
Scientific Computing I
Linux and the Commandline

Dr. Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for
Dynamics of Complex Technical Systems

Winter Term 2024/2025

A short History of an Accidental
Revolution

First announcement

A short History of an Accidental Revolution
First announcement

Linus Torvalds news posting August 26, 1991
“Hello everybody out there using minix -
I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since april, and is starting to get
ready. I’d like any feedback on things people like/dislike in minix, as my OS resembles
it somewhat (same physical layout of the file-system (due to practical reasons) among
other things).
I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies
that I’ll get something practical within a few months, and I’d like to know what
features most people would want. Any suggestions are welcome, but I won’t promise
I’ll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT
protable (uses 386 task switching etc), and it probably never will support anything
other than AT-harddisks, as that’s all I have :-(. ”

After this the (r)evolution has been fast as the following time-line shows.

Unix/Linux history (following Wikipedia)

A short History of an Accidental Revolution
Unix/Linux history (following Wikipedia) https://en.wikipedia.org/wiki/History_of_Linux

1983 Richard Stallman creates the GNU project with the goal of
creating a free operating system.

1989 Richard Stallman writes the first version of the GNU
General Public License.

1991 The Linux kernel is publicly announced by the 21 year old
Finnish student Linus Benedict Torvalds.

1992 The Linux kernel is relicensed under the GNU GPL. The
first so called “Linux distributions” are created.

1993 Over 100 developers work on the Linux kernel. With their
assistance the kernel is adapted to the GNU environment,
which creates a large spectrum of application types for
Linux. The oldest currently existing Linux distribution,
Slackware, is released for the first time. Later in the same
year, the Debian project is established. Today it is the
largest community distribution.

https://en.wikipedia.org/wiki/History_of_Linux

A short History of an Accidental Revolution
Unix/Linux history (following Wikipedia) https://en.wikipedia.org/wiki/History_of_Linux

1994 In March Torvalds judges all components of the kernel to
be fully matured: he releases version 1.0 of Linux. The
XFree86 project contributes a graphic user interface
(GUI). In this year the companies Red Hat and SUSE
publish version 1.0 of their Linux distributions.

1995 Linux is ported to the DEC Alpha and to the Sun SPARC.
Over the following years it is ported to an ever greater
number of platforms.

1996 Version 2.0 of the Linux kernel is released. The kernel can
now serve several processors at the same time, and thereby
becomes a serious alternative for many companies.

1998 Many major companies such as IBM, Compaq and Oracle
announce their support for Linux. In addition a group of
programmers begins developing the graphic user interface
KDE.

https://en.wikipedia.org/wiki/History_of_Linux

A short History of an Accidental Revolution
Unix/Linux history (following Wikipedia) https://en.wikipedia.org/wiki/History_of_Linux

1999 A group of developers begin work on the graphic
environment GNOME, which should become a free
replacement for KDE, which depended on the then
proprietary Qt toolkit. During the year IBM announces an
extensive project for the support of Linux.

2004 The XFree86 team splits up and joins with the existing X
Window standards body to form the X.Org Foundation,
which results in a substantially faster development of the
X Window Server for Linux.

2005 The project openSUSE begins a free distribution from
Novell’s community. Also the project OpenOffice.org
introduces version 2.0 that now supports OASIS
OpenDocument standards in October.

2006 Oracle releases its own distribution of Red Hat. Novell and
Microsoft announce a cooperation for a better
interoperability.

https://en.wikipedia.org/wiki/History_of_Linux

A short History of an Accidental Revolution
Unix/Linux history (following Wikipedia) https://en.wikipedia.org/wiki/History_of_Linux

2007 Dell starts distributing laptops with Ubuntu pre-installed
in them.

2011 Version 3.0 of the Linux kernel is released.
2012 2012: the aggregate Linux server market revenue exceeds

that of the rest of the Unix market.
2013 Google’s Linux-based Android claims 75% of the

smartphone market share, in terms of the number of
phones shipped.

2014 Ubuntu claims 22,000,000 users.

https://en.wikipedia.org/wiki/History_of_Linux

bash and its Basic Helpers

bash

bash and its Basic Helpers
bash

bash (Bourne Again Shell). . .
. . . is a Unix command interpreter that usually runs in a text window
where the user can type in commands. It can also be used to read
commands from files, the so called scripts. It extends the capabilities and
command set of the classic Bourne shell sh.

Stephen Bourne and sh
I Inventor of the sh shell in 1977
I sh used to be the standard shell for Unix-7 systems
I sh is still available on most Unix(-like) systems today

bash and its Basic Helpers
bash

bash (Bourne Again Shell). . .
. . . is a Unix command interpreter that usually runs in a text window
where the user can type in commands. It can also be used to read
commands from files, the so called scripts. It extends the capabilities and
command set of the classic Bourne shell sh.

Stephen Bourne and sh
I Inventor of the sh shell in 1977
I sh used to be the standard shell for Unix-7 systems
I sh is still available on most Unix(-like) systems today

Special Characters

bash and its Basic Helpers
Special Characters

* serves as a placeholder for arbitrarily many characters
? a placeholder for a single character
/ directory separator
\ escape character for quoting special characters and to mark line

breaks
~ abbreviation for your home directory
| the pipe operator: connects two simple commands to a new one

by redirecting the output of the one on the left to the other one
on the right. || represents a logic OR.

< fetches the input for a command (on the left) from a file or device
(on the right)

> redirects the output of a command (on the left) to a file or device
(on the right)

bash and its Basic Helpers
Special Characters

2> same as above for the error output only, can be used to redirect
the standard error messages to standard output so it is recognized
by the > and | as well via 2>&1

1> same as above for the standard output without the errors
» as > but appends the output instead of overwriting the file
$ used in command substitution and for referring to shell and envi-

ronment variables
& a single & after a command name sends the execution to the

background. Double && stand for the logic AND.

bash and its Basic Helpers
Special Characters

‘ accent grave is used for command substitution
’ single quotes removes the special meaning of all special char-

acters enclosed by them.
" double quotes act the same as single quotes with the exception

of the $, ‘, \ (and sometimes !) characters keeping their
special properties.

blank the simple blank is used to separate words and thus needs to
be escaped when, e.g., a file name contains it.

comment character; everything following this character on the
same line will be dropped

! initiates history expansion

Influencing the Working Environment

bash and its Basic Helpers
Influencing the Working Environment

Environment Variables
I runtime settings are stored in so called environment variables
I referencing them is done using $
I some are defined by the system standards
I users can invent their own variables for storing information, e.g. in

script files
I names usually in all capital letters

Example
I $USER name of the user running the shell
I $HOME file system location of the users home directory
I $PATH search path for executable binaries
I $EDITOR default text editor, $PRINTER standard printer,

$HOSTNAME computers name, . . .

bash and its Basic Helpers
Influencing the Working Environment

Environment Variables
I runtime settings are stored in so called environment variables
I referencing them is done using $
I some are defined by the system standards
I users can invent their own variables for storing information, e.g. in

script files
I names usually in all capital letters

Example
I $USER name of the user running the shell
I $HOME file system location of the users home directory
I $PATH search path for executable binaries
I $EDITOR default text editor, $PRINTER standard printer,

$HOSTNAME computers name, . . .

Basic Commands for Managing Files

bash and its Basic Helpers
Basic Commands for Managing Files

pwd short for print working directory, and printing the name of
the directory you are currently working in is exactly what
it does.

cd change directory, switches the current working directory to
the directory given as the argument. If no argument is
given, cd takes you home, i.e., switches to your users
home directory.

mkdir creates a new directory in the current working directory
rmdir removes the directories specified as arguments if they are

empty.
touch creates an empty file, or, if it already exists, sets the

access date of the file to the current time and date
rm removes files. It can also be used to remove directories

with the -r (recursive) option. This is especially useful
when rmdir does not work since the directory is not
empty. The -f (force) option can be used to remove even
protected files.

bash and its Basic Helpers
Basic Commands for Managing Files

ls lists all files in the directory specified. If none is specified
the current working directory is used. If the argument is a
file or a list of files only those files are listed. Useful
options are -l for a full listing including access rights and
ownership information, -a for a listing including also
hidden files. The -h option in combination with the two
previous ones makes file sizes human readable, i.e.,
displayed as multiples of kB, MB, GB, TB, where all of
these are representing powers of 1024. If a 1000 based
presentation is desired --si needs to be used instead.

cp takes two or more arguments and copies the n-1 first
arguments to the last. If more than 2 arguments are given
the last one must be a directory. Absolute and relative
paths are allowed.

mv Same as above but moves the files, i.e., the originals are
removed after the copy is successful.

bash and its Basic Helpers
Basic Commands for Managing Files

ln links files to new names. By default a hard link is created.
Then the new name serves as a new entry in the file
system associated to the same data and the data is only
removed if all hard links are removed. When used with the
-s option a soft link is created that only points to the
original. When the original data is removed the link
becomes orphaned.

find find is a powerful search tool that can hardly be fully
described in a few words. We refer to the man and info
pages for details.

locate Another search tool that uses a pregenerated database for
the searches. The database may be restricted to parts of
the filesystem only, or even not exist. Also it is frequently
updated but may be outdated when the actual search is
request. However, for directories that do not change very
frequently this is a good alternative since it is usually a lot
faster than find.

Working with Files

Access Permissions, Disk Usage, and Quotas

Working with Files
Access Permissions, Disk Usage, and Quotas

chmod change the file permissions, i.e., access permission for
reading, writing, and executing a file based on user, group
and world privileges.

chown change the associated owner of a file (usually requires
administrator privileges).

chgrp change the Unix-group associated to a file
df generates a list of all available filesystems in the machine

and their occupation statistics.
du prints the disk usage of the argument, which can be either

a (list of) single file(s), or directory(ies), where the later
will be searched recursively.

quota tells the user how much of their quota, i.e., the maximum
allowed disk usage is used already. System dependent,
could also be fs quota, . . .

Viewing, Compressing, and Identifying Files

Working with Files
Viewing, Compressing, and Identifying Files

less print the content of a text file to the screen.
cat redirect the content of a file to another one.

watch keep track of the changes in a file.
tail view the end of a file (-n number of lines to show)
head view the beginning of a file (-n number of lines to show)
diff compare 2 files

zip/unzip compress and uncompress files into or from zip-archives.
tar create tape archives of files by gluing them into one large

entity. Can use additional compression (gzip, bzip2)
gzip/gunzip compress/decompress a single file with gzip
bzip2/bunzip2 compress/decompress a single file with bzip2

file identify the file type by examining the file instead of
relying on file-extensions.

Manipulation of Simple Commands

The Pipe Operator

Manipulation of Simple Commands
The Pipe Operator

The pipe operator | in the Linux shell can be employed to directly use
the output of one program as the input for another one. A statement of
the form

program1 | program2

can be used if program1 writes its output to the standard output and
program2 reads its input from the standard input.

Problem
Often programs expect a number of input arguments to be supplied and
inputs are not read from user interactions via the standard input device.

Example
Remove all .pdf files from the working directory and its subdirectories.
I find produces the list of .pdf files.
I rm expects a list of files as arguments, not from user input.

Manipulation of Simple Commands
The Pipe Operator

The pipe operator | in the Linux shell can be employed to directly use
the output of one program as the input for another one. A statement of
the form

program1 | program2

can be used if program1 writes its output to the standard output and
program2 reads its input from the standard input.

Problem
Often programs expect a number of input arguments to be supplied and
inputs are not read from user interactions via the standard input device.

Example
Remove all .pdf files from the working directory and its subdirectories.
I find produces the list of .pdf files.
I rm expects a list of files as arguments, not from user input.

Manipulation of Simple Commands
The Pipe Operatorand the xargs utility

Example
Remove all .pdf files from the working directory and its subdirectories.
I find produces the list of .pdfs.
I rm expects a list of files as arguments not from user input.

Solution
xargs can be used to split a list from standard input into several
arguments for another program.

find . -name '*.pdf' | xargs -n 1 -P 4 -d '\n' rm

-n number arguments passed in a singe call
-P maximum number of parallel executions
-d set delimiter used for spliting (default: blank)

Redirection Operators

Manipulation of Simple Commands
Redirection Operators: > and >>

Output Redirection

program1 > output.txt

creates a file output.txt in the current working directory and writes
all outputs to that file. If output.txt already exists it is replaced.

If we want to preserve the existing content of the file

program1 >> output.txt

can be used to simply append the new data. If output.txt does not
exist it is created.

Manipulation of Simple Commands
Redirection Operators: > and >>

Output Redirection

program1 > output.txt

creates a file output.txt in the current working directory and writes
all outputs to that file. If output.txt already exists it is replaced.

If we want to preserve the existing content of the file

program1 >> output.txt

can be used to simply append the new data. If output.txt does not
exist it is created.

Manipulation of Simple Commands
Redirection Operators: > and >>

Output Redirection

program1 > output.txt

creates a file output.txt in the current working directory and writes
all outputs to that file. If output.txt already exists it is replaced.

If we want to preserve the existing content of the file

program1 >> output.txt

can be used to simply append the new data. If output.txt does not
exist it is created.

Manipulation of Simple Commands
Redirection Operators: <

Input Redirection
To stream the input from a file input.txt instead of the standard
input we write

program1 < input.txt

May be used in conjunction with output redirection

program1 <input.txt >output.txt

or

program1 <input.txt >>output.txt

Manipulation of Simple Commands
Redirection Operators: Splitting Messages and Errors

There are two special variants of the output operator that allow to
separate between standard outputs and error messages.

program 1>output 2>errors

will create a file output containing the standard messages of the
program and another file errors where all the error messages are stored.

A common application:

find / -name search_expression 2>/dev/null

redirects error messages due to missing permissions to the “data nirvana”.

Command Substitution

Manipulation of Simple Commands
Command Substitution

Command Substitution Operators
‘ ‘ accent grave pairs evaluate the expression enclosed and

insert the result.
$() as above but avoids confusion with single quotes.

Example
Both

echo Yeah, today is `date`, the term is almost over!
echo Yeah, today is $(date), the term is almost over!

result in

Yeah, today is Thu Oct 11 14:33:35 CEST 2016, the term \
Õ is almost over!

Script File Basics

Script files

Script File Basics

Script Files
If the shell is told to execute a text file it simply interprets the content as
shell command unless the file starts with the expression #! followed by
the full path to an executable.

A file hellow.sh with content:

echo "Hello World!"

writes

Hello World!

evaluated in the current shell.

Script File Basics

Replacing the content by

#!/bin/bash
echo "Hello World!"

provides the same output, but is evaluated in a newly started bash
process.

The same is true for a file hellow.py

#!/usr/bin/python
print("Hello World!");

which is run in a python process.

Sophisticated bash Scripting
bash knows several standard control structures as loops and
conditionals. See the man page for details.

Simple Automatic File Manipulation

Regular Expressions

Simple Automatic File Manipulation
Regular Expressions

Regular Expression
I strings that can be used to establish complex search and replace

operations on other strings.
I consist of a combination of special and basic characters
I used to match (specify and recognize) substrings in a string.

The special characters

/, (,), *, ., |, +, ?, [,], ˆ, $, \,{,}

and their actions are described in the following.

Simple Automatic File Manipulation
Regular Expressions

Basic Specifiers and Matches
. matches any single character except line breaks
ˆ matches the beginning of the string/line
$ matches the end of the string/line

[list] any one character from list. Here list can be a single character,
a number of characters, or a character range given with -

[̂ list] any one character that is NOT in list.
() guarantees precedence of the enclosed expression. (optional)
(re) matches the expression re
\ escapes, i.e., removes the special meaning of, the following

special character.

Simple Automatic File Manipulation
Regular Expressions

Multiplicity Control and Combinations
re? matches at most one appearance of re.
re+ matches one or more subsequent appearances of re
re* matches none or arbitrarily many subsequent appearances

of re
re{n,m} matches at least n and at most m subsequent appearances

of re. Both n and m can be omitted either with or without
the comma. Then n means exactly n matches. n, stands
for at least n matches and ,m for at most m matches.

(re1)(re2) matches re1 followed by re2
re1|re2 matches either the expression re1 or re2

Simple Automatic File Manipulation
Regular Expressions

Some Simple Examples
a?b matches a string of one or two characters eventually starting

with a but necessarily ending on b
ˆFrom matches a line/string beginning with From

$̂ matches an empty line/string
ˆX*YZ matches any line/string starting with arbitrarily many X char-

acters followed by YZ
linux matches the string linux
[a-z]+ matches any string consisting of at least one, but also more

lower case letters
[̂̂ aA] any line/string that does not start with an a or A.

grep

Simple Automatic File Manipulation
grep

grep is basically used for printing lines in a number of input files
matching a given pattern. That pattern can be a simple keyword but also
an arbitrarily complicated regular expression.

Examples

grep Time logfile

If you are not sure whether Time was written with capital T you can use

grep -i Time logfile

which switches of case sensitivity, or

grep [tT]ime logfile

as an example for a simple regular expression.

Simple Automatic File Manipulation
grep (Extended Usage)

Recursive Operation
In the case you do not remember which file in your large software project
contains the definition of a certain function you can have grep search a
complete directory recursively

grep -r function-name *

returning all lines containing function-name preceded by the
corresponding file name.

Output Negation
You can also negate the output of grep by the switch -v to suppress
printing of all lines that match the pattern.

sed

Simple Automatic File Manipulation
sed

sed the Stream Editor is a basic text editor that in contrast to the usual
text editors (like vi, emacs, nano, . . .) is not interactive but uses
certain command strings to manipulate the text file streamed into it
automatically without user interaction.

Example Scenario
sed is especially useful when, e.g., a variable or function (or any other
identifier) in a large software project is supposed to be renamed. Consider
the name of variable called complicatedname is to be replaced by
simplename for better readability of the code in a large C project.

Simple Automatic File Manipulation
sed

Search and Replace
The search and replace string in sed takes the form s/foo/bar/.

The incoming stream is searched line by line and every first match of the
regular expression foo is replaced by bar. If we expect more than one
possible matches we might want to use s/foo/bar/g to replace all of
them.
In our example C project the call for the main file might be

sed -i 's/complicatedname/simplename/g' main.c

To complete the picture we can use find to search for all .c and .h
files and execute the above line for every single one of them.

find . -name '*.[ch]' -exec sed -i 's/complicatedname/\
Õ simplename/g' {};

Simple Automatic File Manipulation
sed

Search and Replace
The search and replace string in sed takes the form s/foo/bar/.

The incoming stream is searched line by line and every first match of the
regular expression foo is replaced by bar. If we expect more than one
possible matches we might want to use s/foo/bar/g to replace all of
them.
In our example C project the call for the main file might be

sed -i 's/complicatedname/simplename/g' main.c

To complete the picture we can use find to search for all .c and .h
files and execute the above line for every single one of them.

find . -name '*.[ch]' -exec sed -i 's/complicatedname/\
Õ simplename/g' {};

Simple Automatic File Manipulation
sed

Inplace Backups

sed -i.orig 's/foo/bar/4' filename.txt

Copies filename.txt to filename.txt.orig prior to the
manipulation.

Simple Automatic File Manipulation
sed

sed and head
For printing the first 10 lines of file like

head file

we can use

sed 10q file

as well.

Simple Automatic File Manipulation
sed

sed and grep
We can make sed emulate grep by using a simple search string instead
of the replace string.

grep foo file

can be written as

sed -n '/foo/p' file

in sed and grep -v is performed by replacing p with !p above.

The example above could as well be written as

cat file | sed -n '/foo/p'

awk

Simple Automatic File Manipulation
awk

The AWK utility is an interpreted programming language typically used
as a data extraction and reporting tool. Its name is derived from the
family names of its inventors – Alfred Aho, Peter Weinberger, and Brian
Kernighan. The current specifications can be found in the standard
IEEE 1003.1-20081.

Basic Calling Sequences
It is invoked using

awk 'awk-statements' filename

to analyze a file. It can also read its input from a pipe:

... | awk 'statements'

1https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html

Simple Automatic File Manipulation
awk

awk programs
I Basic format of a rule:

Condition { Action }

I General awk program

Condition1 { Action1 }
Condition2 { Action2 }
...

awk knows four types of conditions:
I Expression Operator Expression
I Expression Operator /RegEx/
I BEGIN
I END

Simple Automatic File Manipulation
awk

Expressions
Expression can be one of
I column specifier
I numeric value
I a string enclosed by double quotes

Operators
Operators are the usual comparison or assignment operators
I ==, !=,
I <, >,
I +=, -=,
I . . .

Simple Automatic File Manipulation
awk

Consider the following file containing some measured data

1 0.02 0.43
2 0.03 1.03
3 0.55 0.30

If we want to extract only the second column we invoke awk as

cat file | awk '{ print $2; }'

All rows where the third column is larger than one are returned by

cat file | awk '$3>1.0 { print $0; }'

Simple Automatic File Manipulation
awk

Consider the following file containing some measured data

1|0.02|0.43
2|0.03|1.03
3|0.55|0.30

The column separator here is not a space or a tabulator. It can be
specified using FS="Separator" inside the BEGIN action.
Our previous calling sequence

cat file | awk '$3>1.0 { print $0;}'

changes to

cat file | awk 'BEGIN{FS="|";} $3>1.0 { print $0;}'

Working on remote machines

Secure Shells and file Transfers

Working on remote machines
Secure Shells and file Transfers

Classically rsh, rlogin were used. They are deprecated. Do not use!

Secure Shell ssh
I remote shell with modern security and encryption features

ssh username@remote.machine.somewhere

or also redirecting graphical displays:

ssh -X username@remote.machine.somewhere

Secure Copy scp
I same as above for copying files in a cp like fashion

scp localfilename user@remote.host.somewhere:\
Õ remotefilename

scp user@remote.host.somewhere:remotefilename \
Õ localfilename

Avoiding Program Termination on Connection Loss

Working on remote machines
Avoiding Program Termination on Connection Loss

Online / Offline Terminal screen
I features the ability to detach and reconnect remote terminals
I supports multiple “windows”

tmux – the Terminal Multiplexer
I features the ability to detach and reconnect remote terminals
I supports multiple “windows” and “tiling”

	A short History of an Accidental Revolution
	First announcement
	Unix/Linux history (following Wikipedia)

	bash and its Basic Helpers
	bash
	Special Characters
	Influencing the Working Environment
	Basic Commands for Managing Files

	Working with Files
	Access Permissions, Disk Usage, and Quotas
	Viewing, Compressing, and Identifying Files

	Manipulation of Simple Commands
	The Pipe Operator
	Redirection Operators
	Command Substitution

	Script File Basics
	Script files

	Simple Automatic File Manipulation
	Regular Expressions
	grep
	sed
	awk

	Working on remote machines
	Secure Shells and file Transfers
	Avoiding Program Termination on Connection Loss

