
Scientific Computing I
The Solution of Moderate Size Dense Linear Systems

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

Important Preliminaries

Important Preliminaries

Theorem 7.1 (LU decomposition)

Let A P Rnˆn and for k “ 1, . . . , n ´ 1, Ak “ Ap1 : k, 1 : kq P Rkˆk the leading k ˆ k sub-matrix.

1. If @k “ 1, . . . , n ´ 1 it holds detpAkq ­“ 0, then DL,U P Rnˆn such that

A “ LU

with

L “ @@

1

1

(unit lower triangular)

and

U “ @
@

(upper triangular).

2. If A “ LU exists and A is regular then the LU factorization is unique.

3. If A “ LU as in (ii) then
detpAq “ u11 ¨ ¨ ¨ unn

Important Preliminaries

Note that the simple regular 2ˆ 2 matrix A “

„

0 1
1 0



does not allow for an LU

decomposition, but applying a single row permutation we get:

Ã :“ PA “

„

1 0
0 1



, where P “

„

0 1
1 0



Ñ we need a more general formulation of the LU decomposition:

Theorem 7.2

Let A P Rnˆn regular. There exists a permutation matrix P P Rnˆn such that

PA “ LU

for L,U as in Theorem 7.1.

Important Preliminaries

Note that the simple regular 2ˆ 2 matrix A “

„

0 1
1 0



does not allow for an LU

decomposition, but applying a single row permutation we get:

Ã :“ PA “

„

1 0
0 1



, where P “

„

0 1
1 0



Ñ we need a more general formulation of the LU decomposition:

Theorem 7.2

Let A P Rnˆn regular. There exists a permutation matrix P P Rnˆn such that

PA “ LU

for L,U as in Theorem 7.1.

Important Preliminaries

Gaussian elimination is used to compute the L and U matrices. It consists of a triple loop
procedure. The straight forward row-by-row elimination version reads:

Algorithm 7.1: Gaussian Elimination “kij”-formulation

Input: A P Rnˆn

Output: A overwritten by L,U
1 for k “ 1 : n ´ 1 do
2 Apk ` 1 : n, kq “ Apk ` 1 : n, kq{Apk , kq;
3 for i “ k ` 1 : n do
4 for j “ k ` 1 : n do
5 Api , jq “ Api , jq ´ Api , kqApk , jq;

§ There are 5 other versions how to arrange the three loops: kji , ikj , ijk, jik, jki .

§ The jki version is sometimes called left looking LU. Õ important for sparse matrices.

Important Preliminaries

Gaussian elimination is used to compute the L and U matrices. It consists of a triple loop
procedure. The straight forward row-by-row elimination version reads:

Algorithm 7.1: Gaussian Elimination “kij”-formulation

Input: A P Rnˆn

Output: A overwritten by L,U
1 for k “ 1 : n ´ 1 do
2 Apk ` 1 : n, kq “ Apk ` 1 : n, kq{Apk , kq;
3 for i “ k ` 1 : n do
4 for j “ k ` 1 : n do
5 Api , jq “ Api , jq ´ Api , kqApk , jq;

§ There are 5 other versions how to arrange the three loops: kji , ikj , ijk, jik, jki .

§ The jki version is sometimes called left looking LU. Õ important for sparse matrices.

Important Preliminaries

In order to obtain a more “matrix-valued” formulation of Algorithm 7.1, we rearrange the data
in a clever way:

Algorithm 7.2: Outer product Gaussian Elimination

Input: A P Rnˆn fulfilling Theorem 7.1
Output: L,U P Rnˆn such that A “ LU as in Theorem 7.1 A is overwritten by the factors.

1 for k “ 1 : n ´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk , kq;
4 Aprows, rowsq “ Aprows, rowsq ´ Aprows, kqApk , rowsq;

Algorithm 7.2 is a rank-1 update, i.e., BLAS Level 2 operation formulation of the Gaussian
elimination process. It involves 2

3n
3 `Opn2q flops.

Important Preliminaries

In order to obtain a more “matrix-valued” formulation of Algorithm 7.1, we rearrange the data
in a clever way:

Algorithm 7.2: Outer product Gaussian Elimination

Input: A P Rnˆn fulfilling Theorem 7.1
Output: L,U P Rnˆn such that A “ LU as in Theorem 7.1 A is overwritten by the factors.

1 for k “ 1 : n ´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk , kq;
4 Aprows, rowsq “ Aprows, rowsq ´ Aprows, kqApk , rowsq;

Algorithm 7.2 is a rank-1 update, i.e., BLAS Level 2 operation formulation of the Gaussian
elimination process. It involves 2

3n
3 `Opn2q flops.

Important Preliminaries

If we want to solve a linear system Ax “ b with the help of the LU decomposition, we end up
with the following algorithm:

Algorithm 7.3: Linear System solver using Gaussian Elimination and forward/backward sub-
stitution

Input: A P Rnˆn, b P Rn

Output: x P Rn

1 Compute L,U as in Theorem 7.1, such that A “ LU (e.g. via Algorithm 7.2);
2 Solve Ly “ b by forward substitution;
3 Solve Ux “ y by backward substitution;

Cache/BLAS Exploitation

Triangular Systems

Cache/BLAS Exploitation
Triangular Systems

Consider
a11x1 “ b1,

a21x1 ` a22x2 “ b2.

+

Ø

„

a11

a21 a22



looooomooooon

L

„

x1

x2



loomoon

x

“

„

b1

b2



loomoon

b

In case a11 ­“ 0 and a22 ­“ 0 this leads to

x1 “
b1

a11
,

x2 “
b2 ´ a21x1

a22
“

b2 ´
a21

a11
b1

a22

In the i-th equation in a system Lx “ b in Algorithm 7.3 we find:

xi “

bi ´
i´1
ř

j“1

lijxj

lii

L unit diagonal
“ bi ´

i´1
ÿ

j“1

lijxj

Cache/BLAS Exploitation
Triangular Systems

Algorithm 7.4: Forward Substitution (Row Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn

Output: y “ L´1b (stored in b)

1 bp1q “ bp1q
Lp1,1q ;

2 for i “ 2 : n do

3 bpiq “ bpiq´Lpi,1:i´1qbp1:i´1q
Lpi,iq

§ complexity: Opn2q flops.

§ the rounding error in each element xi of the solution vector is smaller than n ¨ u.

§ row-wise access to L Ø column major storage �

Cache/BLAS Exploitation
Triangular Systems

Algorithm 7.4: Forward Substitution (Row Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn

Output: y “ L´1b (stored in b)

1 bp1q “ bp1q
Lp1,1q ;

2 for i “ 2 : n do

3 bpiq “ bpiq´Lpi,1:i´1qbp1:i´1q
Lpi,iq

§ complexity: Opn2q flops.

§ the rounding error in each element xi of the solution vector is smaller than n ¨ u.

§ row-wise access to L Ø column major storage �

Cache/BLAS Exploitation
Triangular Systems

Algorithm 7.5: Forward Substitution (Column Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn

Output: y “ L´1b (stored in b)
1 for j “ 1 : n ´ 1 do

2 bpjq “ bpjq
Lpj,jq ;

3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;

4 bpnq “ bpnq
Lpn,nq ;

§ only column-wise access to L

§ can be built on top of axpy operations.

§ with a unit diagonal L: only axpy operations.

Ñ “backward” substitution for Ux “ b works in the same way

Cache/BLAS Exploitation
Triangular Systems

Algorithm 7.5: Forward Substitution (Column Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn

Output: y “ L´1b (stored in b)
1 for j “ 1 : n ´ 1 do

2 bpjq “ bpjq
Lpj,jq ;

3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;

4 bpnq “ bpnq
Lpn,nq ;

§ only column-wise access to L

§ can be built on top of axpy operations.

§ with a unit diagonal L: only axpy operations.

Ñ “backward” substitution for Ux “ b works in the same way

Cache/BLAS Exploitation
Triangular Systems

Algorithm 7.5: Forward Substitution (Column Version)

Input: L P Rnˆn (unit) lower triangular, b P Rn

Output: y “ L´1b (stored in b)
1 for j “ 1 : n ´ 1 do

2 bpjq “ bpjq
Lpj,jq ;

3 bpj ` 1 : nq “ bpj ` 1 : nq ´ bpjqLpj ` 1 : n, jq;

4 bpnq “ bpnq
Lpn,nq ;

§ only column-wise access to L

§ can be built on top of axpy operations.

§ with a unit diagonal L: only axpy operations.

Ñ “backward” substitution for Ux “ b works in the same way

Triangular Systems with Multiple Right Hand Sides and BLAS
Level 3 formulation

Cache/BLAS Exploitation
Triangular Systems with Multiple Right Hand Sides and BLAS Level 3 formulation

Let B P Rnˆq leading to a family of linear systems LX “ B with X P Rnˆq. L is (unit) lower
triangular and we consider the block substructure as in

»

—

—

—

–

L11 0 ¨ ¨ ¨ 0
L21 L22 ¨ ¨ ¨ 0

...
...

. . .
...

LN1 LN2 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X1

X2

...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B1

B2

...
BN

fi

ffi

ffi

ffi

fl

. (1)

We apply Algorithm 7.5 with the Lp1, 1q element replaced by the L11 block to get

»

—

—

—

–

L22 0 ¨ ¨ ¨ 0
L32 L33 ¨ ¨ ¨ 0

...
...

. . .
...

LN2 LN3 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X2

X3

...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B2 ´ L21X1

B3 ´ L31X1

...
BN ´ LN1X1

fi

ffi

ffi

ffi

fl

after computing X1 from L11X1 “ B1 by Algorithm 7.5.

Cache/BLAS Exploitation
Triangular Systems with Multiple Right Hand Sides and BLAS Level 3 formulation

Let B P Rnˆq leading to a family of linear systems LX “ B with X P Rnˆq. L is (unit) lower
triangular and we consider the block substructure as in

»

—

—

—

–

L11 0 ¨ ¨ ¨ 0
L21 L22 ¨ ¨ ¨ 0

...
...

. . .
...

LN1 LN2 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X1

X2

...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B1

B2

...
BN

fi

ffi

ffi

ffi

fl

. (1)

We apply Algorithm 7.5 with the Lp1, 1q element replaced by the L11 block to get

»

—

—

—

–

L22 0 ¨ ¨ ¨ 0
L32 L33 ¨ ¨ ¨ 0

...
...

. . .
...

LN2 LN3 ¨ ¨ ¨ LNN

fi

ffi

ffi

ffi

fl

»

—

—

—

–

X2

X3

...
XN

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

B2 ´ L21X1

B3 ´ L31X1

...
BN ´ LN1X1

fi

ffi

ffi

ffi

fl

after computing X1 from L11X1 “ B1 by Algorithm 7.5.

Cache/BLAS Exploitation
Triangular Systems with Multiple Right Hand Sides and BLAS Level 3 formulation

Now, successively, continuing with L22X2 “ B̃2 and so forth, we derive the block forward
elimination scheme given in Algorithm 7.6:

Algorithm 7.6: Block Forward Substitution

Input: L,B as in (1)
Output: X solving LX “ B

1 for j “ 1 : N do
2 Solve LjjXj “ Bj for Xj ;
3 for i “ j ` 1 : N do
4 Bi “ Bi ´ LijXj

§ scalar/vector updates replaced by GEMM operations

§ block size can be tuned w.r.t the hardware/CPU.

§ similar for the “backward” substitution

Cache/BLAS Exploitation
Triangular Systems with Multiple Right Hand Sides and BLAS Level 3 formulation

Now, successively, continuing with L22X2 “ B̃2 and so forth, we derive the block forward
elimination scheme given in Algorithm 7.6:

Algorithm 7.6: Block Forward Substitution

Input: L,B as in (1)
Output: X solving LX “ B

1 for j “ 1 : N do
2 Solve LjjXj “ Bj for Xj ;
3 for i “ j ` 1 : N do
4 Bi “ Bi ´ LijXj

§ scalar/vector updates replaced by GEMM operations

§ block size can be tuned w.r.t the hardware/CPU.

§ similar for the “backward” substitution

BLAS Level 3 based Gaussian Elimination

Cache/BLAS Exploitation
BLAS Level 3 based Gaussian Elimination

The block formulation for the forward/backward substitution raises the obvious question:

Can we do something similar for the Gaussian elimination process?

We take the outer product Gaussian elimination in Algorithm 7.2 and , To this end, let
A P Rnˆn with partitioning

A “

„

A11 A12

A21 A22



(2)

Here A11 P Rrˆr , A12 P Rrˆpn´rq, A21 P Rpn´rqˆr , A22 P Rpn´rqˆpn´rq, for a blocking parameter
1 ď r ď n.

Cache/BLAS Exploitation
BLAS Level 3 based Gaussian Elimination

The block formulation for the forward/backward substitution raises the obvious question:

Can we do something similar for the Gaussian elimination process?

We take the outer product Gaussian elimination in Algorithm 7.2 and , To this end, let
A P Rnˆn with partitioning

A “

„

A11 A12

A21 A22



(2)

Here A11 P Rrˆr , A12 P Rrˆpn´rq, A21 P Rpn´rqˆr , A22 P Rpn´rqˆpn´rq, for a blocking parameter
1 ď r ď n.

Cache/BLAS Exploitation
BLAS Level 3 based Gaussian Elimination

Now we can compute A11 “ L11U11, e.g., using Algorithm 7.2 and solve the triangular systems

L11U12 “ A12 for U12,

L21U11 “ A21 for L21.

Then it follows:
„

A11 A12

A21 A22



“

„

L11 0

L21 Ã22

 „

U11 U12

0 In´r



,

where
Ã22 “ A22 ´ L21U12. (3)

Now if Ã22 “ L22U22 were the LU of the updated p2, 2q block, then

„

A11 A12

A21 A22



“

„

L11 0
L21 L22

 „

U11 U12

0 U22



Since we did not post special assumptions on the matrix A in Equation (2) other than the
existence of the LU-decomposition, we can proceed with Ã22 as above.

Cache/BLAS Exploitation
BLAS Level 3 based Gaussian Elimination

Algorithm 7.7: Panel Outer Product LU

Input: A P Rnˆn as in Theorem 7.1, r ě 1 block size
Output: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 l “ minpn, k ` r ´ 1q;

4 Compute Apk : l , k : lq “ L̃Ũ via Algorithm 7.2;

5 Solve L̃Z “ Apk : l , l ` 1 : nq and store Z ;

6 Solve WŨ “ Apl ` 1 : n, k : lq and store W ;
7 Perform the rank-r update: Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´WZ ;
8 k “ l ` 1;

§ takes 2
3n

3 `Opn2q flops

§ r is optimized w.r.t. the CPU and the memory hierarchy, typically 128 ď r ď 384.

Cache/BLAS Exploitation
BLAS Level 3 based Gaussian Elimination

Algorithm 7.7: Panel Outer Product LU

Input: A P Rnˆn as in Theorem 7.1, r ě 1 block size
Output: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 l “ minpn, k ` r ´ 1q;

4 Compute Apk : l , k : lq “ L̃Ũ via Algorithm 7.2;

5 Solve L̃Z “ Apk : l , l ` 1 : nq and store Z ;

6 Solve WŨ “ Apl ` 1 : n, k : lq and store W ;
7 Perform the rank-r update: Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´WZ ;
8 k “ l ` 1;

§ takes 2
3n

3 `Opn2q flops

§ r is optimized w.r.t. the CPU and the memory hierarchy, typically 128 ď r ď 384.

Pivoted LU Decomposition

Cache/BLAS Exploitation
Pivoted LU Decomposition

We still have the restriction of Theorem 7.1. How to overcome this
issue?

From Theorem 7.2, we know that as long as A P Rnˆn is regular, we can find a permutation
matrix P such that

PA “ LU.

Idea: Swap the rows in A on-the-fly, such that Apk, kq ‰ 0 for k “ 1, . . . , n.

Definition 7.3

A matrix P P Rnˆn is called permutation matrix, iff it only has a one in each row and column.

§ The product PA swaps the rows of the matrix A.

§ The product AP swaps the columns of the matrix A.

Cache/BLAS Exploitation
Pivoted LU Decomposition

We still have the restriction of Theorem 7.1. How to overcome this
issue?

From Theorem 7.2, we know that as long as A P Rnˆn is regular, we can find a permutation
matrix P such that

PA “ LU.

Idea: Swap the rows in A on-the-fly, such that Apk, kq ‰ 0 for k “ 1, . . . , n.

Definition 7.3

A matrix P P Rnˆn is called permutation matrix, iff it only has a one in each row and column.

§ The product PA swaps the rows of the matrix A.

§ The product AP swaps the columns of the matrix A.

Cache/BLAS Exploitation
Pivoted LU Decomposition

We still have the restriction of Theorem 7.1. How to overcome this
issue?

From Theorem 7.2, we know that as long as A P Rnˆn is regular, we can find a permutation
matrix P such that

PA “ LU.

Idea: Swap the rows in A on-the-fly, such that Apk , kq ‰ 0 for k “ 1, . . . , n.

Definition 7.3

A matrix P P Rnˆn is called permutation matrix, iff it only has a one in each row and column.

§ The product PA swaps the rows of the matrix A.

§ The product AP swaps the columns of the matrix A.

Cache/BLAS Exploitation
Pivoted LU Decomposition

For a given step k we can select the row l for interchanging within k ď l ď n.

§ Apl , kq ‰ 0

§ dividing by Apl , kq must be “numerically” safe, i.e. coefficients Ap¨, kq{Apl , kq should be
as small as possible to avoid overflows

Solution

We select l such that l “ argmaxkďlďn |Apl , kq|.

If Apl , kq “ 0 for some k, the matrix A is singular.

Remark 1

The element Apl , kq is called pivot element in step k.

Remark 2

Selecting the pivot element only form the current column (or current row) is called partial
pivoting.

Cache/BLAS Exploitation
Pivoted LU Decomposition

For a given step k we can select the row l for interchanging within k ď l ď n.

§ Apl , kq ‰ 0

§ dividing by Apl , kq must be “numerically” safe, i.e. coefficients Ap¨, kq{Apl , kq should be
as small as possible to avoid overflows

Solution

We select l such that l “ argmaxkďlďn |Apl , kq|.

If Apl , kq “ 0 for some k , the matrix A is singular.

Remark 1

The element Apl , kq is called pivot element in step k.

Remark 2

Selecting the pivot element only form the current column (or current row) is called partial
pivoting.

Cache/BLAS Exploitation
Pivoted LU Decomposition

For a given step k we can select the row l for interchanging within k ď l ď n.

§ Apl , kq ‰ 0

§ dividing by Apl , kq must be “numerically” safe, i.e. coefficients Ap¨, kq{Apl , kq should be
as small as possible to avoid overflows

Solution

We select l such that l “ argmaxkďlďn |Apl , kq|.

If Apl , kq “ 0 for some k , the matrix A is singular.

Remark 1

The element Apl , kq is called pivot element in step k .

Remark 2

Selecting the pivot element only form the current column (or current row) is called partial
pivoting.

Cache/BLAS Exploitation
Pivoted LU Decomposition

For a given step k we can select the row l for interchanging within k ď l ď n.

§ Apl , kq ‰ 0

§ dividing by Apl , kq must be “numerically” safe, i.e. coefficients Ap¨, kq{Apl , kq should be
as small as possible to avoid overflows

Solution

We select l such that l “ argmaxkďlďn |Apl , kq|.

If Apl , kq “ 0 for some k , the matrix A is singular.

Remark 1

The element Apl , kq is called pivot element in step k .

Remark 2

Selecting the pivot element only form the current column (or current row) is called partial
pivoting.

Cache/BLAS Exploitation
Pivoted LU Decomposition

Integrating this approach in Algorithm 7.2 leads to

Algorithm 7.8: Outer product Gaussian Elimination with Partial Pivoting

Input: A P Rnˆn fulfilling Theorem 7.2
Output: P, L,U P Rnˆn such that PA “ LU as in Theorem 7.2 A is overwritten by the

factors.
1 P=I;
2 for k “ 1 : n ´ 1 do
3 Determine l , k ď l ď n such that |Apl , kq| “ ||Apk : n, kq||8;
4 Apl , k : nq Ø Apk , k : nq, Ppl , k : nq Ø Ppk , k : nq;
5 rows“ k ` 1 : n;
6 Aprows, kq “ Aprows, kq{Apk , kq;
7 Aprows, rowsq “ Aprows, rowsq ´ Aprows, kqApk , rowsq;

Cache/BLAS Exploitation
Pivoted LU Decomposition

Now, this needs to be reformulated, such that it works on block of size r .

Ñ Instead of using the A11 in the first step, we have perform the pivoted LU step on

P1

„

A11

A21



“

„

L11

L21



U11.

Then the permutation P1 needs to be applied to the remaining matrix

„

Ã12

Ã22



“ P1

„

A12

A22



and compute U12 by solving
L11U12 “ Ã12.

Finally, we update
Ã “ Ã22 ´ L21U12

and resume the procedure on Ã again.

Cache/BLAS Exploitation
Pivoted LU Decomposition

Now, this needs to be reformulated, such that it works on block of size r .

Ñ Instead of using the A11 in the first step, we have perform the pivoted LU step on

P1

„

A11

A21



“

„

L11

L21



U11.

Then the permutation P1 needs to be applied to the remaining matrix

„

Ã12

Ã22



“ P1

„

A12

A22



and compute U12 by solving
L11U12 “ Ã12.

Finally, we update
Ã “ Ã22 ´ L21U12

and resume the procedure on Ã again.

Cache/BLAS Exploitation
Pivoted LU Decomposition

Algorithm 7.9: Panel Outer Product LU with Partial Pivoting

Input: A P Rnˆn as in Theorem 7.2, r ě 1 block size
Output: PA “ LU with L,U stored in A, P permutation matrix

1 k “ 1;
2 P “ I ;
3 while k ď n do
4 l “ minpn, k ` r ´ 1q;

5 Compute P˚Apk : n, k : lq “

„

L̃1

L̃2



Ũ via Algorithm 7.9;

6 Ppk : n, k : nq Ð P˚Ppk : n, k : nq ;

7 Solve L̃1Z “ Apk : l , l ` 1 : nq and store Z ;

8 Perform the rank-r update: Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´ L̃2Z ;
9 k “ l ` 1;

Ñ the pivoted LU decomposition requires 2
3n

3 `Opn2q flops, as well.

Cache/BLAS Exploitation
Pivoted LU Decomposition

Algorithm 7.9: Panel Outer Product LU with Partial Pivoting

Input: A P Rnˆn as in Theorem 7.2, r ě 1 block size
Output: PA “ LU with L,U stored in A, P permutation matrix

1 k “ 1;
2 P “ I ;
3 while k ď n do
4 l “ minpn, k ` r ´ 1q;

5 Compute P˚Apk : n, k : lq “

„

L̃1

L̃2



Ũ via Algorithm 7.9;

6 Ppk : n, k : nq Ð P˚Ppk : n, k : nq ;

7 Solve L̃1Z “ Apk : l , l ` 1 : nq and store Z ;

8 Perform the rank-r update: Apl ` 1 : n, l ` 1 : nq “ Apl ` 1 : n, l ` 1 : nq ´ L̃2Z ;
9 k “ l ` 1;

Ñ the pivoted LU decomposition requires 2
3n

3 `Opn2q flops, as well.

Cache/BLAS Exploitation
Pivoted LU Decomposition

Theorem 7.4

For a matrix A P Rnˆn the exact number of flops for the LU is

2

3
n3 ´

1

2
n2 ´

1

6
n.

This is invariant under the choice of the parameter r .

Complete Pivoting

Cache/BLAS Exploitation
Complete Pivoting

The partial pivoting search only in one direction for a pivot element.

The pivot element could be selected from the whole Apk : n, k : nq submatrix. This leads to the
pivot element Apl , jq, fulfilling

pl , jq “ argmax
kďlďn, kďjďn

|Apl , jq|,

which is called complete pivoting.

Remark 3

Since we search in two dimensions for the pivot element, we have to permute rows and
columns of A, thus our LU decomposition changes to

PAQ “ LU,

where P and Q are permutation matrices.

Cache/BLAS Exploitation
Complete Pivoting

The partial pivoting search only in one direction for a pivot element.

The pivot element could be selected from the whole Apk : n, k : nq submatrix. This leads to the
pivot element Apl , jq, fulfilling

pl , jq “ argmax
kďlďn, kďjďn

|Apl , jq|,

which is called complete pivoting.

Remark 3

Since we search in two dimensions for the pivot element, we have to permute rows and
columns of A, thus our LU decomposition changes to

PAQ “ LU,

where P and Q are permutation matrices.

Cache/BLAS Exploitation
Complete Pivoting

Remark 4

§ The LU decomposition without pivoting is not numerically stable.

§ The LU decomposition with partial or complete pivoting is numerically stable.

§ The complete pivoting strategy is only used in rare cases, where a the partial pivoting
might fail.

§ The complete pivoting strategy could not be implemented in a practicable Level-3 enabled
algorithm.

Iterative Refinement

Iterative Refinement

What to do, if the solution of a linear system (with LU decomposition)
is still inaccurate?

Motivation

Iterative Refinement
Motivation

We assume that

§ A P Rnˆn, b P Rn and x̂ is the computed solution of Ax “ b,

§ r P Rn, r “ b ´ Ax̂ is the residual.

Now we compute d “ A´1r (or solve Ad “ r) and calculate x̃ “ x̂ ` d . Using exact
arithmetic, we obtain

Ax̃ “ Apx̂ ` dq “ Ax̂ ` Ad “ pb ´ rq ` AA´1r “ b ´ r ` r “ b

Thus in exact arithmetic the updated x̃ would be the exact solution.

Since we cannot use exact arithmetic, we have to repeat this procedure.

Iterative Refinement
Motivation

Algorithm 7.10: iterative refinement

Input: A P Rnˆn, b P Rn, x̂ an approximate solution
Output: x̂ a solution (approximation)

1 repeat
2 r “ b ´ Ax̂ ;
3 solve Ad “ r ;
4 update x̂ “ x̂ ` d

5 until x̂ accurate enough;

Iterative Refinement
Motivation

The literature distinguishes mainly 2 approaches:

1. fixed precision refinement

2. mixed precision refinement

Fixed Precision Iterative Refinement

All steps in Algorithm 7.10 are computed in the same precision (u) and the same datatype.

Mixed Precision Iterative Refinement

For mixed precision refinement the residual r is computed in a higher precision pûq. Classically
û “ u2, i.e., u corresponds to single precision, and û then stands for double precision.

Iterative Refinement
Motivation

The literature distinguishes mainly 2 approaches:

1. fixed precision refinement

2. mixed precision refinement

Fixed Precision Iterative Refinement

All steps in Algorithm 7.10 are computed in the same precision (u) and the same datatype.

Mixed Precision Iterative Refinement

For mixed precision refinement the residual r is computed in a higher precision pûq. Classically
û “ u2, i.e., u corresponds to single precision, and û then stands for double precision.

Iterative Refinement
Motivation

The literature distinguishes mainly 2 approaches:

1. fixed precision refinement

2. mixed precision refinement

Fixed Precision Iterative Refinement

All steps in Algorithm 7.10 are computed in the same precision (u) and the same datatype.

Mixed Precision Iterative Refinement

For mixed precision refinement the residual r is computed in a higher precision pûq. Classically
û “ u2, i.e., u corresponds to single precision, and û then stands for double precision.

Iterative Refinement
Motivation

Example 7.5

The LAPACK routine XGERFS (X=c,d,s,z) solves a linear system with fixed precision iterative
refinement. Furthermore, it provides estimates for the forward- and the backward-error, which
appears during the solution if the liear system.

Example 7.6

The LAPACK routine DSGESV solves a linear systems with the help of mixed precision iterative
refinement.

§ the LU decomposition is done in single precision.

§ solving Ad “ r is done in single precision,

§ the residual r “ b ´ Ax̂ and the update x̂ “ x̂ ` d are performed in double precision.

Iterative Refinement
Motivation

Example 7.5

The LAPACK routine XGERFS (X=c,d,s,z) solves a linear system with fixed precision iterative
refinement. Furthermore, it provides estimates for the forward- and the backward-error, which
appears during the solution if the liear system.

Example 7.6

The LAPACK routine DSGESV solves a linear systems with the help of mixed precision iterative
refinement.

§ the LU decomposition is done in single precision.

§ solving Ad “ r is done in single precision,

§ the residual r “ b ´ Ax̂ and the update x̂ “ x̂ ` d are performed in double precision.

Theoretic Background

Iterative Refinement
Theoretic Background

Let A P Rnˆn be a square matrix. The absolute value of A is defined component-wise:

|A| “ p|aij |qi,j“1,...,n.

Under the assumption
pA`∆Aqx̂ “ b |∆A| ď uw (4)

for W non-negative depending on A, n, and u (but not on b) one can prove the following two
theorems:

Iterative Refinement
Theoretic Background

Theorem 7.7 (Mixed Precision Refinement)

Let Ax “ b be a non-singular linear system solved with a method satisfying (4) and residuals in
double the working precision. Moreover

η “ u
∥∥|A´1| p|A| ` wq

∥∥
8

If η ă 1´ δ for δ large enough, then iterative refinement reduces the forward error by
approximately a factor of η at each stage until

‖x ´ x̂‖8
‖x‖8

« u

Iterative Refinement
Theoretic Background

Theorem 7.8 (Fixed Precision Refinement)

Setting as in Theorem 7.7 but with residual computation in working precision. The same
reduction holds, but with limit

‖x ´ x̂‖8
‖x‖8

ď 2nu

∥∥|A´1||A||x |
∥∥
8

‖x‖8
loooooooomoooooooon

condpA,xq

(5)

Iterative Refinement
Theoretic Background

Remark 5

§ Equation (5) is essentially the best we can expect in fixed precision.

§ Note that the solver need not be of LU type and û is not limited to u2.

§ When working in û “ u2, i.e., system solves in single precision and residual in double
precision, one can reuse the LU decomposition from the outer solve. That means the
iterative refinement is of Opn2q complexity, i.e., one order of magnitude cheaper than the
actual solve and the amount of data copied is reduced due to single precision storage.

§ Fixed precision iterative refinement may be used to stabilize unstable solvers for Ax “ b,
e.g., LU “ PA computed with poor pivoting.

§ rule of thumb:
machine precision: 10´d “ u, κ8pAq « 10q ; k steps of mixed precision refinement lead
to approximately minpd , kpd ´ qqq correct digits in x .

Iterative Refinement as Splitting Method

Iterative Refinement
Iterative Refinement as Splitting Method

Splitting methods are iterative solvers for linear systems, that focus on an additive
decomposition of the matrix A and compute a sequence xi converging to x by

xi`1 “ xi `Mpb, xi q,

where Mp¨, ¨q is a mapping Rn ˆ Rn Ñ Rn which approximates the solution with the use of the
additive decomposition.

We decompose A into A “ B ` pA´ Bq, this yields

ñ Ax “ b ô B´1pB ` pA´ Bqqx “ B´1b ô pI ` pB´1A´ I qqx “ B´1b

ô x ` pB´1A´ I qx “ B´1b

; xi`1 “ B´1b ´ pB´1A´ I qxi (*)

“ xi ` B´1 pb ´ Axi q
loooomoooon

ri
looooooomooooooon

di

Iterative Refinement
Iterative Refinement as Splitting Method

Splitting methods are iterative solvers for linear systems, that focus on an additive
decomposition of the matrix A and compute a sequence xi converging to x by

xi`1 “ xi `Mpb, xi q,

where Mp¨, ¨q is a mapping Rn ˆ Rn Ñ Rn which approximates the solution with the use of the
additive decomposition.

We decompose A into A “ B ` pA´ Bq, this yields

ñ Ax “ b ô B´1pB ` pA´ Bqqx “ B´1b ô pI ` pB´1A´ I qqx “ B´1b

ô x ` pB´1A´ I qx “ B´1b

; xi`1 “ B´1b ´ pB´1A´ I qxi (*)

“ xi ` B´1 pb ´ Axi q
loooomoooon

ri
looooooomooooooon

di

Iterative Refinement
Iterative Refinement as Splitting Method

By setting

B “ L̂Û Ñ B´1 “ pL̂Ûq
´1
,

this reflects a refinement of the LU. From (*) we immediately find

xi`1 “ B´1b ` B´1pB ´ Aqxi .

As for the splitting methods in general, by the Banach fixed point theorem we then have that
the iteration converges if M :“ B´1pB ´ Aq is a contraction, i.e. ρpMq ă 1.

	Important Preliminaries
	Cache/BLAS Exploitation
	Triangular Systems
	Triangular Systems with Multiple Right Hand Sides and BLAS Level 3 formulation
	BLAS Level 3 based Gaussian Elimination
	Pivoted LU Decomposition
	Complete Pivoting

	Iterative Refinement
	Motivation
	Theoretic Background
	Iterative Refinement as Splitting Method

