Scientific Computing |

Least Squares Problems and the QR Decomposition

Martin Kohler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024 /2025

Motivation

Motivation

We consider a set of 100 measurements (x;, z;) from some process:

I
x measurements ‘

xX X
X
X X
X
X ><><>2<><>2<
X X
>$o<><
X &XXXM& XX X % >8< y %Xxwmxxxxx
~ XK x xR T X X | |
0.5 1 1.5 2 2.5

Motivation

We consider a set of 100 measurements (x;, z;) from some process:

I I
x measurements ‘
4 -
X
el
> X>2‘><
[X
2 X X
>2< X
XX %
X x X
X X
X
X KX g0 XX x ><><>o<><><><xx><><>so<
0 x % XXX X X ‘X%x%%xxxx >T< x % | |
0 0.5 1 1.5 2 2.5
X

— Candidates: a quadratic or a cubic function.

Motivation

For a given set of of measurements (x;, y;) we need to find a function
f(x) =ax*+ bx +c
or
f(x) =ax®+bx* + cx +d

such that either
f(X,') =Yi, VI

or
|y = f(X)ll2 — min,

wherex=[x1 x ... xpJandy=[y1 y2 ... yal

Motivation
In case of a quadratic function f(x) = ax? + bx + c, we have 3 degrees of freedom (a, b,).
This yields a linear system
afi + bX+c=H
a%3 + bk +c =P

a4+ bz +c=7ys

Motivation
In case of a quadratic function f(x) = ax? + bx + c, we have 3 degrees of freedom (a, b,).

This yields a linear system
afi + bX+c=H
a%3 + bk +c =P

a4+ bz +c=7ys

which can be rewritten to
)A(12)A<1 1 a)71
X5 X 1 bl = 1|»
)?3%)?3 1 C)73

Motivation

In case of a quadratic function f(x) = ax? + bx + c, we have 3 degrees of freedom (a, b,).
This yields a linear system

a4+ b +c=5n
a4+ bo+c=9

a3 + bk +c=3

which can be rewritten to

)A(12)A<1 1 a)71
2 % 1| |b| = |
)?3%)?3 1 C)73
—_— e~ ——
A w v

Now, the linear system can be solved for three arbitrary (%1, 1), (%2, 92), (X3, 73) out of our set
of measurements (x;, y;).

Motivation
We select i = 1,50,100 and obtain

0 0 1.0000 0.5372
A= 22048 14848 1.0000|, v = [0.3533
9.0000 3.0000 1.0000 4.1853
which yields
f(x) = 0.8843x% — 1.4370x + 0.5372.
and

[y — f(X)|]> = 3.3532

Motivation

I I
x measurements

4 I | —— quadratic fit

Motivation

Second try: We assume that the connection between x and y is of cubic nature, thus we have
to fit function f(x) = ax3 + bx? + cx + d with 4 degrees of freedom (a, b, ¢, d):
03 2 5 N
ax{ +bX{ +cxi+d =
a3 + b3+ cko+d =
a3+ b +ck+d=ys

afs + b +ck+d =9,

Motivation

Second try: We assume that the connection between x and y is of cubic nature, thus we have
to fit function f(x) = ax3 + bx? + cx + d with 4 degrees of freedom (a, b, ¢, d):
~3 A2 N A
ax{ +bX{ +cxi+d =
a3 + b3+ cko+d =
a3+ b +ck+d=ys

afs + b +ck+d =9,

We choose i = 1,33,66,100 and obtain

0 0 0 1.0000 0.5372
A_ | 09118 0.9403 09697 1.0000 | o.4187
~ | 76418 3.8797 1.9697 1.0000 |’ Y T |1.0653

27.0000 9.0000 3.0000 1.0000 4.1853

Motivation
This results in
f(x) = 0.26093x> — 037667x> — 0.00231x + 0.53723
with
Iy = f(%)[|l2 = 2.3096

Motivation
This results in
f(x) = 0.26093x> — 037667x> — 0.00231x + 0.53723
with
Iy = f(%)[|l2 = 2.3096

I I
x measurements

4 - | —— quadratic fit
—— cubic fit

Motivation

Problem

We only use a small selection of measurements to fit the function. For a polynomial of degree
p and n measurements, this will lead to linear system of dimension n x p, which could not be
solved with the LU decomposition.

E.g.:
Xt xg o ox 1 "

x5 Xp 1 Vi

(
§{Qﬁ o L

Motivation

Problem
We only use a small selection of measurements to fit the function. For a polynomial of degree
p and n measurements, this will lead to linear system of dimension n x p, which could not be

solved with the LU decomposition.

E.g.:
3 X3 x 1 a "
. bl .
: : : cl =
X2 x2 x, 1 d Vm
~ —_—
A M y

— With n > p the system is over-determined, A~1 does not exist.

Motivation

Problem

We only use a small selection of measurements to fit the function. For a polynomial of degree
p and n measurements, this will lead to linear system of dimension n x p, which could not be
solved with the LU decomposition.

E.g.:
3 X3 x 1 8 %1
S bl _ | .
oo = =
x3 X2 x, 1 d Vm
~ —_—
A e y

— With n > p the system is over-determined, A~! does not exist.
— Since the linear system is no longer uniquely defined, we search for the best fit in terms of

min [|[Aw — y||2.

Least Squares

Least Squares

Definition 8.1

A linear system
Ax = b,

with Ae R"™P beR", x € RP is over-determined if n > p.

Least Squares

Definition 8.1

A linear system
Ax = b,

with Ae R"™P beR", x € RP is over-determined if n > p.

Definition 8.2

For a given over-determined linear system, the solution x which fulfills

min ||Ax — b||2

is called the least squares solution.

Least Squares

Since ||x||2 = 0, Vx we consider the equivalent function

1 1
(x) = 5 [1Ax = bll3 = 5 (Ax — b, Ax — b)s.

Now, ®(x) is differentiable and min ®(x) requires
Vo(x) = AT(Ax — b) = 0.

This leads to
min®(x) < ATAx = ATb.

Least Squares

Since ||x||2 = 0, Vx we consider the equivalent function

(Ax — b, Ax — b)s.

N~

1
P(x) = 5 || Ax — bl|; =
Now, ®(x) is differentiable and min ®(x) requires
Vo(x) = AT(Ax — b) = 0.

This leads to
min®(x) < ATAx = ATb.

Remark 1
This approach is similar to the derivation of the Conjugate Gradient algorithm.

Least Squares

Since ||x||2 = 0, Vx we consider the equivalent function
1 , 1
O(x) = 3 |IAx — bl = 3 (Ax — b, Ax — b,
Now, ®(x) is differentiable and min ®(x) requires
Vo(x) = AT(Ax — b) = 0.

This leads to
min®(x) < ATAx = ATb.

Remark 1
This approach is similar to the derivation of the Conjugate Gradient algorithm.

Solving a linear system with AT A instead of A means ra(A) v Ka (AT A) ~ Ky (A)2.

Least Squares

Let Q@ € R"™*" be an orthogonal matrix, i.e. QT Q =1, then it holds Vx € R":

2 2
[Ix[12 = Q13-

Least Squares

Let Q@ € R"™*" be an orthogonal matrix, i.e. QT Q =1, then it holds Vx € R":

2 2
[Ix[12 = Q13-

Qx5 = (@x, @x)2 = (@x)T(Qx) = x" QT Qx = (x,x)2 = |Ix3

Least Squares

Due to Lemma 8.3 we can solve
min ||QTAX — QTbH2
instead of
min ||Ax — b||,

Thereby, Q is an orthogonal matrix and Q7 A should have a “"better” structure than A, eg. it
is upper triangular.

Least Squares

Theorem 8.4

Every matrix A € R"™P can be decomposed into
QR = A,

where Q € R"*P js a orthogonal matrix and R € RP*P s an upper triangular matrix.

Least Squares

Theorem 8.4

Every matrix A € R"™P can be decomposed into
QR = A,
where Q € R"*P js a orthogonal matrix and R € RP*P s an upper triangular matrix.

Lemma 8.5

Let A e R"™P has full column rank and the QR decomposition A = QR, then R has full rank
and is non-singular.

Least Squares

Theorem 8.4

Every matrix A € R"™P can be decomposed into

QR = A,
where Q € R"*P js a orthogonal matrix and R € RP*P s an upper triangular matrix.
Lemma 8.5

Let A e R"™P has full column rank and the QR decomposition A = QR, then R has full rank
and is non-singular.

The QR decomposition is not unique.

Least Squares

Theorem 8.6

Every matrix A € R"P can be decomposed into a full QR decomposition
QR = A,

where Q € R™" js a orthogonal matrix and R € R"*P with

R
Q = [Ql Q2] and R = [0:|)
where Q; € R"™P, Q, € R™(1=P) apd R € RP*P. For A and Q holds:

span A = span 1
QIA=0

Least Squares

Solution of the Least Squares Problem

Let min ||Ax — b||§ be a least squares problem, if A has full column rank, the solution x is given
by
min®(x) ATAx—ATh=0< ATAx = ATb
(QR)TQRx = (QR)Tb
RTQTQRx=RTQ"b
RTRx=R"b
Rx = b.

The condition that A has full rank needs to be guaranteed by the choice of the basis functions.

QR Decompositon

Orthogonalization using Gram-Schmidt

QR Decompositon

Orthogonalization using Gram-Schmidt

We need an orthogonal basis Q = [ql qQ ... qp] for the columns of
A=la1 a ... ap] ie. forspanA.

QR Decompositon

Orthogonalization using Gram-Schmidt

We need an orthogonal basis Q = [ql qQ ... qp] for the columns of
A=la1 a ... ap] ie. forspanA.

Using a straight forward approach, we set

ai ai
qQ=7—=—
lasll,
and for k =2 ..., p we can represent gy as
1, —
=—q4k=—|ax— E .
9k e dk = (k 2 :kq:>

Multiplying gx from right with g; gives

Glaj=alg— >, rual g

QR Decompositon

Orthogonalization using Gram-Schmidt

Since he have
we get for j < k

k—1
AT T T
Giaj=ala—), ral q
i=1

T T T
0=axq; — rkgq; 4 = ax q; — rik

—ala:
fik = Ak gj-

QR Decompositon

Orthogonalization using Gram-Schmidt

Since he have

we get for j < k
k—1
AT T T
Giaj=ala—), ral q
i=1
T T T
0=a,qi —rxq; g = a, qj — rik
-
ik = 3y g-
Now, we have
rie = || Gkl

9k = —qk
Tkk

QR Decompositon

Orthogonalization using Gram-Schmidt

Since he have

we get for j < k
k—1
Giaj=ala—), ral q
i=1

T T T
0=a,qi —rxq; g = a, qj — rik

K = 3, qj.
Now, we have
Ik = ||C7k||2
1,
9k = —qk
Tkk

This procedure is called Gram-Schmidt-Orthogonalization.

QR Decompositon

Orthogonalization using Gram-Schmidt

This procedure leads to an orthogonal matrix @ € R"*P and an upper triangular matrix
R € RP*P with

ni n2 ... np
R_ 0 rpp ... Ip ’

0 0 IR

0 0 0 ryp

with A = QR.

QR Decompositon

Orthogonalization using Gram-Schmidt

Example 8.7

In case of our quadratic fitting, we obtain
f(x) = 0.868x> — 1.6664x + 0.9034

with
17 — f(%)||, = 2.2873

QR Decompositon

Orthogonalization using Gram-Schmidt

x measurements
4 I~ | —— quadratic fit
—— quaderatic Is fit

QR Decompositon
Example 8.8
In case of our cubic fitting, we obtain
f(x) = 0.321939x% — 0.580698x> + 0.063395x + 0.481854

with
17 - FRIl, = 1.5393

QR Decompositon

Orthogonalization using Gram-Schmidt

I I
x measurements

4 | | — cubic fit
—— cubic Is fit

QR Decompositon

For comparison:

> Input function: f(x) = 0.3x3> — 0.5x% + 0.5 with random noise added

> quadratic with 3 points: f(x) = 0.8843x% — 1.4370x + 0.5372,
1y = F(X)l|2 = 3.3532

> cubic with 4 points: f(x) = 0.26093x3 — 037667x% — 0.00231x + 0.53723,
1y = £(X)ll2 = 2.3096

> quadratic with least squares: f(x) = 0.868x> — 1.6664x + 0.9034,
|y — £(%)||2 = 2.2873

> cubic with least squares: f(x) = 0.321939x3 — 0.580698x2 + 0.063395x + 0.481854,
Iy — f(%)[l2 = 1.5393

QR Decompositon

For comparison:
> Input function: f(x) = 0.3x3> — 0.5x% + 0.5 with random noise added

» quadratic with 3 points: f(x) = 0.8843x? — 1.4370x + 0.5372,
Iy = f(X)]]2 = 3.3532
> cubic with 4 points: f(x) = 0.26093x> — 037667x> — 0.00231x + 0.53723,
Iy = F(X)]]2 = 2.3096
» quadratic with least squares: f(x) = 0.868x> — 1.6664x + 0.9034,
[y — f(%)[|l2 = 2.2873
> cubic with least squares: f(x) = 0.321939x3 — 0.580698x2 + 0.063395x + 0.481854,
[y — f(%)[|]2 = 1.5393

But...

... the Gram-Schmidt procedure is numerically unstable.

QR Decompositon

Orthogonalization using Gram-Schmidt

The Gram-Schmidt procedure is a "left-looking” algorithm. For a column a it takes all
previously computed columns q;, i < k and compute the influence on ay, i.e.

-
rik = q; ak

and normalize the remaining vector afterwards with ry:

k—1
Mk = ||| 9k — Z Tikdi ‘
i=1 2

A numerically more stable approach is, as soon as some gx is known, remove its influence from
the remaining columns a;, j > k.

— This leads to a “right-looking” variant, called Modified-Gram-Schmidt (MGS).

QR Decompositon

Orthogonalization using Gram-Schmidt

Algorithm 8.1: Modified-Gram-Schmidt

Input: Ae R™P

Output: Q e R"™*P, Re RP*P
1 fork=1:pdo

rik = ||akll

9k = iak;
forj=k+1:pdo

L g = i a;

aj = aj — lqk;

o b W N

QR Decompositon

Orthogonalization using Gram-Schmidt

Algorithm 8.1: Modified-Gram-Schmidt

Input: Ae R™P
Output: Q e R"™*P, Re RP*P
1 fork=1:pdo

2 | =l

3 qk = %ak;

4 forj=k+1:pdo
5 rg = 4y aji

6 L aj = aj — Iqk;

» The algorithm takes 2np? flops.

> A can be overwritten with @ but R needs to be stored separately, p? additional memory
required.

Householder Transformation

QR Decompositon

Householder Transformation

We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: %n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

QR Decompositon

Householder Transformation

We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: §n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

We construct @ as a sequence of k orthogonal transformations Py, Q = P1P; ..., where
> Py can be stored with less then n memory and
> Pyx costs less then 2n? flops.

QR Decompositon
Householder Transformation
We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: §n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

We construct @ as a sequence of k orthogonal transformations Py, Q = P1P; ..., where
> Py can be stored with less then n memory and
> Pyx costs less then 2n? flops.

* ¥ % *
* ¥ ¥ ¥
* ¥ ¥ ¥
* ¥ ¥ ¥

QR Decompositon
Householder Transformation
We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: §n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

We construct @ as a sequence of k orthogonal transformations Py, Q = P1P; ..., where
> Py can be stored with less then n memory and
> Pyx costs less then 2n? flops.

PLA =

I S
* % ¥ ¥

O O O *
* ¥ ¥ ¥

QR Decompositon
Householder Transformation
We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: §n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

We construct @ as a sequence of k orthogonal transformations Py, Q = P1P; ..., where
> Py can be stored with less then n memory and
> Pyx costs less then 2n? flops.

PP A =

* % ¥ ¥
* % ¥ ¥

O O O *
O O % *

QR Decompositon
Householder Transformation
We have to handle the following issues with the (Modified-)Gram-Schmidt procedure:
» 2np? flops is very expensive for p = n (LU: §n3),
» p? extra memory required,

> stability issues, especially in the non-modified case.

We construct @ as a sequence of k orthogonal transformations Py, Q = P1P; ..., where
> Py can be stored with less then n memory and
> Pyx costs less then 2n? flops.

* % % %

0 * = =
BPPA=10 o » «| =R

QT 0 0 0 =

QR Decompositon

Householder Transformation
The goal can be fulfilled, if we obtain an orthogonal matrix P € R™*" such that

*

0
Px =

QR Decompositon

Householder Transformation

The goal can be fulfilled, if we obtain an orthogonal matrix P € R"*" such that

*

0
Px =

Definition 8.9

Let ve R”, v # 0, then

P=I—5va,B=i

vTv
is called Householder-Transformation.

QR Decompositon

Householder Transformation

Theorem 8.10

Let P € R"™*" be a Householder-Transformation, then the following holds
> P is orthogonal
> P is symmetric.

> Products of Householder- Transformations are orthogonal again.

QR Decompositon

Householder Transformation

Theorem 8.10

Let P € R"™*" be a Householder-Transformation, then the following holds
> P is orthogonal
> P is symmetric.

> Products of Householder- Transformations are orthogonal again.

Regarding the goals:
> storing P costs n + 1 memory,
» Px = x — v x costs 4n flops.

QR Decompositon

Householder Transformation

How to chose v depending on x such that

Px

QR Decompositon

Householder Transformation

How to chose v depending on x such that

Px = : ?
0
We use Theorem 8.10 and Lemma 8.3 and we get from
[1Px[l2 = |Ix]l2
that

£lxll2

0
Px =

QR Decompositon
That means, we have to chose v such that
Px = t||x||2e1.

which yields

2w’ 2vTx
Px = (I— VTV)sz— Ty V.

QR Decompositon

That means, we have to chose v such that
Px = t||x||2e1.

which yields

vy vy

T T
Px=(l—2vv)x=x—2v Xv.

From this we know that v € span {x, e1}, i.e. v =x+ ae.
With
vTx = xTX + axy
and
viv=x"x + 2ax1 + a?

QR Decompositon

That means, we have to chose v such that
Px = t||x||2e1.

which yields

T T
Px=(l—2vv)x=x—2v Xv.

vy vy

From this we know that v € span {x, e1}, i.e. v =x+ ae.

With
T T
V X=X X+ axi
and
T T 2
V Vv=x X+2ax1+«
we obtain
xTx—l-a)q vTx
PX= 1_2ﬁ X—QQTel
xTx +2ax1 + « viv
2 2 T
a” — |Ixl3 v x

= — 2 _x-—2a——e.
xTx + 2ax; + a2 vTv

QR Decompositon

Householder Transformation

Since we have to enforce

o —|Ixl}
xTx 4+ 2ax; + a2
we set
o == x|,
and obtain

v=xz|xl,e1 = Px=7F|x|,e.

QR Decompositon

Householder Transformation

Since we have to enforce

o2 —lxl;
xTx + 2ax; + a?
we set
o == x|,
and obtain

v=xzt|x|,er = Px=7F|x],e.

> Since the sign of « can be selected freely, we choose the numerically more stable variant
to avoid cancelation.

> v can be normalized, such that v(1) = 1.

QR Decompositon

Householder Transformation

© N s WN -

Jury
(=]

-
N =

Algorithm 8.2: Computation of a Householder Vector

Input: x e R”
Output: v € R" with v(1) = 1, 8 € R such that Px = £ ||x||, &1
o = |x(2: n)l,;

v =[1;x(2: n)];
if o =0 and xy > 0 then 8 = 0;
else if 0 =0 and x; < 0 then § = 2;
else
1= /(o + X1
if x(1) <0 then

L v(1) =x(1) -
else

| v = %

2v(1)? .
o+v(1)2!
v= 1y

v(l) 7

QR Decompositon

Householder Transformation
Applying P to a vector is performed as
Px=(l-Bw)x=x—pv vix =x—(By)v
¥
which is
» a scalar product with 2n flops and

> an axpy operation with 2n flops.

QR Decompositon

Householder Transformation

Applying P to a vector is performed as

Px = (I—BVVT)X=X—6V\LT;)_(J=X—(B’)/)V
¥
which is
» a scalar product with 2n flops and
> an axpy operation with 2n flops.
Applying P to a matrix A e R"*™ is computed using

PA=(1-BwHA=A—-Bv vTA = A— fBww
which consists of
> a matrix-vector product with 2mn flops and

> a rank-1 update with 2mn flops.

Householder QR Decompostion

QR Decompositon

Householder QR Decompostion

Using the Householder-Transformation we can create a sequence of P; such that we obtain an
orthogonal @ and a upper triangular R.

First we compute P; from the first column a; and get
* * *

PLA=| 0

QR Decompositon

Householder QR Decompostion

Using the Householder-Transformation we can create a sequence of P; such that we obtain an
orthogonal @ and a upper triangular R.

First we compute P; from the first column a; and get

* * *
PLA=| 0

Now we take the first column 3; of A; and compute P;:

*
*

1 * *
[P]P1A= 0
2 0 0 A

QR Decompositon
Householder QR Decompostion
Using the Householder-Transformation we can create a sequence of P; such that we obtain an

orthogonal @ and a upper triangular R.

First we compute P; from the first column a; and get

* * *
PLA=| 0

Now we take the first column 3; of A; and compute P;:

1 * * *
[P]P1A= 0 = =
2 0 0 A

This repeats until the lower right block is of size 0 or upper triangular.

QR Decompositon

Householder QR Decompostion

Algorithm 8.3: Householder QR

Input: Ace R™P n>=p

Output: R e RP*P, Py, P5, ..., P, Householder-Transformations
1forj=1...,pdo
2 Compute vj, 5; from A(j : n,j) using Algorithm 8.2;
3 | AG:ng:p)=(=pBjvv)AG:nj: p)

QR Decompositon

Householder QR Decompostion

Algorithm 8.3: Householder QR

Input: A€ R™P, n>=p

Output: R e RP*P, Py, P5, ..., P, Householder-Transformations
1forj=1...,pdo
2 Compute vj, 5; from A(j : n,j) using Algorithm 8.2;
3 | AG:ng:p)=(=pBjvv)AG:nj: p)

> A is overwritten with R.

> v; are normalized, i.e. vj(1) = 1, thus they can be stored in the newly created zeros in the
lower triangle of A.

» We need p memory locations to store f3;.
> It costs 2p?(n — £) flops. (If p = n, we have &n? flops)

QR Decompositon

Householder QR Decompostion — Where is Q7

The Householder-QR overwrites A with R and stores P; as v; and 3; and not explicitly as Q.
Thus we have:

1 1
1 |1
Q = P1 |: P2:| [1 P3] NS (I - 51V1V1) (I _ 62V2V2T):| [1 (/ B 53‘/3‘/3_’_)] s (1)

QR Decompositon

Householder QR Decompostion — Where is Q7

The Householder-QR overwrites A with R and stores P; as v; and ; and not explicitly as Q.
Thus we have:

Lemma 8.11
Let Q be given as sequence of Householder-Transformations P41, ... P, of a QR decomposition
of Ae R"™P as in Eqn (1). Furthermore, let C € R"™™ be a matrix. Then the matrix-matrix

products

QC and Q'C
cost mp(2n — p) = 2mnp — 2mp? flops.

QR Decompositon

Householder QR Decompostion

> In most applications, Q is not required explictly, only its application to a vector/matrix.

> As long n > p, using the factorized version is much cheaper than using a gemm operation
(— 2n%m flops)

> It is numerically stable and does not require pivoting, as long as A has full column rank.
> ... but the Algorithm is built on top of level-1 and level-2 operations.

QR Decompositon

Householder QR Decompostion

> In most applications, Q is not required explictly, only its application to a vector/matrix.

> As long n > p, using the factorized version is much cheaper than using a gemm operation
(— 2n%m flops)

> It is numerically stable and does not require pivoting, as long as A has full column rank.
> ... but the Algorithm is built on top of level-1 and level-2 operations.

The algorithms are available in LAPACK:
LARFG compute a Householder-Transformation
LARF apply a Householder-Transformation
GEQRF compute the QR decomposition as in Algorithm 8.3
ORMQR apply a factored Q to a right hand side
GELS solve a least squares problem in a single step

Level-3 Algortihms

QR Decompositon

Level-3 Algortihms

The computation of the Householder-Transformation and its application requires at most a
rank-1 update and a matrix-vector product.

QR Decompositon

Level-3 Algortihms

The computation of the Householder-Transformation and its application requires at most a
rank-1 update and a matrix-vector product.

We need to accumulate products of P; without forming a single P; explicitly:
> less then O(n®) flops,

> less then n?> memory.

QR Decompositon

Let Pr =1 —Bivivi| and P, = | — Brvavy :

PPy = (I = Biviv)) (I — Bavavy)

QR Decompositon
Let Py =1 — ﬁ1V1V1T and P, =/ — ﬁ2V2V2TZ
PPy = (I = Biviv)) (I — Bavavy)

= —Bivivy —Bovavy +B1Bavivi vav)
—_—

P1 P>

QR Decompositon
Let Py =1 — ﬁ1V1V1T and P, =/ — ﬁ2V2V2TZ
PPy = (I = Biviv)) (I — Bavavy)

= —Bivivy —Bovavy +B1Bavivi vav)
—_—

P1 P>

=/ — [vl v2] [61 ﬁz] [v1 VQ]T + Bifavivy vav)

QR Decompositon
Let P, =1 — ﬁ1V1V1T and P, = | — ﬁ2V2V2TZ
PPy = (I = Biviv)) (I — Bavavy)
=1 —prvivy —Bavavy) +B1fovivy vavy
—_—— —

P1 P>

=/ — [vl v2] [61 ﬁz] [v1 VQ]T + Bifavivy vav)

=l—[vi v] [61 51526"{‘/2] [vi vz]T
— 2 [

14 — vT
T

QR Decompositon

Let Pr =1 —Bivivi| and P, = | — Brvavy :

PPy = (I = Biviv)) (I — Bavavy)
=1 —Biviv{ —Bovavy +B1Boviv{ vavy
—_——— — —

P1 P>

=/ — [vl v2] [61 ﬁz] [v1 VQ]T + Bifavivy vav)

T
=1—[v w] [61 51625‘/1 Vz] [v1 Vz]T
— 2 [
VvV \—/_/ \/T
T
=/— vr Vv’
N ——
w Y

QR Decompositon

Let Pr =1 —Bivivi| and P, = | — Brvavy :

PPy = (I = Biviv)) (I — Bavavy)
=1 —Biviv{ —Bovavy +B1Boviv{ vavy
—_——— — —

P1 P>

=/ — [vl v2] [61 ﬁz] [v1 VQ]T + Bifavivy vav)

I [u W [51 51526V1TV2] [y Vz]T
— 2 [
v \—_’f_/ VT

=/— vr VvT
N——

QR Decompositon

Let Pr =1 —Bivivi| and P, = | — Brvavy :

PPy = (I = Biviv)) (I — Bavavy)
=1 —Biviv{ —Bovavy +B1Boviv{ vavy
—_——— — —

P1 P>

=l—[vi v] [61 ﬁz] [v VQ]T + Bifavivy vav)
_ [Vl v2] [61 5152V1TV2] [Vl Vz]T
~—— —

B2
VvV \—/_/ vT
Y
=/—- vr VT
N—— Y~
w Y
=/- WYy

Cost: one scalar product

QR Decompositon

Definition 8.12

Let P; and P, be two Householder-Transformations and @ = P; P, their product, then the
representation
Q=1-VTVT,

with T upper triangular, or
Q=1—-WY,

with W = VT and Y = V7, is called compact WY representation.

QR Decompositon

Level-3 Algortihms

Lemma 8.13

Let @ € R™" be a orthogonal matrix in compact WY representation @ = | — VTV and
P =1 — Bww' a Householder-Transformation. Then the product Q, = QP is given by

Qr=QP=1-V, T, V],

where .
V+=[V W] and [T —BTV W].

B

QR Decompositon

Level-3 Algortihms

Lemma 8.13

Let @ € R™" be a orthogonal matrix in compact WY representation @ = | — VTV and
P =1 — Bww' a Householder-Transformation. Then the product Q, = QP is given by
Qr=QP=1-V, T, V],
where .
Vi = [V W] and [T —BTﬁV W] .

Using the Lemma, we can subsequently accumulate a set of Householder Transformations into
a matrix-valued object, but with increasing size of V (and T) this procedure gets more

expensive.

QR Decompositon

Level-3 Algortihms

1
2

Algorithm 8.4: Computation of the WY representation

Input: Pi,..., P, Householder-Transformation with v1,...,v, and (i,...

Output: V and T such that Q = PiPy---P, =1 — VTVT
V =w;
T = Bu;

3 fork=2...,rdo

4
5

6

z = —ﬁkTVTvk;

V = [V vk:|,
T =z

S|

> Cost: 2r2n— 213 flops
> vk and By are still accessible — use of level-2 alg. possible
» Application of @, QC = (I — VTVT)C:

> 2 general matrix-matrix products

> 1 triangular matrix-matrix product

» r? auxiliary memory for T

QR Decompositon

Level-3 Algortihms
We assume that Py, ..., P, are from the Householder-QR Algorithm 8.3. Now we, have

Py =1—Biviv{

1
Fa= [/ﬂQOva]

1
Ps = 1
| — B3V3V3T

but is this compatible with Lemma 8.137

QR Decompositon

Level-3 Algortihms
We assume that Py, ..., P, are from the Householder-QR Algorithm 8.3. Now we, have

Py =1—Biviv{

1
Fa= [/ﬂQOva]

1
Ps = 1
| — 63V3V3T

but is this compatible with Lemma 8.137

1 0]lo]"
X R B MM

QR Decompositon
If P1,..., P, are generated by the Householder-QR Algorithm 8.3, do we need

» 2 general matrix-matrix products, and

» 1 triangular matrix-matrix product
for computing QC or QT C?

QR Decompositon
If P1,..., P, are generated by the Householder-QR Algorithm 8.3, do we need

» 2 general matrix-matrix products, and

» 1 triangular matrix-matrix product
for computing QC or QT C?

We have vy is of length n — k + 1, the top p x p part of the matrix

0
V = % 0 8 :
1 Vv v :

Vp

is (unit) lower triangular.

— we have 3 triangular(-like) matrix-matrix products.

QR Decompositon

Level-3 Algortihms

With the help of Algorithm 8.4 we can create a level-3 enabled version of the Householder-QR
decomposition. As in the LU decomposition, we assume a block size of r.

QR Decompositon

Level-3 Algortihms

With the help of Algorithm 8.4 we can create a level-3 enabled version of the Householder-QR
decomposition. As in the LU decomposition, we assume a block size of r.

Algorithm 8.5: Level-3 Householder-QR (Variant 1)

Input: Ae R"*P, n > p, block size r
Output: ReRP*P, Q =P;...Pyasv,...,vpand B1,...,06,
1 for k =1,...,p with step size r do

2 T=min(p—k+1,r);
3 Compute Py, ... Pxir—1 from A(k : n k : k +7 — 1) using Algorithm 8.3;

4 Compute V and T from Py, ... Pxy,—1 from A(k : n, k : k+7—1) using Algorithm 8.4;
5 Update A(k:n,k+7:p) = (I — VTV A(k:n k+17:p);

QR Decompositon

Level-3 Algortihms

With the help of Algorithm 8.4 we can create a level-3 enabled version of the Householder-QR
decomposition. As in the LU decomposition, we assume a block size of r.

Algorithm 8.5: Level-3 Householder-QR (Variant 1)

Input: Ae R"*P, n > p, block size r
Output: ReRP*P, Q =P;...Pyasv,...,vpand B1,...,06,
1 for k =1,...,p with step size r do

2 T=min(p—k+1,r);
3 Compute Py, ... Pxir—1 from A(k : n k : k +7 — 1) using Algorithm 8.3;

4 Compute V and T from Py, ... Pxy,—1 from A(k : n, k : k+7—1) using Algorithm 8.4;
5 Update A(k:n,k+7:p) = (I — VTV A(k:n k+17:p);

» v; is stored in the lower part of A.
» R is the upper right p x p triangle of A.

» T is a temporary value of size r x r.

QR Decompositon

Level-3 Algortihms

Remark 10

Algorithm 8.5 has the following properties:
> The updates on A are performed as (triangular) matrix-matrix products.
The output is compatible to the level-2 Householder-QR decomposition.

The algorithm needs slightly more flops than the level-2 variant, but this is negligible for a
moderate block size r.

LAPACK GEQRF implements this approach.

v

v

v

QR Decompositon

Level-3 Algortihms

Remark 10

Algorithm 8.5 has the following properties:
> The updates on A are performed as (triangular) matrix-matrix products.
> The output is compatible to the level-2 Householder-QR decomposition.

> The algorithm needs slightly more flops than the level-2 variant, but this is negligible for a
moderate block size r.

> LAPACK GEQRF implements this approach.

— The algorithm has still a high portion of level-2 operations, especially since the computation
of T is an extra step.

QR Decompositon

Level-3 Algortihms

Remark 10

Algorithm 8.5 has the following properties:
» The updates on A are performed as (triangular) matrix-matrix products.
» The output is compatible to the level-2 Householder-QR decomposition.

> The algorithm needs slightly more flops than the level-2 variant, but this is negligible for a
moderate block size r.

» LAPACK GEQRF implements this approach.

— The algorithm has still a high portion of level-2 operations, especially since the computation
of T is an extra step.

— Unify the level-2 part (Step 2) and the computation of T (Step 3).

QR Decompositon

Level-3 Algortihms

Algorithm 8.6: Householder QR with T accumulation

Input: Ace R™P n>=p
Output: Re RP*P, V, T such that Q =/ — VTVT

forj=1,...,pdo

Compute v;, §; from A(j : n, j) using Algorithm 8.2;
z=—f; TVij;

V=[vV v

T z|
T [/31]'
8 | AU:njip)=(~Bvv)AG: nj:p);

o s W N =

QR Decompositon

Level-3 Algortihms

Remark 11

> The integration of Algorithm 8.6 into Algorithm 8.5 in the foundation of the GEQRT
routine in LAPACK.

> Algorithm 8.6 is implemented as GEQRT?2 in LAPACK.

QR Decompositon

Level-3 Algortihms

Why is V and T only used in block of size r and not in the end for
Q=PP---P,=1—-VTVT?

QR Decompositon

Level-3 Algortihms

Question

Why is V and T only used in block of size r and not in the end for
Q=PP---P,=1—-VTVT?

Example 8.14

Let Ae R™" with A= QR, @ = P1P;--- P, as in Householder-QR decomposition, and
C € R™™ then the computation of

QC =P ---P,C

costs 2n’m flops, which is the cost of general matrix-matrix product. If @ is represented as
Q=1-—VTVT, with V, T € R"", the evaluation of

QC=(I-VvTVT)C

costs 3n’m flops, since V and T are triangular matrices.

QR Decompositon

Level-3 Algortihms

— The compact WY representation allows a level-3 enabled computation of the QR
decomposition but applying Q seem to more efficient in terms of P;.

QR Decompositon

Level-3 Algortihms

— The compact WY representation allows a level-3 enabled computation of the QR
decomposition but applying Q@ seem to more efficient in terms of P;.

We group the Householder-Transformations Pi, ..., P, into k groups of size r:
— P,...P, = V1, T
— Poi1,... Py = Vo, T,
— Poy1,...P3, = V3, T3

and store them as

V = [Vl V2 Vk] and T = [Tl T2 Tk]

QR Decompositon
Level-3 Algortihms
This rearrangement of V; and T; leads to the following properties:
» T; can be reused after computing the QR decomposition.
> r x p memory required for storing T.
» V; is already stored in A for free.
» Applying @ = (I — ViTiVJT) (I — Vo TLV,T) ... is still in O(2n?p) flops.
» QR decomposition, application of @ and solving with R are now in a level-3 enabled shape.
> Implemented as GEMQRT in LAPACK.

QR Decompositon

Level-3 Algortihms

Next Problem

What if n is getting very large, such that the level-2 part in Algorithm 8.5 gains influence 7

QR Decompositon

Level-3 Algortihms

Next Problem

What if n is getting very large, such that the level-2 part in Algorithm 8.5 gains influence 7

For each panel of block size r, we use the level-3 algorithm recursively again with block size 5
until it is worth to switch back to the level-2 algorithm.

QR Decompositon

Level-3 Algortihms

Algorithm 8.7: Recursive compact WY Householder QR decomposition (RQRT)

Input: AeR"™P, n=> p, threshold /, 1 </ < & for level-2
Output: R e RP*P, V/, T such that Q =/ — VTVT

1 if p </ then
2 L Compute V, T, R using Algorithm 8.6 (Level-2 with T accumulation);
3 else
4 pr=[5];
5 Compute Vi, T1, Ry from A(1: n,1: p1) using RQRT again.;
6 Al:np+1:p)=(U—-ViThVi)AQ :n,p1 +1:p);
7 Compute Vo, T2, Ry from A(pr +1: n,p1 + 1: p) using RQRT again.;
8 —7— = —T1V1TV2T2;
_ [T _[Re AL :pi,pr+1:p)].
9 7V—[V1 Vz],T—[Tz],R—[R, ;

QR Decompositon

Level-3 Algortihms

Algorithm 8.7: Recursive compact WY Householder QR decomposition (RQRT)

Input: AeR"™P, n=> p, threshold /, 1 </ < & for level-2
Output: R e RP*P, V/, T such that Q =/ — VTVT

1 if p </ then
2 L Compute V, T, R using Algorithm 8.6 (Level-2 with T accumulation);
3 else
4 pr=[5];
5 Compute Vi, T1, Ry from A(1: n,1: p1) using RQRT again.;
6 Al:np+1:p)=(U—-ViThVi)AQ :n,p1 +1:p);
7 Compute Vo, T2, Ry from A(pr +1: n,p1 + 1: p) using RQRT again.;
8 —7— = —T1V1TV2T2;
_ [T _[Re AL :pi,pr+1:p)].
9 7V—[V1 Vz],T—[Tz],R—[R, ;

» Algorithm 8.5 with RQRT for the panels and / = 1 gives LAPACK's GEQRT
» RQRT with / =1 is available as GEQRT3 in LAPACK

Alternative QR Variants

QR Decompositon

Alternative QR Variants — Givens-Rotation QR

Based on

where r = v/a2 + b2 and

and GGT = 1.

QR Decompositon

Alternative QR Variants — Givens-Rotation QR

Based on

where r = v/a2 + b2 and

and GG = |.
» numerically stable has the Householder Transformation
» can be use if only a few elements below the diagonal exists
> slow, level-3 formulations complicated or not available
» mostly used in the Hessenberg-QR, i.e. for matrices with one sub-diagonal
» @ needs to be setup explicitly or c,s need to be stored for each transformation

QR Decompositon
Alternative QR Variants — Tall-Skinny QR (TSQR)

The computation of a single Householder-Transformation gets slow if the vector v gets too
long, e.g. v e R" with n > 10.

» often the case in real world parameter fitting problems, n > 10° and p ~ 100.
> large leading dimension causes a loss in data-locality when applying P.

> the vector v needs to be accesses several times when computing and applying P — many
cache misses due to its length

QR Decompositon
Alternative QR Variants — Tall-Skinny QR (TSQR)

The computation of a single Householder-Transformation gets slow if the vector v gets too
long, e.g. v e R" with n > 10.

» often the case in real world parameter fitting problems, n > 10° and p ~ 100.
> large leading dimension causes a loss in data-locality when applying P.

> the vector v needs to be accesses several times when computing and applying P — many
cache misses due to its length

Basic Idea:
> split the rows into blocks of nj, rows.
» perform a Householder-QR Decomposition on the top block

» use Householder-Transformations to join the remaining blocks with the top block one by
one.

> available as LATSQR in LAPACK

QR Decompositon
Alternative QR Variants — Communication Avoiding QR (CAQR)

The Tall-Skinny QR does a good job on matrices with large number of rows, but it is not well
parallelizable.

The Communication Avoiding QR(CAQR) on a tall-and-skinny matrix (n > p) works as
follows:

> split the rows into blocks of nj, rows.
» perform a Householder-QR Decomposition on each block (in parallel)

» perform a binary reduction: combine two neighboring blocks using
Householder-Transforms and repeat this until one upper triangular block is left

» works in massive parallel environments

QR Decompositon
Alternative QR Variants — Tile-QR

The TSQR and the CAQR are designed for the n > p case, for nearly square matrices n ~ p
the TSQR approach can be extended:

>

>

>

the matrix is partitioned into blocks of ny x pp,

in each block-column a TSQR-performed and applied to the remaining block columns,
parallelization via DAG/data dependencies easily possible,

starting with 4 CPU cores, this is beneficial over a classical Householder-QR,
implemented as GEQRT in PLASMA.

QR Decompositon
Alternative QR Variants — GPUs and Other
On GPUs:
» Hybrid CPU-GPU variants of the Householder-QR
» CAQR and TSQR get replaced by the approximate Householder QR (AHQR)

Sparse Matrices:
» similar problems as in LU/Cholesky decomposition: fill-in in @ and R

> clever reordering and graph theory necessary

Non-Householder based:

We use
ATA=(QR)"QR=RTQ"QR =R'R,

where RT R is the Cholesky decomposition of AT A and Q is given as Q = AR~ L.

	Motivation
	Least Squares
	QR Decompositon
	Orthogonalization using Gram-Schmidt
	Householder Transformation
	Householder QR Decompostion
	Level-3 Algortihms
	Alternative QR Variants

