

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Static Arrays in C:

A static array in C is essentially one big row vector:
double A[5][10]

a00, . . . , a09 a10, . . . , a19 a20, . . . , a29 a30, . . . , a39 a40, . . .

§ the size of static arrays is limited by the size of the stack, typically 8MiB.
Ñ maximum size 1024ˆ 1024 in double precision

§ continuous in memory

§ size must be known a-priori

Example 6.34

Our example A turns into:

A = 1 2 0 0 0 3 4 0 0 5 0 6 0 0 7 0

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Dynamic 2d Arrays in C:

In the design of C, a dynamically allocated 2d array results in an array of single arrays:

double **A;

a0˚

a1˚

a2˚

a3˚

...

a00, . . . , a09

a10, . . . , a19

a20, . . . , a29

a30, . . . , a39

§ size can be determined at runtime
§ not continuous in memory
§ swapping rows is easy/cheap

Matrix Storage Formats
Dense Matrices – 2d Arrays in C

Example 6.35

Again, our example A turns into:

0xfffae232

0xfffe3ea4

0xffcf3234

0xfefc0342

1 2 0 0

0 3 4 0

0 5 0 6

0 0 7 0

Matrix Storage Formats
Dense Matrices – 2d Arrays in Fortran

Ñ C was designed for system and hardware programming, Fortran for solving the solution of
mathematical problems.

All arrays (static and dynamic) are stored in “column major”:

which leads to

a00, . . . , an0 a01, . . . , an1 a02, . . . , an2 a03, . . . , an3 a04, . . .

Matrix Storage Formats
Dense Matrices – 2d Arrays in Fortran

§ continuous in memory

§ no difference between static and dynamic arrays

§ used by the majority of linear algebra software

§ can be emulated in C by using an one dimensional array and an index transformation
function

Example 6.36

In Fortran storage, our A turns into:

1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

Remark

We stick to Fortran “column-major” storage for our applications.

Matrix Storage Formats
Dense Matrices – 2d Arrays in Fortran

§ continuous in memory

§ no difference between static and dynamic arrays

§ used by the majority of linear algebra software

§ can be emulated in C by using an one dimensional array and an index transformation
function

Example 6.36

In Fortran storage, our A turns into:

1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

Remark

We stick to Fortran “column-major” storage for our applications.

Matrix Storage Formats
Dense Matrices – 2d Arrays in Fortran

§ continuous in memory

§ no difference between static and dynamic arrays

§ used by the majority of linear algebra software

§ can be emulated in C by using an one dimensional array and an index transformation
function

Example 6.36

In Fortran storage, our A turns into:

1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

Remark

We stick to Fortran “column-major” storage for our applications.

Matrix Storage Formats
Dense Matrices

Definition 6.37

The distance, counted in the number of elements, between the beginnings of 2 subsequent
columns in a 2d array is called the leading dimension (LD) of the array.

ñ akl“̂Arl ¨ LD ` ks

C-Caveats

C used 0-based indexing, Fortran (and mathematicians) 1-based indexing.

If C indexing is used, the location of pk, lq in A is determined via

#define IDX2C(k,l,lda) ((k) + (l) * (lda))

If Fortran indexing is used, the location of pk, lq in A is determined via

#define IDX2F(k,l,lda) (((k)-1) + ((l)-1) * (lda))
#define IDX1F(k) ((k)-1)

Matrix Storage Formats
Dense Matrices

Definition 6.37

The distance, counted in the number of elements, between the beginnings of 2 subsequent
columns in a 2d array is called the leading dimension (LD) of the array.

ñ akl“̂Arl ¨ LD ` ks

C-Caveats

C used 0-based indexing, Fortran (and mathematicians) 1-based indexing.

If C indexing is used, the location of pk , lq in A is determined via

#define IDX2C(k,l,lda) ((k) + (l) * (lda))

If Fortran indexing is used, the location of pk , lq in A is determined via

#define IDX2F(k,l,lda) (((k)-1) + ((l)-1) * (lda))
#define IDX1F(k) ((k)-1)

Matrix Storage Formats
Dense Matrices

Fortran does the mapping between Apk , lq automatically. The leading dimension is set by the
expression double precision A(LD, *).

§ Data locality is enforced also for dynamic arrays since the single row/column pointers can
no longer be scattered around the main memory.

§ More importantly, the array is now stored in Fortran 77 compliant column major format
and can thus be passed directly to (optimized) Fortran libraries.

Remark

For a matrix A P Rmˆn, the leading dimension have to fulfill

LD ě max p1,mq .

Matrix Storage Formats
Dense Matrices

Fortran does the mapping between Apk , lq automatically. The leading dimension is set by the
expression double precision A(LD, *).

§ Data locality is enforced also for dynamic arrays since the single row/column pointers can
no longer be scattered around the main memory.

§ More importantly, the array is now stored in Fortran 77 compliant column major format
and can thus be passed directly to (optimized) Fortran libraries.

Remark

For a matrix A P Rmˆn, the leading dimension have to fulfill

LD ě max p1,mq .

Basic Object Oriented Design

Matrix Storage Formats
Basic Object Oriented Design

A matrix and its meta information can be represented by a struct in C:

struct my_matrix_st{
INT cols;
INT rows;
INT LD;
double *values;
char structure;

};

§ INT can either be int or long depending on the application and, if Fortran libraries are
used, the default integer size in Fortran.

§ The default behavior would be 32-bit (4-byte) integers:

#define INT int

§ If 64-bit integers are used, one defines:

#define INT long

Matrix Storage Formats
Basic Object Oriented Design

Remark

If for the matrix element Apm, nq the index mapping fulfills

IDX2Fpm, n, ldq ą 231 ´ 1,

the 32-bit integers could no longer be used to call (external) Fortran subroutines. This causes
in integer overflow during the computation of the mapping.
Ñ 64-bit integers must be used.

Example 6.38

If we assume A P Rmˆm, we have to use 64-bit integers if m ě 43 340:

§ double: matrix larger than 16 GiB

§ float: matrix larger than 8 GiB

§ double complex: matrix larger than 32 GiB

§ float complex: matrix larger than 16 GiB

Matrix Storage Formats
Basic Object Oriented Design

Remark

If for the matrix element Apm, nq the index mapping fulfills

IDX2Fpm, n, ldq ą 231 ´ 1,

the 32-bit integers could no longer be used to call (external) Fortran subroutines. This causes
in integer overflow during the computation of the mapping.
Ñ 64-bit integers must be used.

Example 6.38

If we assume A P Rmˆm, we have to use 64-bit integers if m ě 43 340:

§ double: matrix larger than 16 GiB

§ float: matrix larger than 8 GiB

§ double complex: matrix larger than 32 GiB

§ float complex: matrix larger than 16 GiB

Matrix Storage Formats
Basic Object Oriented Design

Our example matrix A now leads to:

§ A.cols“ 4,

§ A.rows“ 4,

§ A.LD“ 4
§ A.values= 1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

Now, we want to access the 2ˆ 2 submatrix of A beginning at the p2, 2q position of A:

B “

„

3 4
5 0



This gives

§ B.cols“ 2,

§ B.rows“ 2,

§ B.LD“ 4

§ B.values = &A.values[5]

Matrix Storage Formats
Basic Object Oriented Design

Our example matrix A now leads to:

§ A.cols“ 4,

§ A.rows“ 4,

§ A.LD“ 4
§ A.values= 1 0 0 0 2 3 5 0 0 4 0 7 0 0 6 0

A “

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

Now, we want to access the 2ˆ 2 submatrix of A beginning at the p2, 2q position of A:

B “

„

3 4
5 0



This gives

§ B.cols“ 2,

§ B.rows“ 2,

§ B.LD“ 4

§ B.values = &A.values[5]

Tiled Matrix Storage

Matrix Storage Formats
Tiled Matrix Storage

§ column-major storage is well understood and works well in most sequential algorithms,

§ memory access issues, when dealing with submatrices

§ bad for “tall-and-skinny” matrices (rows Ï columns)

Design goals:

§ reduce the leading dimension by organizing the matrix data in smaller, contiguous tiles
rather than storing it in a linear column-major order.

§ each tile is stored in column-major again

§ title stored in a block column-major storage again.

§ data structures have to keep track of
§ the size of the tiles,
§ the number of tiles in each dimension,
§ the leading dimension in each tile,
§ information to store the tiles

Matrix Storage Formats
Tiled Matrix Storage

By using 2ˆ 2 tiles our example A gets partitioned into:

A.tiles= 1 2
0 3

0 5
0 0

0 0
4 0

0 6
7 0

This leads to the following layout in memory:

A.values= 1 0 2 3 0 0 5 0 0 4 0 0 0 6 7 0

Remark

There are two major applications for the tile storage:

§ parallel multi-CPU aware algorithms Õ see summer term,

§ internal/intermediate representation for high performance computational kernels in order
to optimize the memory access scheme.

Matrix Storage Formats
Tiled Matrix Storage

By using 2ˆ 2 tiles our example A gets partitioned into:

A.tiles= 1 2
0 3

0 5
0 0

0 0
4 0

0 6
7 0

This leads to the following layout in memory:

A.values= 1 0 2 3 0 0 5 0 0 4 0 0 0 6 7 0

Remark

There are two major applications for the tile storage:

§ parallel multi-CPU aware algorithms Õ see summer term,

§ internal/intermediate representation for high performance computational kernels in order
to optimize the memory access scheme.

Sparse Matrices

Matrix Storage Formats
Sparse Matrices

Example 6.39

We want to solve

´
∆2

∆x2
u “ f with u, f : r0, 1s Ñ R and up0q “ gp0q, up1q “ gp1q

and discretize r0, 1s in steps of size h “ 1´0
n´1

. Then we have xi “ i ¨ h, i “ 0, . . . , n and ui “ upxi q.

Furthermore, the second derivative of u in xi can be approximated by

∆2

∆x2
ui «

ui´1 ´ 2ui ` ui`1

h2

This yields:

upx0q “ u0 “ gp0q

´
∆2

∆x2
ui «

ui´1 ´ 2ui ` ui`1

h2
“ f pxi q

upxnq “ un “ gp1q

Matrix Storage Formats
Sparse Matrices

Example 6.39

With n “ 8 we obtain the linear systems this gives

1

h2

»

—

—

—

—

—

—

—

—

—

—

–

2 0 0 0 0 0 0
´1 2 ´1 0 0 0 0 0
0 ´1 2 ´1 0 0 0 0
0 0 ´1 2 ´1 0 0 0
0 0 0 ´1 2 ´1 0 0
0 0 0 0 ´1 2 ´1 0
0 0 0 0 0 ´1 2 ´1
0 0 0 0 0 0 0 h2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

u0

u1

u2

u3

u4

u5

u6

u7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

gp0q
f1
f2
f3
f4
f5
f6

gp1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ at most 3 non-zero entries per row, independent from n!

Matrix Storage Formats
Sparse Matrices

Definition 6.40

We call a matrix A P Rnˆn or A P Cnˆn sparse if only a few entries of A per row or column are
non-zero, in average.

Precisely, we want A to be such that storing A uses Opnq storage and multiplication with A is
performed in Opnq effort.

Alternatively: It is worth to keep track of the non-zero entries.

Basic idea: We store “only” the non-zero entries and neglect the zeros.

Matrix Storage Formats
Sparse Matrices

Definition 6.40

We call a matrix A P Rnˆn or A P Cnˆn sparse if only a few entries of A per row or column are
non-zero, in average.

Precisely, we want A to be such that storing A uses Opnq storage and multiplication with A is
performed in Opnq effort.

Alternatively: It is worth to keep track of the non-zero entries.

Basic idea: We store “only” the non-zero entries and neglect the zeros.

Matrix Storage Formats
Sparse Matrices – Coordinate Storage (COO)

Stores A in 3 vectors of length nnzpAq for entry values, row indices, and column indices:

. . .vals
0 nnz´1

(float, double)

. . .rows
0 nnz´1

(INT)

. . .cols
0 nnz´1

(INT)

Advantages:

§ easy to implement

§ easy addition of new entries

§ easy elementwise access

Matrix Storage Formats
Sparse Matrices – Coordinate Storage (COO)

Drawbacks:
§ non local memory access
§ (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the storage for the
matrix A might look like (using C indexing to avoid shifts)

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

Remark

The coordinate storage format is, for example, the basis of the sparse matrix version of the
Matrix Market1 file exchange format.

1https://math.nist.gov/MatrixMarket/

https://math.nist.gov/MatrixMarket/

Matrix Storage Formats
Sparse Matrices – Coordinate Storage (COO)

Drawbacks:
§ non local memory access
§ (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the storage for the
matrix A might look like (using C indexing to avoid shifts)

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

Remark

The coordinate storage format is, for example, the basis of the sparse matrix version of the
Matrix Market1 file exchange format.

1https://math.nist.gov/MatrixMarket/

https://math.nist.gov/MatrixMarket/

Matrix Storage Formats
Sparse Matrices – Coordinate Storage (COO)

Drawbacks:
§ non local memory access
§ (atomic access to output vector in threaded implementation)

Note that the format does not prescribe any ordering of the entries, i.e., the storage for the
matrix A might look like (using C indexing to avoid shifts)

1 7 2 3 4 5 6vals

0 3 0 1 1 2 2rows

0 2 1 1 2 1 3cols

Remark

The coordinate storage format is, for example, the basis of the sparse matrix version of the
Matrix Market1 file exchange format.

1https://math.nist.gov/MatrixMarket/

https://math.nist.gov/MatrixMarket/

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

We use three vectors to store the data:

§ two vectors vals and cols store the entry values and its column indices.

§ a third vector holding the row indices (rows) stores, where the corresponding row starts
in the vectors vals and cols,

§ the last entry of rows stores the number of non-zero entries nnzpAq,

§ the first entry in rows is not needed, but stored to simplify implementations.

. . .vals
0 nnz´1

(float, double)

. . .cols
0 nnz´1

(INT)

. . .rows
0 n

(INT)

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

We use three vectors to store the data:

§ two vectors vals and cols store the entry values and its column indices.

§ a third vector holding the row indices (rows) stores, where the corresponding row starts
in the vectors vals and cols,

§ the last entry of rows stores the number of non-zero entries nnzpAq,

§ the first entry in rows is not needed, but stored to simplify implementations.

. . .vals
0 nnz´1

(float, double)

. . .cols
0 nnz´1

(INT)

. . .rows
0 n

(INT)

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

Advantages:

§ optimal storage requirements

§ can exploit BLAS (see later) in per row operations

§ allows multithreading/parallelization

Drawbacks:

§ non local memory access due to indirect indexing

§ (load balancing problem in threaded implementations due to different row lengths)

Remark

An equivalent format swapping the roles of row and column pointers in the above, is used, e.g.,
in MATLAB®. It is called compressed sparse column storage (CSC/CCS).

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

Advantages:

§ optimal storage requirements

§ can exploit BLAS (see later) in per row operations

§ allows multithreading/parallelization

Drawbacks:

§ non local memory access due to indirect indexing

§ (load balancing problem in threaded implementations due to different row lengths)

Remark

An equivalent format swapping the roles of row and column pointers in the above, is used, e.g.,
in MATLAB. It is called compressed sparse column storage (CSC/CCS).

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

Advantages:

§ optimal storage requirements

§ can exploit BLAS (see later) in per row operations

§ allows multithreading/parallelization

Drawbacks:

§ non local memory access due to indirect indexing

§ (load balancing problem in threaded implementations due to different row lengths)

Remark

An equivalent format swapping the roles of row and column pointers in the above, is used, e.g.,
in MATLAB. It is called compressed sparse column storage (CSC/CCS).

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

Remark

A row in the CSR storage can be accessed via

for (j = rowptr [i] ; j < rowptr[i+1]; j++) {...}

By storing the redundant information in the first and the last entry of rowptr, the first and
the last row does not need a special treatment.

Using the CSR storage, our example matrix A looks like:

1 2 3 4 5 6 7vals

0 1 1 2 1 3 2cols

0 2 4 6 7rows

Matrix Storage Formats
Sparse Matrices – Compressed Sparse Row Storage (CSR/CRS)

Remark

A row in the CSR storage can be accessed via

for (j = rowptr [i] ; j < rowptr[i+1]; j++) {...}

By storing the redundant information in the first and the last entry of rowptr, the first and
the last row does not need a special treatment.

Using the CSR storage, our example matrix A looks like:

1 2 3 4 5 6 7vals

0 1 1 2 1 3 2cols

0 2 4 6 7rows

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

COO and CSR are easy to understand and easy to implement but:

§ not well suited for CPUs with vector registers

§ no load balancing

§ memory access does not fit well with cache-line and page access

We assume the nr be the maximum number of non-zeros in all rows, then Ellpack uses two
arrays of size n ˆ nr :

§ the vals array, where each row contains the non-zero values of the corresponding row in
the represented matrix,

§ and the cols array, which contains the corresponding column indices,

§ eventually existing gaps will be filled with zeros.

The Ellpack-R format adds a third vector, containing the actual length (non-zero elements) of
each row to avoid the processing of zero elements.

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

COO and CSR are easy to understand and easy to implement but:

§ not well suited for CPUs with vector registers

§ no load balancing

§ memory access does not fit well with cache-line and page access

We assume the nr be the maximum number of non-zeros in all rows, then Ellpack uses two
arrays of size n ˆ nr :

§ the vals array, where each row contains the non-zero values of the corresponding row in
the represented matrix,

§ and the cols array, which contains the corresponding column indices,

§ eventually existing gaps will be filled with zeros.

The Ellpack-R format adds a third vector, containing the actual length (non-zero elements) of
each row to avoid the processing of zero elements.

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

COO and CSR are easy to understand and easy to implement but:

§ not well suited for CPUs with vector registers

§ no load balancing

§ memory access does not fit well with cache-line and page access

We assume the nr be the maximum number of non-zeros in all rows, then Ellpack uses two
arrays of size n ˆ nr :

§ the vals array, where each row contains the non-zero values of the corresponding row in
the represented matrix,

§ and the cols array, which contains the corresponding column indices,

§ eventually existing gaps will be filled with zeros.

The Ellpack-R format adds a third vector, containing the actual length (non-zero elements) of
each row to avoid the processing of zero elements.

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

2

3

1

2

1

2

4

2

3

2

vals
(n ˆ nr)

cols
(n ˆ nr)

r
(n)

(float,
double)

(INT) (INT)

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Advantages:

§ constant per row length good load balancing properties

§ padding could be integated, e.g. nr must be a multiple of the cache-line length

§ coalesced memory access (threads k, k+1 access consecutive memory cells)

§ no synchronization required

Drawbacks:

§ The storage requirement is dominated by the longest row. ñ Possibly, many zeros are
stored.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

good bad

§ The zeros are actually processed without leading to new information.

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Advantages:

§ constant per row length good load balancing properties

§ padding could be integated, e.g. nr must be a multiple of the cache-line length

§ coalesced memory access (threads k, k+1 access consecutive memory cells)

§ no synchronization required

Drawbacks:

§ The storage requirement is dominated by the longest row. ñ Possibly, many zeros are
stored.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

good bad

§ The zeros are actually processed without leading to new information.

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Advantage of the ELLR:

§ The unnecessary processing of zeros is avoided.

Drawback of the ELLR:

§ Additional n integers for storing of the row lengths are required.

§ Load balancing features of the Ellpack format are no longer valid.

Our example matrix A turns into:

1 02 1

3 14 2

5 16 3

7 20 0

2

2

2

1

vals
(4ˆ 2)

cols
(4ˆ 2)

r
(4)

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Advantage of the ELLR:

§ The unnecessary processing of zeros is avoided.

Drawback of the ELLR:

§ Additional n integers for storing of the row lengths are required.

§ Load balancing features of the Ellpack format are no longer valid.

Our example matrix A turns into:

1 02 1

3 14 2

5 16 3

7 20 0

2

2

2

1

vals
(4ˆ 2)

cols
(4ˆ 2)

r
(4)

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Remark

In the NVIDIA® CUDA® toolkit for acceleration of codes using NVIDIA® graphics adapters,
or more precisely in the corresponding cusparse library used for working with sparse matrices, a
hybrid matrix storage format is used. This format uses Ellpack for rows up to a length
n˚r “ min ttol , nru and the remaining entries are stored in CSR or another sparse matrix storage
scheme. This reduces the problem of exceptionally long rows in Ellpack and Ellpack-R.

Remark

There are other storage schemes available:

§ DAS/JDS/ITPACK (Diagonally Addresses Storage), column indicies are given w.r.t. to
the diagonal

§ BCSR (Block Compressed Sparse Rowsppkill soffice), essentially CSR but with blocks

§ Skyline, similar to Ellpack, but focus on band matrices

§ RSB (Recursive Sparse Blocks)

§ ...

Matrix Storage Formats
Sparse Matrices – Ellpack and Ellpack-R (ELLR)

Remark

In the NVIDIA® CUDA® toolkit for acceleration of codes using NVIDIA® graphics adapters,
or more precisely in the corresponding cusparse library used for working with sparse matrices, a
hybrid matrix storage format is used. This format uses Ellpack for rows up to a length
n˚r “ min ttol , nru and the remaining entries are stored in CSR or another sparse matrix storage
scheme. This reduces the problem of exceptionally long rows in Ellpack and Ellpack-R.

Remark

There are other storage schemes available:

§ DAS/JDS/ITPACK (Diagonally Addresses Storage), column indicies are given w.r.t. to
the diagonal

§ BCSR (Block Compressed Sparse Rowsppkill soffice), essentially CSR but with blocks

§ Skyline, similar to Ellpack, but focus on band matrices

§ RSB (Recursive Sparse Blocks)

§ ...

Complex Matrices

Matrix Storage Formats
Complex Matrices

The previous storage schemes cover only real matrices. In case of a complex valued data, two
different approaches are used:

§ a second array ivals, storing the imaginary parts, is added
§ used by pre 2018b versions of MATLAB
§ operations only need to implemented once and then used on vals and ivals
§ everything works real valued, but algorithms need to handle the real and imaginary parts

properly

§ each entry in vals consists of a structure containing the real and the imaginary part of
the entry

§ all operations need to be implemented for complex values as well
§ better memory locality

Matrix Storage Formats
Complex Matrices

The previous storage schemes cover only real matrices. In case of a complex valued data, two
different approaches are used:

§ a second array ivals, storing the imaginary parts, is added
§ used by pre 2018b versions of MATLAB
§ operations only need to implemented once and then used on vals and ivals
§ everything works real valued, but algorithms need to handle the real and imaginary parts

properly

§ each entry in vals consists of a structure containing the real and the imaginary part of
the entry

§ all operations need to be implemented for complex values as well
§ better memory locality

Linear Algebra Software

BLAS and LAPACK

Linear Algebra Software
BLAS and LAPACK

The BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra Package) are the
most commonly used software packages in Scientific Computing.

§ development started in mid of the 1970s

§ Fortran 77/90 code, now slowly transforming to newer standards

§ LAPACK generalized the LINPACK and EISPACK package

§ define a standard API and a reference implementation.

§ one of inventors got the Turing Award (Jack Dongarra, 2021)

§ Fortran and C interfaces defined

Beside the reference implementation, there tuned versions available:

§ Intel® oneAPI Math Kernel Libary (MKL, oneMKL)

§ IBM Engineering and Scientific Subroutines Library (ESSL)

§ OpenBLAS

§ BLIS, AMD BLIS

§ . . .

Linear Algebra Software
BLAS and LAPACK

The BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra Package) are the
most commonly used software packages in Scientific Computing.

§ development started in mid of the 1970s

§ Fortran 77/90 code, now slowly transforming to newer standards

§ LAPACK generalized the LINPACK and EISPACK package

§ define a standard API and a reference implementation.

§ one of inventors got the Turing Award (Jack Dongarra, 2021)

§ Fortran and C interfaces defined

Beside the reference implementation, there tuned versions available:

§ Intel® oneAPI Math Kernel Libary (MKL, oneMKL)

§ IBM Engineering and Scientific Subroutines Library (ESSL)

§ OpenBLAS

§ BLIS, AMD BLIS

§ . . .

BLAS

Linear Algebra Software
BLAS

The basic linear algebra subroutines BLAS are sub-divided into three classes, called levels, that
are mainly standing for the involved memory and computation complexities, but also for their
historic development.

§ Level 1 (1979): Opnq operations on Opnq data

§ Level 2 (1988): Opn2q operations on Opn2q data

§ Level 3 (1990): Opn3q operations on Opn2q data

BLAS has a Fortran induced naming scheme (Level 1):

cblas
looomooon

X XXXX

prefix datatype operation

Ñ The prefix is required to avoid doubling function names in C and in Fortran:

§ Calling from Fortran/via the Fortran interface: no prefix

§ Calling via the C interface: cblas

Linear Algebra Software
BLAS

The basic linear algebra subroutines BLAS are sub-divided into three classes, called levels, that
are mainly standing for the involved memory and computation complexities, but also for their
historic development.

§ Level 1 (1979): Opnq operations on Opnq data

§ Level 2 (1988): Opn2q operations on Opn2q data

§ Level 3 (1990): Opn3q operations on Opn2q data

BLAS has a Fortran induced naming scheme (Level 1):

cblas
looomooon

X XXXX

prefix datatype operation

Ñ The prefix is required to avoid doubling function names in C and in Fortran:

§ Calling from Fortran/via the Fortran interface: no prefix

§ Calling via the C interface: cblas

Linear Algebra Software
BLAS

Data types (allowed specifiers)

§ s — single precision real

§ c — single precision complex

§ d — double precision real

§ z — double precision complex

Operations (examples)

§ axpy y Ð αx ` y

§ dot r Ð xTy

§ nrm2 r Ð ‖x‖2 “
?
xTx

§ asum r Ð ‖x‖1 “
ř

i

|xi |

Linear Algebra Software
BLAS

Data types (allowed specifiers)

§ s — single precision real

§ c — single precision complex

§ d — double precision real

§ z — double precision complex

Operations (examples)

§ axpy y Ð αx ` y

§ dot r Ð xTy

§ nrm2 r Ð ‖x‖2 “
?
xTx

§ asum r Ð ‖x‖1 “
ř

i

|xi |

Linear Algebra Software
BLAS

The levels 2 and 3 additionally respect/exploit matrix structures and indicate them in the
corresponding function names:

cblas
looomooon

X XX XXX

prefix datatype structure operations

Structure Placeholders

GE general GB general banded
SY symmetric SB symmetric banded SP symmetric packed
HE hermitian HB hermitian banded HP hermitian packed
TR triangular TB triangular banded TP triangular packed

The structure placeholder mostly specifies properties of the input data.

Linear Algebra Software
BLAS

The levels 2 and 3 additionally respect/exploit matrix structures and indicate them in the
corresponding function names:

cblas
looomooon

X XX XXX

prefix datatype structure operations

Structure Placeholders

GE general GB general banded
SY symmetric SB symmetric banded SP symmetric packed
HE hermitian HB hermitian banded HP hermitian packed
TR triangular TB triangular banded TP triangular packed

The structure placeholder mostly specifies properties of the input data.

Linear Algebra Software
BLAS

Typical arguments:

UPLO For triangular matrix operations the type of triangular structure is controlled by
the argument UPLO. It is taking character values ’L’, ’U’ for lower or upper
triangular, respectively.

SIDE The operand order (e.g., decision about left or right multiplication) is steered by
the SIDE arguments ’L’ or ’R’.

DIAG For triangular matrices the DIAG argument specifies whether they have a unit
diagonal ’U’ or not ’N’.

TRANS Transposition is decided via TRANS argument, it takes one of the following
values:

§ ’N’ – non transposed – X
§ ’T’ – transposed – XT

§ ’C’ – conjugate transposed – XH

Linear Algebra Software
BLAS

Example 6.41

We take a look in the double precision and double precision complex matrix-matrix-product routines
that perform the operation

C Ð α ¨ oppAq ¨ oppBq ` βC ,

where opp.q refers to the transposition types above.

The Fortran interfaces and data types for the real case are

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
REAL*8 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
REAL*8 A(LDA,*),B(LDB,*),C(LDC,*)

Linear Algebra Software
BLAS

Example 6.41

Linear Algebra Software
BLAS

Considering the complex case, we have

SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
!.. Scalar Arguments ..
COMPLEX*16 ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB

!.. Array Arguments ..
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)

Thus, the corresponding C prototypes look like

void dgemm_(char *transa, char *transb, int *m, int *n, int *k,
double *alpha, double *A, int *lda,
double *B, int *ldb,
double *beta, double *C, int *ldc,
size_t len_transa, size_t len_transb);

for the real and

Linear Algebra Software
BLAS

Example 6.41

void zgemm_(char *transa, char *transb, int *m, int *n, int *k,
double complex *alpha, double complex *A, int *lda,
double complex *B, int *ldb,
double complex *beta, double complex *C, int *ldc,
size_t len_transa, size_t len_transb);

for the complex case.

Remark

Although the C interface exists, most developers call the Fortran routines directly from C.

Linear Algebra Software
BLAS

Vector Operations (BLAS Level 1)

§ scaling and addition: αx , αx ` y ,

§ inner products: x˚y ,

§ norm expressions: ‖x‖2, ‖x‖1,‖x‖8.

Matrix-Vector Operations (BLAS Level 2)

Let F P tC,Ru, α, β P F, A P Fmˆn, x , y P Fn:

§ scaling and addition: αAx ` βy , αA˚x ` βy ,

§ rank-1/2 updates: A` αxy˚,A` αxx˚, A` αxy˚ ` βyx˚,

§ triangular solves: αT´1x , αT´˚x , T triangular.

Linear Algebra Software
BLAS

Vector Operations (BLAS Level 1)

§ scaling and addition: αx , αx ` y ,

§ inner products: x˚y ,

§ norm expressions: ‖x‖2, ‖x‖1,‖x‖8.

Matrix-Vector Operations (BLAS Level 2)

Let F P tC,Ru, α, β P F, A P Fmˆn, x , y P Fn:

§ scaling and addition: αAx ` βy , αA˚x ` βy ,

§ rank-1/2 updates: A` αxy˚,A` αxx˚, A` αxy˚ ` βyx˚,

§ triangular solves: αT´1x , αT´˚x , T triangular.

Linear Algebra Software
BLAS

Matrix-Matrix Operations (BLAS Level 3)

§ αAB ` βC , αAB˚ ` βC , αA˚B˚ ` βC ,

§ rank k updates: αAA˚ ` βC , αA˚A` βC

§ rank 2k updates: αA˚B ` αB˚A` βC

§ triangular multi-solves: αT´1C , αT´˚C , T triangular.

The Idea Behind the Level-3 Performance Gain

Linear Algebra Software
The Idea Behind the Level-3 Performance Gain

Level-3 BLAS operations are necessary for high performance.

Ñ With Opn3q operations but only Opn2q data, each value is used Opnq times.

Block sub-structuring increases the reuse of already fetched information.
In case of the GEMM operation, C Ð C ` ABT , one can evaluate the 2ˆ 2 block structure:

„

C11 C12

C21 C22



`

„

A11

A21



“

BT
11 BT

21

‰

,

which allows to compute the single blocks in the result as:

C11 Ð C11 ` A11B
T
11, C12 Ð C12 ` A11B

T
21,

C21 Ð C21 ` A21B
T
11, C22 Ð C22 ` A21B

T
21.

The actual number of blocks and their sizes depend strongly on the used CPU and its memory
hierarchy. Õ BLAS libraries like OpenBLAS, MKL, BLIS respect this.

Linear Algebra Software
The Idea Behind the Level-3 Performance Gain

Level-3 BLAS operations are necessary for high performance.

Ñ With Opn3q operations but only Opn2q data, each value is used Opnq times.

Block sub-structuring increases the reuse of already fetched information.
In case of the GEMM operation, C Ð C ` ABT , one can evaluate the 2ˆ 2 block structure:

„

C11 C12

C21 C22



`

„

A11

A21



“

BT
11 BT

21

‰

,

which allows to compute the single blocks in the result as:

C11 Ð C11 ` A11B
T
11, C12 Ð C12 ` A11B

T
21,

C21 Ð C21 ` A21B
T
11, C22 Ð C22 ` A21B

T
21.

The actual number of blocks and their sizes depend strongly on the used CPU and its memory
hierarchy. Õ BLAS libraries like OpenBLAS, MKL, BLIS respect this.

LAPACK

Linear Algebra Software
LAPACK

LAPACK (Linear Algebra PACKage) is a Fortran 90 based library that provides routines for

§ solution of linear systems of equations,

§ least squares solutions of linear systems of equations,

§ solutions of eigenvalue problems,

§ and singular value problems.

Some facts:

§ developed since 1992 as successor of LINPACK and EISPACK,

§ current version 3.12.0 (Nov 24, 2023)

§ Mostly packaged with BLAS

§ Optimized routines in vendor libraries like OpenBLAS, BLIS, MKL, . . .

Linear Algebra Software
LAPACK

LAPACK (Linear Algebra PACKage) is a Fortran 90 based library that provides routines for

§ solution of linear systems of equations,

§ least squares solutions of linear systems of equations,

§ solutions of eigenvalue problems,

§ and singular value problems.

Some facts:

§ developed since 1992 as successor of LINPACK and EISPACK,

§ current version 3.12.0 (Nov 24, 2023)

§ Mostly packaged with BLAS

§ Optimized routines in vendor libraries like OpenBLAS, BLIS, MKL, . . .

Linear Algebra Software
LAPACK

LAPACK routines are divided in 3 Categories

1. auxiliary routines

2. computational routines

3. driver routines

Ñ The general naming scheme follows the BLAS Level-2/3 approach.

§ auxiliary routines: these routines in LAPACK provide common helper functionality:
scaling, reordering, machine specifications. Examples are:

§ disnan, sisnan — check the argument for NaN
§ dlamch, slamch — retrieve machine parameters, i.e., get M, eps, base, length of

mantissa, emin, emax

§ xerbla — error handling in case of invalid inputs

Linear Algebra Software
LAPACK

§ computational routines: perform simple specific tasks
§ factorizations: LU, LL˚, LDL˚, QR, LQ, . . .
§ eigenvalue and singular value computations
§ recovery of eigenvectors, Schur vector

§ driver routines: these routines call a set of computational routines to solve linear algebra
problems

§ linear equations: Ax “ b
§ linear least squares: min

x
‖b ´ Ax‖2

§ generalized linear least squares
§ eigenvalue decompositions
§ generalized eigenvalue/singular value decompositions

Related software:

§ LAPACKE (C/C++ wrapper to LAPACK)

§ ScaLAPACK (distributed parallel version)

§ MAGMA (Matrix Algebra on GPU and Multicore Architectures)

Linear Algebra Software
LAPACK

§ computational routines: perform simple specific tasks
§ factorizations: LU, LL˚, LDL˚, QR, LQ, . . .
§ eigenvalue and singular value computations
§ recovery of eigenvectors, Schur vector

§ driver routines: these routines call a set of computational routines to solve linear algebra
problems

§ linear equations: Ax “ b
§ linear least squares: min

x
‖b ´ Ax‖2

§ generalized linear least squares
§ eigenvalue decompositions
§ generalized eigenvalue/singular value decompositions

Related software:

§ LAPACKE (C/C++ wrapper to LAPACK)

§ ScaLAPACK (distributed parallel version)

§ MAGMA (Matrix Algebra on GPU and Multicore Architectures)

SuiteSparse

Linear Algebra Software
SuiteSparse

SuiteSparse is a suite of sparse matrix algorithms and software libraries:

§ Sparse Matrix Factorization: Provides algorithms for LU, Cholesky, and QR
factorizations,

§ Solvers: Includes direct solvers for linear systems,

§ Graph Algorithms: Offers tools for graph partitioning and ordering, which are useful in
optimizing sparse matrix operations,

§ Sparse Matrix Manipulation: Supports operations such as matrix addition,
multiplication, and transposition for sparse matrices,

§ High Performance: Designed to take advantage of modern hardware architectures for
efficient computation,

§ Parallel Computing: Some components are optimized for parallel execution to improve
performance on multi-core processors,

§ Numerical Stability: Implements algorithms that maintain numerical stability and
accuracy in computations involving sparse matrices.

See: https://people.engr.tamu.edu/davis/suitesparse.html

https://people.engr.tamu.edu/davis/suitesparse.html

ITPACK

Linear Algebra Software
ITPACK

This package is intended for solving large sparse linear systems by iterative methods. It is
hosted at https://www.netlib.org/itpack.
The main library consists of three sub-packages for

§ single precision,

§ double precision,

§ vector machines.

It uses CG, PCG, Chebyschev acceleration and generalized CG for systems with non-symmetric
matrices.
The development of this Fortran based package takes place at Center for Numerical Analysis at
University of Texas at Austin.

https://www.netlib.org/itpack

Trilinos

Linear Algebra Software
Trilinos

“Trilinos is a collection of open source software libraries intended to be used as building blocks
for the development of scientific applications”.2

Trilinos is developed at the Sandia National Labs. The current version is 16.0.0 from Jul. 2024.
The package is licensed under the terms of the LGPL3 and covers:

§ construction and usage of sparse and dense matrices, graphs and vectors.

§ iterative and direct solution of linear systems

§ parallel multilevel and algebraic preconditioning

§ and many more . . .

The basic library is written in C++ with Fortran kernels. Moreover Python bindings are
provided via SWIG. Trilinos can be found online at:
https://trilinos.org

2https://en.wikipedia.org/wiki/Trilinos
3see, e.g., https://opensource.org/licenses/lgpl-license

https://trilinos.org
https://en.wikipedia.org/wiki/Trilinos
https://opensource.org/licenses/lgpl-license

Native Packages for other Programming Environments and
Languages

Linear Algebra Software
Native Packages for other Programming Environments and Languages

§ C++
§ C++26 — Matrix manipulation library built-in (on top of BLAS)
§ boost — supports threading as well
https://www.boost.org/

§ MTL — The Matrix Template Library
https://github.com/simunova/mtl4

§ The library uses boost and BLAS in kernels.
§ A single computer version available as OpenSource.
§ MTL4 has distributed computing capabilities, but those are connected to a payed license

release.

§ Eigen — “Eigen is a C++ template library for linear algebra: matrices, vectors, numerical
solvers, and related algorithms.” https://eigen.tuxfamily.org/

§ Python
§ NumPy — provides proper n-d array for Python
https://www.numpy.org/

§ SciPy — amongst many others provides LAPACK functionality (calling F90 LAPACK)
https://www.scipy.org/

https://www.boost.org/
https://github.com/simunova/mtl4
https://eigen.tuxfamily.org/
https://www.numpy.org/
https://www.scipy.org/

Linear Algebra Software
Native Packages for other Programming Environments and Languages

§ Java
§ JaMa — Java Matrix Package provides basic linear algebra in Java
https://math.nist.gov/javanumerics/jama/

§ JaMPack — same as JaMa
§ maintenance questionable: latest release Nov 2012, previous version July 2005.

§ Julia — Matrix support is part of the language core, built on top of BLAS and LAPACK

§ Rust
§ nalgebra – basic dense and sparse math library https://nalgebra.org/ content

https://math.nist.gov/javanumerics/jama/
https://nalgebra.org/

	
	Vector Norms and Inner Products
	Linear Operators, Operator and Matrix Norms
	Spectral Norm and Spectral Radius
	Condition Number and Singular Values
	Some Remarks on kappa2(A)

	Matrix Storage Formats
	Dense Matrices
	Basic Object Oriented Design
	Tiled Matrix Storage
	Sparse Matrices
	Complex Matrices

	Linear Algebra Software
	BLAS and LAPACK
	BLAS
	The Idea Behind the Level-3 Performance Gain
	LAPACK
	SuiteSparse
	ITPACK
	Trilinos
	Native Packages for other Programming Environments and Languages

