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Motivation

Goal

For a given set of of measurements pxi , yi q we need to find a function

f pxq “ ax2 ` bx ` c

or
f pxq “ ax3 ` bx2 ` cx ` d

such that either
f pxi q “ yi , @i

or
||ȳ ´ f px̄q||2 Ñ min,

where x̄ “
“

x1 x2 . . . xn
‰

and ȳ “
“

y1 y2 . . . yn
‰

.



Motivation

In case of a quadratic function f pxq “ ax2 ` bx ` c , we have 3 degrees of freedom (a, b, c).
This yields a linear system

ax̂21 ` bx̂1 ` c “ ŷ1

ax̂22 ` bx̂2 ` c “ ŷ2

ax̂23 ` bx̂3 ` c “ ŷ3

which can be rewritten to
»

–

x̂21 x̂1 1
x̂22 x̂2 1
x̂23 x̂3 1

fi

fl

looooooomooooooon

A

»

–

a
b
c

fi

fl

loomoon

w

“

»

–

ŷ1
ŷ2
ŷ3

fi

fl

loomoon

v

.

Now, the linear system can be solved for three arbitrary px̂1, ŷ1q, px̂2, ŷ2q, px̂3, ŷ3q out of our set
of measurements pxi , yi q.
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which can be rewritten to
»

–

x̂21 x̂1 1
x̂22 x̂2 1
x̂23 x̂3 1

fi

fl

looooooomooooooon

A

»

–

a
b
c

fi

fl

loomoon

w

“

»

–

ŷ1
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We select i “ 1, 50, 100 and obtain

A “

»

–

0 0 1.0000
2.2048 1.4848 1.0000
9.0000 3.0000 1.0000

fi

fl , v “

»

–

0.5372
0.3533
4.1853

fi

fl

which yields
f pxq “ 0.8843x2 ´ 1.4370x ` 0.5372.

and
||ȳ ´ f px̄q||2 “ 3.3532



Motivation
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Motivation

Second try: We assume that the connection between x and y is of cubic nature, thus we have
to fit function f pxq “ ax3 ` bx2 ` cx ` d with 4 degrees of freedom (a, b, c , d):

ax̂31 ` bx̂21 ` cx̂1 ` d “ ŷ1

ax̂32 ` bx̂22 ` cx̂2 ` d “ ŷ2

ax̂33 ` bx̂23 ` cx̂3 ` d “ ŷ3

ax̂43 ` bx̂43 ` cx̂4 ` d “ ŷ4

We choose i “ 1, 33, 66, 100 and obtain

A “

»

—

—

–

0 0 0 1.0000
0.9118 0.9403 0.9697 1.0000
7.6418 3.8797 1.9697 1.0000

27.0000 9.0000 3.0000 1.0000

fi

ffi

ffi

fl

, v “

»

—

—

–

0.5372
0.4187
1.0653
4.1853

fi

ffi

ffi

fl

.



Motivation

Second try: We assume that the connection between x and y is of cubic nature, thus we have
to fit function f pxq “ ax3 ` bx2 ` cx ` d with 4 degrees of freedom (a, b, c , d):

ax̂31 ` bx̂21 ` cx̂1 ` d “ ŷ1
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Motivation

This results in
f pxq “ 0.26093x3 ´ 037667x2 ´ 0.00231x ` 0.53723

with
||ȳ ´ f px̄q||2 “ 2.3096
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Motivation

Problem

We only use a small selection of measurements to fit the function. For a polynomial of degree
p and n measurements, this will lead to linear system of dimension n ˆ p, which could not be
solved with the LU decomposition.

E.g.:
»

—

–

x31 x21 x1 1
...

...
...

...
x3n x2n xn 1

fi

ffi

fl

loooooooooomoooooooooon

A

»

—

—

–

a
b
c
d

fi

ffi

ffi

fl

loomoon

w

“

»

—

–

y1
...
vm

fi

ffi

fl

loomoon

y

Ñ With n ą p the system is over-determined, A´1 does not exist.

Ñ Since the linear system is no longer uniquely defined, we search for the best fit in terms of

min ||Aw ´ y ||2.
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Least Squares

Definition 8.1

A linear system
Ax “ b,

with A P Rnˆp, b P Rn, x P Rp is over-determined if n ą p.

Definition 8.2

For a given over-determined linear system, the solution x which fulfills

min ||Ax ´ b||2

is called the least squares solution.
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Least Squares

Since ||x ||2 ě 0, @x we consider the equivalent function

Φpxq “
1

2
‖Ax ´ b‖22 “

1

2
pAx ´ b,Ax ´ bq2.

Now, Φpxq is differentiable and min Φpxq requires

∇Φpxq “ AT pAx ´ bq “ 0.

This leads to
min Φpxq ô ATAx “ ATb.

Remark 1

This approach is similar to the derivation of the Conjugate Gradient algorithm.

Remark 2

Solving a linear system with ATA instead of A means κ2pAq ù κ2pA
TAq « κ2pAq

2.
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Least Squares

Lemma 8.3

Let Q P Rnˆn be an orthogonal matrix, i.e. QTQ “ I , then it holds @x P Rn:

‖x‖22 “ ‖Qx‖22 .

Proof.

‖Qx‖22 “ pQx ,Qxq2 “ pQxq
T pQxq “ xTQTQx “ px , xq2 “ ‖x‖22
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Least Squares

New Idea

Due to Lemma 8.3 we can solve

min
∥∥QTAx ´ QTb

∥∥
2

instead of
min ‖Ax ´ b‖2

Thereby, Q is an orthogonal matrix and QTA should have a “better” structure than A, e.g. it
is upper triangular.



Least Squares

Theorem 8.4

Every matrix A P Rnˆp can be decomposed into

QR “ A,

where Q P Rnˆp is a orthogonal matrix and R P Rpˆp is an upper triangular matrix.

Lemma 8.5

Let A P Rnˆp has full column rank and the QR decomposition A “ QR, then R has full rank
and is non-singular.

Remark 3

The QR decomposition is not unique.
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Least Squares

Theorem 8.6

Every matrix A P Rnˆp can be decomposed into a full QR decomposition

QR “ A,

where Q P Rnˆn is a orthogonal matrix and R P Rnˆp with

Q “
“

Q1 Q2

‰

and R “

„

R̃
0



,

where Q1 P Rnˆp, Q2 P Rnˆpn´pq and R̃ P Rpˆp. For A and Q holds:

spanA “ spanQ1

QT
2 A “ 0



Least Squares

Solution of the Least Squares Problem

Let min ‖Ax ´ b‖22 be a least squares problem, if A has full column rank, the solution x is given
by

min Φpxq ô ATAx ´ ATb “ 0 ô ATAx “ ATb

pQRqTQRx “ pQRqTb

RTQTQRx “ RTQTb

RTRx “ RTb

Rx “ b.

Remark 4

The condition that A has full rank needs to be guaranteed by the choice of the basis functions.
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Orthogonalization using Gram-Schmidt



QR Decompositon
Orthogonalization using Gram-Schmidt

We need an orthogonal basis Q “
“

q1 q2 . . . qp
‰

for the columns of

A “
“

a1 a2 . . . ap
‰

, i.e. for spanA.

Using a straight forward approach, we set

q1 “
a1

‖a1‖2
“

a1
r11

and for k “ 2, . . . , p we can represent qk as

qk “
1

rkk
q̂k “

1

rkk

˜

ak ´
k´1
ÿ

i“1

rikqi

¸

.

Multiplying q̂k from right with qj gives

q̂Tk qj “ aTk qj ´
k´1
ÿ

i“1

rikq
T
i qj
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QR Decompositon
Orthogonalization using Gram-Schmidt

Since he have

qTi qj “

#

1 i “ j

0 i ‰ j

we get for j ă k

q̂Tk qj “ aTk qj ´
k´1
ÿ

i“1

rikq
T
i qj

0 “ aTk qj ´ rjkq
T
j qj “ aTk qj ´ rjk

rjk “ aTk qj .

Now, we have

rkk “ ‖q̂k‖2

qk “
1

rkk
q̂k

This procedure is called Gram-Schmidt-Orthogonalization.
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QR Decompositon
Orthogonalization using Gram-Schmidt

This procedure leads to an orthogonal matrix Q P Rnˆp and an upper triangular matrix
R P Rpˆp with

R “

»

—

—

—

–

r11 r12 . . . r1p
0 r22 . . . r2p

0 0
. . .

...
0 0 0 rpp

fi

ffi

ffi

ffi

fl

,

with A “ QR.



QR Decompositon
Orthogonalization using Gram-Schmidt

Example 8.7

In case of our quadratic fitting, we obtain

f pxq “ 0.868x2 ´ 1.6664x ` 0.9034

with
‖ȳ ´ f px̄q‖2 “ 2.2873



QR Decompositon
Orthogonalization using Gram-Schmidt
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QR Decompositon

Example 8.8

In case of our cubic fitting, we obtain

f pxq “ 0.321939x3 ´ 0.580698x2 ` 0.063395x ` 0.481854

with
‖ȳ ´ f px̄q‖2 “ 1.5393



QR Decompositon
Orthogonalization using Gram-Schmidt
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QR Decompositon

For comparison:

§ Input function: f pxq “ 0.3x3 ´ 0.5x2 ` 0.5 with random noise added

§ quadratic with 3 points: f pxq “ 0.8843x2 ´ 1.4370x ` 0.5372,
||ȳ ´ f px̄q||2 “ 3.3532

§ cubic with 4 points: f pxq “ 0.26093x3 ´ 037667x2 ´ 0.00231x ` 0.53723,
||ȳ ´ f px̄q||2 “ 2.3096

§ quadratic with least squares: f pxq “ 0.868x2 ´ 1.6664x ` 0.9034,
||ȳ ´ f px̄q||2 “ 2.2873

§ cubic with least squares: f pxq “ 0.321939x3 ´ 0.580698x2 ` 0.063395x ` 0.481854,
||ȳ ´ f px̄q||2 “ 1.5393

But...

... the Gram-Schmidt procedure is numerically unstable.
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QR Decompositon
Orthogonalization using Gram-Schmidt

The Gram-Schmidt procedure is a “left-looking” algorithm. For a column ak it takes all
previously computed columns qi , i ă k and compute the influence on ak , i.e.

rik “ qTi ak

and normalize the remaining vector afterwards with rkk :

rkk “

∥∥∥∥∥
˜

ak ´
k´1
ÿ

i“1

rikqi

¸
∥∥∥∥∥
2

.

A numerically more stable approach is, as soon as some qk is known, remove its influence from
the remaining columns aj , j ą k .

Ñ This leads to a “right-looking” variant, called Modified-Gram-Schmidt (MGS).



QR Decompositon
Orthogonalization using Gram-Schmidt

Algorithm 8.1: Modified-Gram-Schmidt

Input: A P Rnˆp

Output: Q P Rnˆp, R P Rpˆp

1 for k “ 1 : p do
2 rkk “ ‖ak‖2;

3 qk “
1
rkk
ak ;

4 for j “ k ` 1 : p do
5 rkj “ qTk aj ;
6 aj “ aj ´ rkjqk ;

Remark 5

§ The algorithm takes 2np2 flops.

§ A can be overwritten with Q but R needs to be stored separately, p2 additional memory
required.
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QR Decompositon
Householder Transformation

We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:

§ 2np2 flops is very expensive for p “ n (LU: 2
3n

3),

§ p2 extra memory required,

§ stability issues, especially in the non-modified case.

Goal

We construct Q as a sequence of k orthogonal transformations Pk , Q “ P1P2 . . ., where

§ Pk can be stored with less then n memory and

§ Pkx costs less then 2n2 flops.
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3n

3),

§ p2 extra memory required,

§ stability issues, especially in the non-modified case.

Goal

We construct Q as a sequence of k orthogonal transformations Pk , Q “ P1P2 . . ., where

§ Pk can be stored with less then n memory and

§ Pkx costs less then 2n2 flops.
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0 0 ˚ ˚
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Householder Transformation

The goal can be fulfilled, if we obtain an orthogonal matrix P P Rnˆn such that

Px “

»

—

—

—

–

˚

0
...
0

fi

ffi

ffi

ffi

fl

.

Definition 8.9

Let v P Rn, v ‰ 0, then

P “ I ´ βvvT , β “
2

vT v

is called Householder-Transformation.
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Householder Transformation

Theorem 8.10

Let P P Rnˆn be a Householder-Transformation, then the following holds

§ P is orthogonal

§ P is symmetric.

§ Products of Householder-Transformations are orthogonal again.

Regarding the goals:

§ storing P costs n ` 1 memory,

§ Px “ x ´ βvvT x costs 4n flops.
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Householder Transformation

How to chose v depending on x such that

Px “

»

—

—

—

–

˚

0
...
0

fi

ffi

ffi

ffi

fl

?

We use Theorem 8.10 and Lemma 8.3 and we get from

||Px ||2 “ ||x ||2

that

Px “

»

—

—

—

–

˘||x ||2
0
...
0

fi

ffi

ffi

ffi

fl

.
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That means, we have to chose v such that

Px “ ˘||x ||2e1.

which yields

Px “

ˆ

I ´
2vvT

vT v

˙

x “ x ´
2vT x

vT v
v .

From this we know that v P span tx , e1u, i.e. v “ x ` αe1.

With
vT x “ xT x ` αx1

and
vT v “ xT x ` 2αx1 ` α

2

we obtain

Px “

ˆ

1´ 2
xT x ` αx1

xT x ` 2αx1 ` α2

˙

x ´ 2α
vT x

vT v
e1

“
α2
´ ‖x‖22

xT x ` 2αx1 ` α2
x ´ 2α

vT x

vT v
e1.
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Householder Transformation

Since we have to enforce
α2 ´ ‖x‖22

xT x ` 2αx1 ` α2
“ 0

we set
α “ ˘ ‖x‖2

and obtain
v “ x ˘ ‖x‖2 e1 ñ Px “ ¯ ‖x‖2 e1.

Remark 6

§ Since the sign of α can be selected freely, we choose the numerically more stable variant
to avoid cancelation.

§ v can be normalized, such that vp1q “ 1.
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Householder Transformation

Algorithm 8.2: Computation of a Householder Vector

Input: x P Rn

Output: v P Rn with vp1q “ 1, β P R such that Px “ ˘ ‖x‖2 e1
1 σ “ ‖xp2 : nq‖2;
2 v “ r1; xp2 : nqs;
3 if σ “ 0 and x1 ě 0 then β “ 0;
4 else if σ “ 0 and x1 ă 0 then β “ 2;
5 else

6 µ “
a

pσ ` xp1q2;
7 if xp1q ď 0 then
8 vp1q “ xp1q ´ µ;

9 else
10 vp1q “ ´σ

xp1q`µ
;

11 β “ 2vp1q2

σ`vp1q2
;

12 v “ 1
vp1q

v ;
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Householder Transformation

Applying P to a vector is performed as

Px “ pI ´ βvvT qx “ x ´ βv vT x
loomoon

γ

“ x ´ pβγqv

which is

§ a scalar product with 2n flops and

§ an axpy operation with 2n flops.

Applying P to a matrix A P Rnˆm is computed using

PA “ pI ´ βvvT qA “ A´ βv vTA
loomoon

w

“ A´ βvw

which consists of

§ a matrix-vector product with 2mn flops and

§ a rank-1 update with 2mn flops.
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Householder QR Decompostion

Using the Householder-Transformation we can create a sequence of P1 such that we obtain an
orthogonal Q and a upper triangular R.

First we compute P1 from the first column a1 and get

P1A “

»

–

˚ ˚ ˚

0
0

A1

fi

fl .

Now we take the first column ã1 of A1 and compute P2:

„

1
P2



P1A “

»

–

˚ ˚ ˚

0 ˚ ˚

0 0 A2

fi

fl .

This repeats until the lower right block is of size 0 or upper triangular.
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Householder QR Decompostion

Algorithm 8.3: Householder QR

Input: A P Rnˆp, n ě p
Output: R P Rpˆp, P1, P2, . . . , Pp Householder-Transformations

1 for j “ 1, . . . , p do
2 Compute vj , βj from Apj : n, jq using Algorithm 8.2;

3 Apj : n, j : pq “ pI ´ βjvjv
T
j qApj : n, j : pq;

Remark 7

§ A is overwritten with R.

§ vj are normalized, i.e. vjp1q “ 1, thus they can be stored in the newly created zeros in the
lower triangle of A.

§ We need p memory locations to store βj .

§ It costs 2p2pn ´ p
3 q flops. (If p “ n, we have 8

3n
3 flops)
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Householder QR Decompostion – Where is Q?

The Householder-QR overwrites A with R and stores Pj as vj and βj and not explicitly as Q.
Thus we have:

Q “ P1

„

1
P2



»

–

1
1

P3

fi

fl . . . “ pI ´ β1v1v
T
1 q

„

1
pI ´ β2v2v

T
2 q



»

–

1
1

pI ´ β3v3v
T
3 q

fi

fl . . . (1)

Lemma 8.11

Let Q be given as sequence of Householder-Transformations P1, . . .Pp of a QR decomposition
of A P Rnˆp as in Eqn (1). Furthermore, let C P Rnˆm be a matrix. Then the matrix-matrix
products

QC and QTC

cost mpp2n ´ pq “ 2mnp ´ 2mp2 flops.
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Householder QR Decompostion

Remark 8

§ In most applications, Q is not required explictly, only its application to a vector/matrix.

§ As long n Ï p, using the factorized version is much cheaper than using a gemm operation
(Ñ 2n2m flops)

§ It is numerically stable and does not require pivoting, as long as A has full column rank.

§ ... but the Algorithm is built on top of level-1 and level-2 operations.

Remark 9

The algorithms are available in LAPACK:

LARFG compute a Householder-Transformation

LARF apply a Householder-Transformation

GEQRF compute the QR decomposition as in Algorithm 8.3

ORMQR apply a factored Q to a right hand side

GELS solve a least squares problem in a single step
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Level-3 Algortihms

Problem

The computation of the Householder-Transformation and its application requires at most a
rank-1 update and a matrix-vector product.

Goal

We need to accumulate products of Pj without forming a single Pj explicitly:

§ less then Opn3q flops,

§ less then n2 memory.
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Let P1 “ I ´ β1v1v
T
1 and P2 “ I ´ β2v2v

T
2 :

P1P2 “
`

I ´ β1v1v
T
1

˘ `

I ´ β2v2v
T
2

˘

“ I ´β1v1v
T
1

loooomoooon

P1

´β2v2v
T
2

loooomoooon

P2

`β1β2v1v
T
1 v2v

T
2

“ I ´
“

v1 v2
‰

„

β1
β2



“

v1 v2
‰T
` β1β2v1v

T
1 v2v

T
2

“ I ´
“

v1 v2
‰

looomooon

V

„

β1 β1β2v
T
1 v2

β2



looooooooomooooooooon

T

“

v1 v2
‰T

loooomoooon

V T

“ I ´ VT
loomoon

W

V T
loomoon

Y

“ I ´WY

Cost: one scalar product
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Definition 8.12

Let P1 and P2 be two Householder-Transformations and Q “ P1P2 their product, then the
representation

Q “ I ´ VTV T ,

with T upper triangular, or
Q “ I ´WY ,

with W “ VT and Y “ V T , is called compact WY representation.
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Level-3 Algortihms

Lemma 8.13

Let Q P Rnˆn be a orthogonal matrix in compact WY representation Q “ I ´ VTV T and
P “ I ´ βwwT a Householder-Transformation. Then the product Q` “ QP is given by

Q` “ QP “ I ´ V`T`V
T
` ,

where

V` “
“

V w
‰

and

„

T ´βTV Tw
β



.

Using the Lemma, we can subsequently accumulate a set of Householder Transformations into
a matrix-valued object, but with increasing size of V (and T ) this procedure gets more
expensive.
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P “ I ´ βwwT a Householder-Transformation. Then the product Q` “ QP is given by

Q` “ QP “ I ´ V`T`V
T
` ,

where

V` “
“

V w
‰

and

„

T ´βTV Tw
β



.

Using the Lemma, we can subsequently accumulate a set of Householder Transformations into
a matrix-valued object, but with increasing size of V (and T ) this procedure gets more
expensive.
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Algorithm 8.4: Computation of the WY representation

Input: P1, . . . ,Pr Householder-Transformation with v1, . . . , vr and β1, . . . , βr
Output: V and T such that Q “ P1P2 ¨ ¨ ¨Pr “ I ´ VTV T

1 V “ v1;
2 T “ β1;
3 for k “ 2, . . . , r do
4 z “ ´βkTV

T vk ;

5 V “
“

V vk
‰

;

6 T “

„

T z
βk



;

§ Cost: 2r2n ´ 2
3 r

3 flops
§ vk and βk are still accessible Ñ use of level-2 alg. possible
§ Application of Q, QC “ pI ´ VTV T qC :

§ 2 general matrix-matrix products
§ 1 triangular matrix-matrix product

§ r2 auxiliary memory for T
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We assume that P1, . . . ,Pp are from the Householder-QR Algorithm 8.3. Now we, have

P1 “ I ´ β1v1v
T
1

P2 “

„

1
I ´ β2v2v

T
2



P3 “

»

–

1
1

I ´ β3v3v
T
3

fi

fl

...

but is this compatible with Lemma 8.13?

P2 “

„

1
I ´ β2v2v

T
2



“ I ´ β2

„

0
v2

 „

0
v2

T
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If P1, . . . ,Pp are generated by the Householder-QR Algorithm 8.3, do we need

§ 2 general matrix-matrix products, and

§ 1 triangular matrix-matrix product

for computing QC or QTC?

We have vk is of length n ´ k ` 1, the top p ˆ p part of the matrix

V “

»

—

–

v1
0
v2

0
0
v3

. . .

0
...
vp

fi

ffi

fl

is (unit) lower triangular.

Ñ we have 3 triangular(-like) matrix-matrix products.
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With the help of Algorithm 8.4 we can create a level-3 enabled version of the Householder-QR
decomposition. As in the LU decomposition, we assume a block size of r .

Algorithm 8.5: Level-3 Householder-QR (Variant 1)

Input: A P Rnˆp, n ě p, block size r
Output: R P Rpˆp, Q “ P1 . . .Pp as v1, . . . , vp and β1, . . . , βp

1 for k “ 1, . . . , p with step size r do
2 τ “ minpp ´ k ` 1, rq;

3 Compute Pk , . . .Pk`τ´1 from Apk : n, k : k ` τ ´ 1q using Algorithm 8.3;

4 Compute V and T from Pk , . . .Pk`τ´1 from Apk : n, k : k ` τ ´ 1q using Algorithm 8.4;

5 Update Apk : n, k ` τ : pq “ pI ´ VTV T qApk : n, k ` τ : pq;

§ vj is stored in the lower part of A.

§ R is the upper right p ˆ p triangle of A.

§ T is a temporary value of size r ˆ r .
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Remark 10

Algorithm 8.5 has the following properties:

§ The updates on A are performed as (triangular) matrix-matrix products.

§ The output is compatible to the level-2 Householder-QR decomposition.

§ The algorithm needs slightly more flops than the level-2 variant, but this is negligible for a
moderate block size r .

§ LAPACK GEQRF implements this approach.

Ñ The algorithm has still a high portion of level-2 operations, especially since the computation
of T is an extra step.

Ñ Unify the level-2 part (Step 2) and the computation of T (Step 3).
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Algorithm 8.6: Householder QR with T accumulation

Input: A P Rnˆp, n ě p
Output: R P Rpˆp, V , T such that Q “ I ´ VTV T

1 V “
“ ‰

;

2 T “
“ ‰

;
3 for j “ 1, . . . , p do
4 Compute vj , βj from Apj : n, jq using Algorithm 8.2;

5 z “ ´βjTV
T vj ;

6 V “
“

V vj
‰

;

7 T “

„

T z
βj



;

8 Apj : n, j : pq “ pI ´ βjvjv
T
j qApj : n, j : pq;
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Remark 11

§ The integration of Algorithm 8.6 into Algorithm 8.5 in the foundation of the GEQRT
routine in LAPACK.

§ Algorithm 8.6 is implemented as GEQRT2 in LAPACK.
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Question

Why is V and T only used in block of size r and not in the end for
Q “ P1P2 ¨ ¨ ¨Pp “ I ´ VTV T ?

Example 8.14

Let A P Rnˆn with A “ QR, Q “ P1P2 ¨ ¨ ¨Pp as in Householder-QR decomposition, and
C P Rnˆm, then the computation of

QC “ P1 ¨ ¨ ¨PpC

costs 2n2m flops, which is the cost of general matrix-matrix product. If Q is represented as
Q “ I ´ VTV T , with V ,T P Rnˆn, the evaluation of

QC “ pI ´ VTV T qC

costs 3n2m flops, since V and T are triangular matrices.
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Ñ The compact WY representation allows a level-3 enabled computation of the QR
decomposition but applying Q seem to more efficient in terms of Pj .

Solution

We group the Householder-Transformations P1, . . . ,Pp into k groups of size r :

Ñ P1, . . .Pr ñ V1,T1

Ñ Pr`1, . . .P2r ñ V2,T2

Ñ P2r`1, . . .P3r ñ V3,T3

Ñ . . .

and store them as

V “
“

V1 V2 . . . Vk

‰

and T “
“

T1 T2 . . . Tk

‰

.
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This rearrangement of Vj and Tj leads to the following properties:

§ Tj can be reused after computing the QR decomposition.

§ r ˆ p memory required for storing T .

§ Vj is already stored in A for free.

§ Applying Q “ pI ´ V1T1V
T
1 qpI ´ V2T2V

T
2 q . . . is still in Op2n2pq flops.

§ QR decomposition, application of Q and solving with R are now in a level-3 enabled shape.

§ Implemented as GEMQRT in LAPACK.
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Next Problem

What if n is getting very large, such that the level-2 part in Algorithm 8.5 gains influence ?

Idea

For each panel of block size r , we use the level-3 algorithm recursively again with block size r
2

until it is worth to switch back to the level-2 algorithm.
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Algorithm 8.7: Recursive compact WY Householder QR decomposition (RQRT)

Input: A P Rnˆp, n ě p, threshold l , 1 ď l ď p
2
for level-2

Output: R P Rpˆp, V , T such that Q “ I ´ VTV T

1 if p ď l then
2 Compute V ,T ,R using Algorithm 8.6 (Level-2 with T accumulation);

3 else
4 p1 “ t

p
2

u;
5 Compute V1,T1,R1 from Ap1 : n, 1 : p1q using RQRT again.;

6 Ap1 : n, p1 ` 1 : pq “ pI ´ V1T1V
T
1 qAp1 : n, p1 ` 1 : pq;

7 Compute V2,T2,R2 from App1 ` 1 : n, p1 ` 1 : pq using RQRT again.;

8 T̃ “ ´T1V
T
1 V2T2;

9 V “
“

V1 V2

‰

, T “

„

T1 T̃
T2



, R “

„

R1 Ap1 : p1, p1 ` 1 : pq
R2



;

§ Algorithm 8.5 with RQRT for the panels and l “ 1 gives LAPACK’s GEQRT

§ RQRT with l “ 1 is available as GEQRT3 in LAPACK
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Alternative QR Variants – Givens-Rotation QR

Based on
„

c ´s
s c



looomooon

G

„

a
b



“

„

r
0



,

where r “
?
a2 ` b2 and

c Ð
a

r

s Ð ´
b

r
.

and GGT “ I .

§ numerically stable has the Householder Transformation

§ can be use if only a few elements below the diagonal exists

§ slow, level-3 formulations complicated or not available

§ mostly used in the Hessenberg-QR, i.e. for matrices with one sub-diagonal

§ Q needs to be setup explicitly or c ,s need to be stored for each transformation
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Alternative QR Variants – Tall-Skinny QR (TSQR)

The computation of a single Householder-Transformation gets slow if the vector v gets too
long, e.g. v P Rn with n ą 106.

§ often the case in real world parameter fitting problems, n ą 106 and p « 100.

§ large leading dimension causes a loss in data-locality when applying P.

§ the vector v needs to be accesses several times when computing and applying P Ñ many
cache misses due to its length

Basic Idea:

§ split the rows into blocks of nb rows.

§ perform a Householder-QR Decomposition on the top block

§ use Householder-Transformations to join the remaining blocks with the top block one by
one.

§ available as LATSQR in LAPACK
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The Tall-Skinny QR does a good job on matrices with large number of rows, but it is not well
parallelizable.

The Communication Avoiding QR(CAQR) on a tall-and-skinny matrix (n Ï p) works as
follows:

§ split the rows into blocks of nb rows.

§ perform a Householder-QR Decomposition on each block (in parallel)

§ perform a binary reduction: combine two neighboring blocks using
Householder-Transforms and repeat this until one upper triangular block is left

§ works in massive parallel environments



QR Decompositon
Alternative QR Variants – Tile-QR

The TSQR and the CAQR are designed for the n Ï p case, for nearly square matrices n « p
the TSQR approach can be extended:

§ the matrix is partitioned into blocks of nb ˆ pb,

§ in each block-column a TSQR-performed and applied to the remaining block columns,

§ parallelization via DAG/data dependencies easily possible,

§ starting with 4 CPU cores, this is beneficial over a classical Householder-QR,

§ implemented as GEQRT in PLASMA.
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Alternative QR Variants – GPUs and Other

On GPUs:

§ Hybrid CPU-GPU variants of the Householder-QR

§ CAQR and TSQR get replaced by the approximate Householder QR (AHQR)

Sparse Matrices:

§ similar problems as in LU/Cholesky decomposition: fill-in in Q and R

§ clever reordering and graph theory necessary

Non-Householder based:
We use

ATA “ pQRqTQR “ RTQTQR “ RTR,

where RTR is the Cholesky decomposition of ATA and Q is given as Q “ AR´1.
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