
Scientific Computing I
Error Analysis and Machine Numbers

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

This Lecture:

Error Analysis and Machine Numbers

Homer claims: 398712 ` 436512 “ 447212

Using 3 significant digits: 1.61 ¨ 1043 ` 4.78 ¨ 1043 “ 6.39 ¨ 1043 !!!

1Image: The Simpsons S10E2 ”The Wizard of Evergreen Terrace” ©FOX

Homer claims: 398712 ` 436512 “ 447212

Using 3 significant digits: 1.61 ¨ 1043 ` 4.78 ¨ 1043 “ 6.39 ¨ 1043 !!!

1Image: The Simpsons S10E2 ”The Wizard of Evergreen Terrace” ©FOX

Machine Numbers

Machine Numbers

We are not having an ideal world:

§ computers only provide finite memory,

§ storing numbers is limited in the number of digits and accuracy,

§ simple numbers like 1.0 or 0.5 can be stored easily,

§ numbers like π but even
1

3
require truncation,

§ truncation causes an error in the representation.

p–adic expansion

Machine Numbers
p–adic expansion

Theorem (p–adic expansion)
For x P R, p P Nzt1u there exist uniquely determined j P t0, 1u, ` P Z and @k P Z with k ď `
unique γk P t0, . . . , p ´ 1u, such that

x “ p´1qj
ÿ̀

k“´8

γkp
k , (1)

where γ` ‰ 0 for x ‰ 0, j “ ` “ 0 for x “ 0, and γk ă p ´ 1 for infinitely many k ď `.

Ñ most representations are based on this theorem

Ñ the expression “γk ă p ´ 1 for infinitely many k” means that, e.g., for p “ 10 the number
3.9 “ 3.99999 . . . is represented as 4.0

Ñ all summands are positive

Ñ x “ 0 Ø @k γk “ 0 and with j “ ` “ 0 the representation of 0 is unique

Machine Numbers
p–adic expansion

Theorem (p–adic expansion)
For x P R, p P Nzt1u there exist uniquely determined j P t0, 1u, ` P Z and @k P Z with k ď `
unique γk P t0, . . . , p ´ 1u, such that

x “ p´1qj
ÿ̀

k“´8

γkp
k , (1)

where γ` ‰ 0 for x ‰ 0, j “ ` “ 0 for x “ 0, and γk ă p ´ 1 for infinitely many k ď `.

Ñ most representations are based on this theorem

Ñ the expression “γk ă p ´ 1 for infinitely many k” means that, e.g., for p “ 10 the number
3.9 “ 3.99999 . . . is represented as 4.0

Ñ all summands are positive

Ñ x “ 0 Ø @k γk “ 0 and with j “ ` “ 0 the representation of 0 is unique

Machine Numbers
p–adic expansion

The p–adic representation of a number given in a different number system can be expressed
using the following representation:

pxqp :“ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . ,

where the digits following the separating “.” are called the mantissa.

Systems like Roman Numbers (IX, MC, ...) does not fit in this system.

Machine Numbers
p–adic expansion

The p–adic representation of a number given in a different number system can be expressed
using the following representation:

pxqp :“ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . ,

where the digits following the separating “.” are called the mantissa.

Systems like Roman Numbers (IX, MC, ...) does not fit in this system.

Decimal System

Machine Numbers
Decimal System

§ used in everyday life

§ p “ 10

§ digits: γk P t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u

x “ ˘
ÿ̀

k“´8

γk ¨ 10k “ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . “ pxq10

Definition
The expression pxqp means: The number x interpreted in the p–adic representation with base p.

Machine Numbers
Decimal System

§ used in everyday life

§ p “ 10

§ digits: γk P t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u

x “ ˘
ÿ̀

k“´8

γk ¨ 10k “ ˘γ`γ`´1 . . . γ0.γ´1γ´2 . . . “ pxq10

Definition
The expression pxqp means: The number x interpreted in the p–adic representation with base p.

Binary System

Machine Numbers
Binary System

§ p “ 2

§ γk P t0, 1u or γk P tL,Hu

§ easily representable by electrical signals

§ often prefixed with 0b

Example
The decimal number x “ 1123 is translated into the binary system as follows:

1123 “ 1024` 99 “ 210 ` 64` 35

“ 210 ` 26 ` 32` 3 “ 210 ` 26 ` 25 ` 21 ` 20,

i.e., p1123q2 “ 10001100011.

Machine Numbers
Binary System

§ p “ 2

§ γk P t0, 1u or γk P tL,Hu

§ easily representable by electrical signals

§ often prefixed with 0b

Example
The decimal number x “ 1123 is translated into the binary system as follows:

1123 “ 1024` 99 “ 210 ` 64` 35

“ 210 ` 26 ` 32` 3 “ 210 ` 26 ` 25 ` 21 ` 20,

i.e., p1123q2 “ 10001100011.

Machine Numbers
Binary System

On the other hand, we have decimal number 1
10 and get

ˆ

1

10

˙

2

“ 0.00011.

So 1
10 can not be written in a finite number of digits in the mantissa.

Machine Numbers
Binary System

On the other hand, we have decimal number 1
10 and get

ˆ

1

10

˙

2

“ 0.00011.

So 1
10 can not be written in a finite number of digits in the mantissa.

Octal System

Machine Numbers
Octal System

§ p “ 8

§ digits: γk P t0, 1, 2, 3, 4, 5, 6, 7u

§ not so commonly used in computing, but in systems where binary is too lengthy and
hexadecimal is too compact.

§ often prefixed with a zero (e.g., 075) or a leading 0o (e.g., 0o75)

§ used in early computing systems and still relevant in some contexts today, such as file
permissions in Unix/Linux systems.

Hexadecimal System

Machine Numbers
Hexadecimal System

§ p “ 16

§ γk P t0, 1, . . . , 15u, usual representation uses A “ 10, B “ 11, . . . , F “ 15, and therefore
the standard digits are γk P t0, 1, . . . , 9,A,B, . . . ,F u.

Example
The hexadecimal number x “ A1E turns into

pA1E q10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation decimal number Ø hexadecimal number is done via the binary system:

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Ñ a group of four binary digits give one hexadecimal digit.

Machine Numbers
Hexadecimal System

§ p “ 16

§ γk P t0, 1, . . . , 15u, usual representation uses A “ 10, B “ 11, . . . , F “ 15, and therefore
the standard digits are γk P t0, 1, . . . , 9,A,B, . . . ,F u.

Example
The hexadecimal number x “ A1E turns into

pA1E q10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation decimal number Ø hexadecimal number is done via the binary system:

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Ñ a group of four binary digits give one hexadecimal digit.

Machine Numbers
Hexadecimal System

§ p “ 16

§ γk P t0, 1, . . . , 15u, usual representation uses A “ 10, B “ 11, . . . , F “ 15, and therefore
the standard digits are γk P t0, 1, . . . , 9,A,B, . . . ,F u.

Example
The hexadecimal number x “ A1E turns into

pA1E q10 “ 10 ¨ 162 ` 1 ¨ 161 ` 14 ¨ 160 “ 10 ¨ 256` 16` 14 “ 2590.

The translation decimal number Ø hexadecimal number is done via the binary system:

p1123q2 “ 0100
loomoon

4¨162

0110
loomoon

6¨161

0011
loomoon

3¨160

ñ p1123q16 “ 463.

Ñ a group of four binary digits give one hexadecimal digit.

Normalized Floating Point Representation

Machine Numbers
Normalized Floating Point Representation

The p–adic representation (1) is equivalent to

x “

#

p´1qj
ÿ̀

k“´8

γkp
k´`´1

+

looooooooooooooomooooooooooooooon

“:s

¨p``1 “:

#

p´1qj
8
ÿ

i“1

αi

pi

+

loooooooomoooooooon

“:a

pb, (2)

where αi :“ γ`´i`1, i “ 1, . . . and b :“ l ` 1. In (1) we have γ` “ 0 and thus we immediately
get 1

p ď |s| ă 1.

Machine Numbers
Normalized Floating Point Representation

Definition
The representation of any x P R as in (2) is called normalized floating point representation of x
with respect to p. Here

a :“ p´1qj
8
ÿ

i“1

αi

pi
where αi P t0, 1, . . . , p ´ 1u (3)

is called the significand and

b :“ p´1qs
m
ÿ

i“1

βip
m´i , for s P t0, 1u, βi P t0, 1, . . . , p ´ 1u (4)

the exponent.

This floating point representation is called normalized since α1 ‰ 0.

Machine Numbers
Normalized Floating Point Representation

In contrast to i “ 1, . . . ,8, a computer can only store finitely many digits in the significand.

In case αi “ 0, @ i ą t P N, x can be encoded by saving j , s (for determining the signs of
significand and exponent) and the digits in the p-adic representation of significand and
exponent.

Ñ Schematic representation:

j α1 . . . αt s β1 . . . βm

Thus we require 1` t ` 1`m memory positions.

Machine Numbers
Normalized Floating Point Representation

Example
For p “ 10 the normalized floating point representation of the real number 35 657.23 is given as

0.3565723 ¨ 105 “

ˆ

3

101
`

5

102
`

6

103
`

5

104
`

7

105
`

2

106
`

3

107

˙

¨ 105,

encoded as

0 3 5 6 5 7 2 3 0 5
j α1 α2 α3 α4 α5 α6 α7 s β1

.

In this example t “ 7 and m “ 1.

Computer Representable Numbers

Machine Numbers
Computer Representable Numbers

Definition
For p P Nzt1u, emin, emax P Z, t P N we denote the set of normalized floating point numbers of
length t with respect to the base p and range of exponents temin, emin ` 1, . . . , emaxu Ă Z by

Mpp, t, emin, emaxq :“ t ˘0.α1α2 . . . αt ¨ p
b |αi P t0, . . . , p ´ 1u, α1 ‰ 0,

emin ď b ď emaxu Y t0u .

x PMpp, t, emin, emaxq is called computer number or machine number.

Example
The elements in Mp2, 3,´1, 4q are shown in the following number ray

´15 ´10 ´5 5 10 15

Ñ Note that machine numbers are not equally distributed.

Machine Numbers
Computer Representable Numbers

Definition
For p P Nzt1u, emin, emax P Z, t P N we denote the set of normalized floating point numbers of
length t with respect to the base p and range of exponents temin, emin ` 1, . . . , emaxu Ă Z by

Mpp, t, emin, emaxq :“ t ˘0.α1α2 . . . αt ¨ p
b |αi P t0, . . . , p ´ 1u, α1 ‰ 0,

emin ď b ď emaxu Y t0u .

x PMpp, t, emin, emaxq is called computer number or machine number.

Example
The elements in Mp2, 3,´1, 4q are shown in the following number ray

´15 ´10 ´5 5 10 15

Ñ Note that machine numbers are not equally distributed.

Rounding Errors and Error Propagation

Rounding Rules

Rounding Errors and Error Propagation
Rounding Rules

Definition
The rounding function

γ : RÑMpp, t, emin, emaxq

for x P Z :“ r´xmax,´xmins Y t0u Y rxmin, xmaxs is determined by

γpxq “ arg min
x̃PMpp,t,emin,emaxq

|x ´ x̃ |, (5)

where

xmin :“ min t|x | | x PMpp, t, emin, emaxqzt0uu ,

xmax :“ max t|x | | x PMpp, t, emin, emaxqu .

Rounding Errors and Error Propagation
Rounding Rules

Let x “ ˘
8
ř

i“1

αi

pi ¨ p
b P Z with α1 ‰ 0. By truncating to t significant digits we get

γpxq “

$

’

’

&

’

’

%

˘
t
ř

i“1

αi

pi ¨ p
b, αt`1 ă

p
2 ,

˘

ˆ

t
ř

i“1

αi

pi `
1
pt

˙

¨ pb, αt`1 ą
p
2 .

Ñ What happens if αt`1 “
p
2 ?

We need some additional rules.

Rounding Errors and Error Propagation
Rounding Rules

Let x “ ˘
8
ř

i“1

αi

pi ¨ p
b P Z with α1 ‰ 0. By truncating to t significant digits we get

γpxq “

$

’

’

&

’

’

%

˘
t
ř

i“1

αi

pi ¨ p
b, αt`1 ă

p
2 ,

˘

ˆ

t
ř

i“1

αi

pi `
1
pt

˙

¨ pb, αt`1 ą
p
2 .

Ñ What happens if αt`1 “
p
2 ?

We need some additional rules.

Rounding Errors and Error Propagation
Rounding Rules

Round up: Handle γpxq as if αt`1 ą
p
2 .

Round down: Handle γpxq as if αt`1 ă
p
2 .

Round-to-even: Rounds towards the closest machine number with an αt that is even.

Example
For example for p “ 2, t “ 3:

γp0.1001q “ 0.100 (round down)

γp0.1011q “ 0.110 (round up)

Ñ Round-to-even results in a (statistically) more equal distribution of rounding errors then
using round-up or round-down permanently.

Rounding Errors and Error Propagation
Rounding Rules

Round up: Handle γpxq as if αt`1 ą
p
2 .

Round down: Handle γpxq as if αt`1 ă
p
2 .

Round-to-even: Rounds towards the closest machine number with an αt that is even.

Example
For example for p “ 2, t “ 3:

γp0.1001q “ 0.100 (round down)

γp0.1011q “ 0.110 (round up)

Ñ Round-to-even results in a (statistically) more equal distribution of rounding errors then
using round-up or round-down permanently.

Overflows and Underflows

Rounding Errors and Error Propagation
Overflows and Underflows

We need to define γpxq for x R Z .

Two cases are possible:

1. |x | ă xmin: This case is called underflow.

Either we round towards the closest valid machine number:

γpxq “

"

0 or rather
signpxq xmin

or we use the so called gradual underflow. This allows non-normalized floating point
numbers, i.e., floating point numbers allowing α1 “ 0 to circumvent the underflow. The
smallest number representable in this way is

0. 0 . . . 01
loomoon

t

¨pemin .

In this case the same rounding rules as for x P Z are used.

Rounding Errors and Error Propagation
Overflows and Underflows

2. |x | ą xmax: This case is called overflow.

Again, we have the two variants

γpxq “

"

signpxq xmax

signpxq ¨ 8.

Ñ require to extend our definition of Mpp, t, emin, emaxq by a symbol for 8.

This is used in the IEEE 754 standard for floating point arithmetic.

Rounding Errors

Rounding Errors and Error Propagation
Rounding Errors

Definition
Let x P R and x̃ PMpp, t, emin, emaxq, the we define the absolute error by

}x ´ x̃}

and the relative error by
}x ´ x̃}

}x}
.

Lemma
The absolute rounding error fulfills

|γpxq ´ x | ď
p´t

2
¨ pb @x P Z .

Rounding Errors and Error Propagation
Rounding Errors

Definition
Let x P R and x̃ PMpp, t, emin, emaxq, the we define the absolute error by

}x ´ x̃}

and the relative error by
}x ´ x̃}

}x}
.

Lemma
The absolute rounding error fulfills

|γpxq ´ x | ď
p´t

2
¨ pb @x P Z .

Rounding Errors and Error Propagation
Rounding Errors

Proof.
Let x :“ ˘

8
ř

i“1

αi
pi
pb and define

y1 :“ signpxq
t
ÿ

i“1

αi

pi
pb (round towards zero)

y2 :“ signpxq

˜

t
ÿ

i“1

αi

pi
`

1

pt

¸

pb (round away from zero)

Then apparently we have γpxq P ty1, y2u and

x P

#

ry1, y2s, x ą 0,

ry2, y1s, x ă 0.

Let a1 ă a2 P ty1, y2u, since |x ´ aj | ď
1
2
|a2 ´ a1| “

1
2
|y2 ´ y1| either for j “ 1, or for j “ 2, or both, if

x P ra1, a2s, we find

|γpxq ´ x | ď
1

2
|y2 ´ y1| “

1

2

pb

pt
.

Rounding Errors and Error Propagation
Rounding Errors

Lemma
Let Z “ r´xmax,´xmins Y t0u Y rxmin, xmaxs, as above. The relative rounding error for all
x P Zzt0u fulfills

|γpxq ´ x |

|x |
ă

1

2
p1´t .

Proof.
The significand a of x fulfills |a| ě 1

p . Thus we have |x | ě 1
p ¨ p

b. From the previous Lemma
we, therefore, find

|γpxq ´ x |

|x |
ď

1

pb´1

1

2
pb´t “

1

2
p1´t .

From |x | ą 1
pp

b we have strict inequality unless x “ ˘ 1
p ¨ p

b. In the latter case, however,

x PMpp, t, emin, emaxq and so γpxq “ x , i.e., |γpxq´x|
|x| “ 0.

Rounding Errors and Error Propagation
Rounding Errors

Lemma
Let Z “ r´xmax,´xmins Y t0u Y rxmin, xmaxs, as above. The relative rounding error for all
x P Zzt0u fulfills

|γpxq ´ x |

|x |
ă

1

2
p1´t .

Proof.
The significand a of x fulfills |a| ě 1

p . Thus we have |x | ě 1
p ¨ p

b. From the previous Lemma
we, therefore, find

|γpxq ´ x |

|x |
ď

1

pb´1

1

2
pb´t “

1

2
p1´t .

From |x | ą 1
pp

b we have strict inequality unless x “ ˘ 1
p ¨ p

b. In the latter case, however,

x PMpp, t, emin, emaxq and so γpxq “ x , i.e., |γpxq´x|
|x| “ 0.

Rounding Errors and Error Propagation
Rounding Errors

Definition
The quantity u :“ 1

2p
1´t is called unit round off.

§ The unit round off describes the relative error that can result from rounding operations.

§ Similar quantity: The machine epsilon (eps):

eps :“ mint|x̃ ´ 1| | x̃ PMpp, t, emin, emaxq, x̃ ą 1u “ p1´t “ 2u,

which determines the distance from 1 to next larger machine number.

Rounding Errors and Error Propagation
Rounding Errors

Definition
The quantity u :“ 1

2p
1´t is called unit round off.

§ The unit round off describes the relative error that can result from rounding operations.

§ Similar quantity: The machine epsilon (eps):

eps :“ mint|x̃ ´ 1| | x̃ PMpp, t, emin, emaxq, x̃ ą 1u “ p1´t “ 2u,

which determines the distance from 1 to next larger machine number.

Rounding Errors and Error Propagation
Rounding Errors

The relative error gives a hint about the accuracy:

Example

x “ 25.317, x̃ “ 25.313 (i.e., x̃ has 4 correct digits)

ùñ
|x ´ x̃ |

|x |
“

0.004

25.317
« 0.16 ¨ 10´3.

Ñ It is an easy argumentation to find that the number of correct digits coincides with the
negative exponent of the relative error p˘1q.

The absolute error does not carry any information about the accuracy!

Example
Let y “ 0.001, ỹ “ 0.002: |y ´ ỹ | “ 10´3 is rather small, but ỹ has no correct digit as we can
see from the relative error

|y ´ ỹ |

|y |
“ 1.

Rounding Errors and Error Propagation
Rounding Errors

The relative error gives a hint about the accuracy:

Example

x “ 25.317, x̃ “ 25.313 (i.e., x̃ has 4 correct digits)

ùñ
|x ´ x̃ |

|x |
“

0.004

25.317
« 0.16 ¨ 10´3.

Ñ It is an easy argumentation to find that the number of correct digits coincides with the
negative exponent of the relative error p˘1q.

The absolute error does not carry any information about the accuracy!

Example
Let y “ 0.001, ỹ “ 0.002: |y ´ ỹ | “ 10´3 is rather small, but ỹ has no correct digit as we can
see from the relative error

|y ´ ỹ |

|y |
“ 1.

Rounding Errors and Error Propagation
Rounding Errors

The rounding behaviour can be influenced within a C program. 1

The rounding function γp.q can be influenced using the functions

int fegetround(void);
int fesetround(int round);

from

#include <fenv.h>

Available rounding models, i.e. values for the round argument, are

§ FE DOWNWARD, (round down)

§ FE UPWARD, (round up)

§ FE TONEAREST (default, ”natural rounding”),

§ FE TOWARDZERO (round up for x ă 0 and round down for x ą 0).

1see man fenv

Computer Arithmetic

Rounding Errors and Error Propagation
Computer Arithmetic

How do the rounding errors (absolute and relative) evolve under
elementary arithmetic operations (`, ´, ¨, {)?

Rounding Errors and Error Propagation
Computer Arithmetic

From the lemmas, we conclude:

γpxq “ xp1` εq, |ε| ď u @x P Z .

Example
For p “ 2 we have know p0.1q2 “ 0.00011. After normalization we have 0.110011 ¨ 2´3.
Restricting to six digits, i.e. t “ 6, we get

pγp0.1qq2 “ 0.110011 ¨ 2´3.

Regarding its decimal representation, we have γp0.1q “ 51
512 “ 0.099609375.

Ñ it a result of storing values into a finite amount of memory.

Rounding Errors and Error Propagation
Computer Arithmetic

From the lemmas, we conclude:

γpxq “ xp1` εq, |ε| ď u @x P Z .

Example
For p “ 2 we have know p0.1q2 “ 0.00011. After normalization we have 0.110011 ¨ 2´3.
Restricting to six digits, i.e. t “ 6, we get

pγp0.1qq2 “ 0.110011 ¨ 2´3.

Regarding its decimal representation, we have γp0.1q “ 51
512 “ 0.099609375.

Ñ it a result of storing values into a finite amount of memory.

Rounding Errors and Error Propagation
Computer Arithmetic

Computers are only equipped with a so called pseudo arithmetic. We can not expect in
general that the result of x4y for 4 P t`,´, ¨, {u and machine numbers
x , y PMpp, t, emin, emaxq will also be a number in Mpp, t, emin, emaxq.

Example
Both x “ 0.12 and y “ 0.34 are from the set of machine numbers Mp10, 2, emin, emaxq, but for
their product we easily see

x ¨ y “ 0.0408 “ 0.408 ¨ 10´1,

which requires a 3 digit mantissa and thus is not in Mp10, 2, emin, emaxq.

Ñ Representing 0.408 in Mp10, 2, emin, emaxq requires rounding.

Rounding Errors and Error Propagation
Computer Arithmetic

Computers are only equipped with a so called pseudo arithmetic. We can not expect in
general that the result of x4y for 4 P t`,´, ¨, {u and machine numbers
x , y PMpp, t, emin, emaxq will also be a number in Mpp, t, emin, emaxq.

Example
Both x “ 0.12 and y “ 0.34 are from the set of machine numbers Mp10, 2, emin, emaxq, but for
their product we easily see

x ¨ y “ 0.0408 “ 0.408 ¨ 10´1,

which requires a 3 digit mantissa and thus is not in Mp10, 2, emin, emaxq.

Ñ Representing 0.408 in Mp10, 2, emin, emaxq requires rounding.

Rounding Errors and Error Propagation
Computer Arithmetic

Definition
Let x4y be an operation on x , y PMpp, t, emin, emaxq, 4 P t`,´, ¨, {u. Then the result of the
floating point operation, i.e., the result of a calculation x4y in a system of machine
numbers by x o y , is determined by

x o y “ γpx4yq, 4 P t`,´, ¨, {u. (6)

Standard Model of the Floating Point Arithmetic
For all floating point numbers x , y PMpp, t, emin, emaxq and any arithmetic operation
4 P t`,´, ¨, {u it holds:

x o y “ px4yqp1` δq, for a |δ| ď u. (7)

We always assume for
?
x that γp

?
xq “

?
xp1` δq for a δ P R with |δ| ď u

Rounding Errors and Error Propagation
Computer Arithmetic

Definition
Let x4y be an operation on x , y PMpp, t, emin, emaxq, 4 P t`,´, ¨, {u. Then the result of the
floating point operation, i.e., the result of a calculation x4y in a system of machine
numbers by x o y , is determined by

x o y “ γpx4yq, 4 P t`,´, ¨, {u. (6)

Standard Model of the Floating Point Arithmetic
For all floating point numbers x , y PMpp, t, emin, emaxq and any arithmetic operation
4 P t`,´, ¨, {u it holds:

x o y “ px4yqp1` δq, for a |δ| ď u. (7)

We always assume for
?
x that γp

?
xq “

?
xp1` δq for a δ P R with |δ| ď u

Rounding Errors and Error Propagation
Computer Arithmetic

Definition
Let x4y be an operation on x , y PMpp, t, emin, emaxq, 4 P t`,´, ¨, {u. Then the result of the
floating point operation, i.e., the result of a calculation x4y in a system of machine
numbers by x o y , is determined by

x o y “ γpx4yq, 4 P t`,´, ¨, {u. (6)

Standard Model of the Floating Point Arithmetic
For all floating point numbers x , y PMpp, t, emin, emaxq and any arithmetic operation
4 P t`,´, ¨, {u it holds:

x o y “ px4yqp1` δq, for a |δ| ď u. (7)

We always assume for
?
x that γp

?
xq “

?
xp1` δq for a δ P R with |δ| ď u

Error Propagation

Rounding Errors and Error Propagation
Error Propagation

Main question: How does the Standard Model of Floating Point
Arithmetic influences more complex operation? Especially how

does δ propagate through a set of operations?

Rounding Errors and Error Propagation
Error Propagation – Addition

Let x , y P Rzt0u, signpxq “ signpyq and

x̃ :“ γpxq “ xp1` δxq, |δx | ď u,

ỹ :“ γpyq “ yp1` δy q, |δy | ď u.

Then we have

x̃ ‘ ỹ “ px̃ ` ỹqp1` δx`y q pwhere |δx`y | ď uq

“ pxp1` δxq ` yp1` δy qqp1` δx`y q

“ ppx ` yq ` pxδx ` yδy qqp1` δx`y q

and

|x̃ ‘ ỹ ´ px ` yq| “|px ` yqδx`y ` pxδx ` yδy qp1` δx`y q|

ď|x ` y |u` p|x | ¨ u` |y | ¨ uqp1` uq

“|x ` y |u` |x ` y |up1` uq pusing signpxq “ signpyqq

“|x ` y |p2u` u2
q.

Rounding Errors and Error Propagation
Error Propagation – Addition

Thus we find
|px̃ ‘ ỹq ´ px ` yq|

|x ` y |
ď 2u` u2.

The relative error is (up to a negligible higher order term u2) at most twice as large as the relative
representation errors of the summands x and y .

Many additions may lead to a noticeable accumulated error.

Rounding Errors and Error Propagation
Error Propagation – Addition

Thus we find
|px̃ ‘ ỹq ´ px ` yq|

|x ` y |
ď 2u` u2.

The relative error is (up to a negligible higher order term u2) at most twice as large as the relative
representation errors of the summands x and y .

Many additions may lead to a noticeable accumulated error.

Rounding Errors and Error Propagation
Error Propagation – Subtraction

Similar to adding but with signpxq “ signpyq. Instead of adding two numbers with different signs here
we treat the subtraction of two numbers with a common sign.

Using the standard model we obtain

x̃ a ỹ “px̃ ´ ỹqp1` δx´y q pwhere |δx´y | ď uq

“ppx ´ yq ` pxδx ´ yδy qqp1` δx´y q

It follows

|px̃ a ỹq ´ px ´ yq| “ |px ´ yqδx´y ` pxδx ´ yδy qp1` δx´y q|

“ |px ´ yqδx´y ` pxδx ´ yδx ` yδx ´ yδy qp1` δx´y q|

“ |px ´ yqδx´y ` px ´ yqδx ` ypδx ´ δy q

` px ´ yqδxδx´y ` ypδx ´ δy qδx´y |

ď 2|x ´ y | ¨ u` 2|y |u` |x ´ y | ¨ u2
` 2|y |u2

and
|px̃ a ỹq ´ px ´ yq|

|x ´ y |
ď

ˆ

2|y |

|x ´ y |
` 2

˙

u`

ˆ

2|y |

|x ´ y |
` 1

˙

u2.

Rounding Errors and Error Propagation
Error Propagation – Subtraction

Thus for x « y we have to expect an especially large relative error. This effect is called cancellation.

To avoid cancellation it is necessary to try and rewrite the expression in a way that avoids the
subtraction of two almost equal numbers.

Rounding Errors and Error Propagation
Error Propagation – Subtraction

Thus for x « y we have to expect an especially large relative error. This effect is called cancellation.

To avoid cancellation it is necessary to try and rewrite the expression in a way that avoids the
subtraction of two almost equal numbers.

Rounding Errors and Error Propagation
Error Propagation – Subtraction

Example
Let p “ 10, t “ 10, x “ 1.2 ¨ 10´5 “ 0.12 ¨ 10´4 and y “ f pxq “ 1´cospxq

x2 .

The evaluation of f in x gives

cospxq “ 0.99999999992800 ¨ 100 “: c « 1
ùñ c̃ :“ γpcq “ 0.9999999999
ùñ ỹ “ p1a c̃q m px d xq “ 10´10 m p0.144 ¨ 10´9q “ 0.6944444444.

But the correct result rounded to ten digits of accuracy, however, is

γpf pxqq “ 0.4999997300.

The evaluation of 1a c̃ causes the error: The result here has only one correct digit, while the remaining
information got lost, when rounding c. The subsequent subtraction is performed exact, but the error 1a c̃ is
amplified by a factor of 1010.

1a c̃ “ 0.1000000000 ¨ 10´9

Ò information about these values is lost

Using the alternative formulation

f pxq “ 1
2

´

sinp x
2
q

x
2

¯2
,

which uses the identity cos x “ 1´ 2 sin2
`

x
2

˘

, one gets the much better result ỹ “ 0.5.

Rounding Errors and Error Propagation
Error Propagation – Multiplication

Let x , y , x̃ , and ỹ give as before. With a |δx¨y | ď u we have

x̃ d ỹ “ x̃ ỹp1` δx¨y q

“ xp1` δxqyp1` δy qp1` δx¨y q

“ xyp1` δxqp1` δy qp1` δx¨y q

“ xy ` xypδx ` δy ` δx¨y q `Opu2q.

It follows:
|x̃ d ỹ ´ x ¨ y |

|x ¨ y |
ď 3u`Opu2q.

Ñ Multiplications behave a bit worse than addition.

Division:

§ similar to multiplication

§ division by very small numbers should be avoided to avoid cancellation

§ but: in contrast to substraction only the absolute error is affected

Rounding Errors and Error Propagation
Error Propagation – Multiplication

Let x , y , x̃ , and ỹ give as before. With a |δx¨y | ď u we have

x̃ d ỹ “ x̃ ỹp1` δx¨y q

“ xp1` δxqyp1` δy qp1` δx¨y q

“ xyp1` δxqp1` δy qp1` δx¨y q

“ xy ` xypδx ` δy ` δx¨y q `Opu2q.

It follows:
|x̃ d ỹ ´ x ¨ y |

|x ¨ y |
ď 3u`Opu2q.

Ñ Multiplications behave a bit worse than addition.

Division:

§ similar to multiplication

§ division by very small numbers should be avoided to avoid cancellation

§ but: in contrast to substraction only the absolute error is affected

Rounding Errors and Error Propagation
Error Propagation

Regarding the previous error estimates, we end up with the following problem:

Computer arithmetic is neither associative nor distributive.

That means:

px o yq o z ‰ x o py o zq

x d py ‘ zq ‰ px d yq ‘ px d zq.

Rounding Errors and Error Propagation
Error Propagation

Regarding the previous error estimates, we end up with the following problem:

Computer arithmetic is neither associative nor distributive.

That means:

px o yq o z ‰ x o py o zq

x d py ‘ zq ‰ px d yq ‘ px d zq.

Rounding Errors and Error Propagation
Error Propagation

Regarding the previous error estimates, we end up with the following problem:

Computer arithmetic is neither associative nor distributive.

That means:

px o yq o z ‰ x o py o zq

x d py ‘ zq ‰ px d yq ‘ px d zq.

Rounding Errors and Error Propagation
Error Propagation

Example
Given Mp10, 5, emin , emax q and a “ 4.2832, b “ 4.2821, c “ 5.7632, we want to evaluate the expression
d :“ pa´ bq ¨ c. In exact calculation we find:

d “ p0.0011q ¨ 5.7632 “ 0.00633952 ùñ γpdq “ 0.63395 ¨ 10´2.

The relative error is
|d ´ γpdq|

|d |
« 0.3 ¨ 10´6.

In pseudo arithmetic using Mp10, 5, emin , emax q we have two options:

(i) paa bq d c “ p0.11 ¨ 10´2q d p0.57632 ¨ 101q “ 0.63395 ¨ 10´2 “ γpdq,
which gives the correct rounded result.

(ii) pad cq a pb d cq “: e a f “: g

e “ ad c “ γp0.24684932824 ¨ 102q “ 0.24685 ¨ 102

f “ b d c “ γp0.2467859872 ¨ 102q “ 0.24679 ¨ 102

ùñ g “ e a f “ γp0.00006 ¨ 102q “ 0.6 ¨ 10´2

ùñ
|d ´ g |

|d |
« 0.054,

The IEEE Standard 754

The IEEE Standard 754
Error Propagation

Until mid of the 1980s each CPU vendor has its own machine number formats:

Computer p t emin emax

Univac 1108 2 27 -128 127
PDP – 11 2 24 -128 127
Cray – 1 2 48 -16384 16383
HP – 45 10 10 -98 100
TI – SR5x 10 12 -98 100
IBM System/360 16 6 -64 63

Ñ manufacturers standardize the use of computer arithmetic to make results comparable. To
this end, the IEEE Standard 754 was born in 1985.

The IEEE Standard 754
Error Propagation

Until mid of the 1980s each CPU vendor has its own machine number formats:

Computer p t emin emax

Univac 1108 2 27 -128 127
PDP – 11 2 24 -128 127
Cray – 1 2 48 -16384 16383
HP – 45 10 10 -98 100
TI – SR5x 10 12 -98 100
IBM System/360 16 6 -64 63

Ñ manufacturers standardize the use of computer arithmetic to make results comparable. To
this end, the IEEE Standard 754 was born in 1985.

IEEE 754-1985

The IEEE Standard 754
IEEE 754-1985

The standard prescribes that M should be closed under the operations `, ´, ¨, {,
?

. That
means any of these operations has to lead to a result in M. Further contributions of the
standard are:

§ rounding is performed as “round-to-even”.

§ the standard model for floating point arithmetic holds, i.e., the result of an elementary
operation is behaving as if the exact result had been rounded.

§ overflows result in γpxq “ ˘8.

§ underflows with non-normalized numbers and gradual underflow.

§ two data types double (8 byte, fp64) and single (4 byte, fp32), both using p “ 2.

§ Normalization forces α1 “ 1, thus it is not stored. Ñ an extra bit for the significand.

§ The single data type has the following properties (double analogously):
§ An exponent E “ 255 is used to encode the elements ˘8 or NaN (not-a-number) that are

necessary to ensure closedness of M.
§ The exponent b of the machine number is derived from E via b “ E ´ 127, which saves

another bit for the sign of the exponent.
§ E “ 0 is used to encode subnormal numbers.

The IEEE Standard 754
IEEE 754-1985

half: (16 bit)

S EEEEE MMMMMMMMMM
0 1 5 6 15

single: (32 bit)

S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
0 1 8 9 31

double: (64 bit)

S EEEEEEEEEEE MM
0 1 11 12 63

Figure: Storage patterns for half, single and double precision variables.

The IEEE Standard 754
IEEE 754-1985

Summarizing we get the representation

x “ p´1qS ¨ p1.γ2 . . . γ24q ¨ p
E´127.

for single precision and

x “ p´1qS ¨ p1.γ2 . . . γ53q ¨ p
E´2047.

for double precision. This slightly differs from Definition of the machine numbers.

For the minimal value E “ 1 it follows in single

xmin “ 1. 0 . . . 0
loomoon

23

¨21´127 “ 0.1 ¨ 2´125 ùñ emin “ ´125.

Further, we get
emax “ 1` p254´ 127q “ 128.

The IEEE Standard 754
IEEE 754-1985

Numbers in IEEE-754 single:

0 11111111 00000000000000000000000 = `8

1 11111111 00000000000000000000000 = ´8

0 11111111 00000100000000000000000 = NaN
1 11111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = `1.0 ˚ 2128´127
“ 2

0 10000001 10100000000000000000000 = `1.101 ˚ 2129´127
“ 6.5

1 10000001 10100000000000000000000 = ´1.101 ˚ 2129´127
“ ´6.5

0 00000001 00000000000000000000000 = `1.0 ˚ 21´127
“ 2´126

“ xmin

0 00000000 10000000000000000000000 = `0.1 ˚ 2´126
“ 2´127

0 00000000 00000000000000000000001 = `0.0 . . . 01 ˚ 2´126
“ 2´149

= smallest representable number

0 00000000 00000000000000000000000 = `0

1 00000000 00000000000000000000000 = ´0

0 01111111 00000000000000000000000 = 1.0 ˚ 2127´127
“ 1.0

1 01111111 00000000000000000000000 = ´1.0 ˚ 2127´127
“ ´1.0

The IEEE Standard 754
IEEE 754-1985

Further assumptions:

§ The value of a variable can be tested for NaN since this is the only “number” for which
x ‰ x is true.

§ Whenever an incorrect result or a number is not matching the machine number definition,
this causes an exception and raise a flagflag in the CPU:

Flag Example Result

invalid
0{0, 0 ¨ 8,

?
´1,

8{8, `8` p´8q
NaN (“not a number”)

overflow xmax ˚ xmax
˘8

usually denoted: ˘Inf

division by zero x{0 for x “ 0 ˘8

underflow xmin{p
s , 1 ă s ă t subnormal number

inexact rdpx ˝ yq “ x ˝ y correctly rounded result

Table: IEEE Standard 754, Exception Handling.

IEEE 754-2008

The IEEE Standard 754
IEEE 754-2008

The revised edition of the standard serves a multitude of purposes:

§ It merges IEEE 754–1985 with IEEE 845 (a standard defining decimal floating point
numbers important in finance).

§ It reduces the possible implementation alternatives, as well as ambiguous formulations.

§ It adds two additional p “ 2-based precision levels for half (also known as fp16) (2
byte) and quadruple (16 byte) precision.

§ It extends min and max for the special cases ˘0 and ˘8.

§ The formerly denormalized numbers for gradual underflow treatment are now consistently
called subnormal numbers. (non-normalized numbers)

§ Also, a combined multiplication and addition operation called fused multiply add and
performing aÐ a˘ pbˆ cq was added to the set of basic operations fulfilling the standard
model for floating point arithmetic.

The IEEE Standard 754
IEEE 754-2008

precision p t emin emax u xmin xmax

half 2 10` 1 ´13 16 « 4.88 ¨ 10´4 « 6 ¨ 10´5 « 1 ¨ 105

single 2 23` 1 ´125 128 « 5.96 ¨ 10´8 « 1 ¨ 10´38 « 3 ¨ 1038

double 2 52` 1 ´1 021 1 024 « 1.11 ¨ 10´16 « 10´308 « 10308

quad 2 112` 1 ´16 381 16 384 « 9.63 ¨ 10´35 « 10´4 932 « 104 932

Table: IEEE standard 754-2008, data types.

An alternate 16-bit floating point format

The IEEE Standard 754
An alternate 16-bit floating point format

The half format has a very limited number range due to small representable exponents.

Google Brain project created a 16-bit floating point format called bfloat16 with key
properties close to the fp32 or single format:

§ preserves the first 16 bits of fp32 layout,
§ uses the same exponent range as fp32,
§ reduces the significand to 7 bits (+1 bit from normalization),
§ Ñ inherits the good range of real numbers from single precision,
§ Ñ but has fewer numbers in that range due to the shorter significand,
§ exception handling follows IEEE standards,
§ conversion from fp32 to bfloat16 is easy, only requiring the copy of the first 16 bits
§ is the most widely accepted quasi-standard among lower precision number formats.

S EEEEEEEE MMMMMMM
0 1 8 9 15

Figure: Storage pattern for bfloat16 half precision variables.

Error Analysis

Error Analysis

A computed result is influenced by errors from different categories:

§ data errors: input data are not known exactly, e.g., due to measurement inaccuracies.

§ rounding errors: Errors resulting from the necessity to work with numbers from
Mpp, t, emin, emaxq instead of R and the evaluation of expressions with a finite significand.

§ methodological errors: Methodological errors depend on different factors. On the one
hand, the accuracy of the model underlying the computation plays a role. On the other
hand, also the solution method applied to solve or evaluate the model has a crucial
contribution to this type of error.

The methodological error in any case strictly depends on the task at hand and the way it is
solved.

Error Analysis

A computed result is influenced by errors from different categories:

§ data errors: input data are not known exactly, e.g., due to measurement inaccuracies.

§ rounding errors: Errors resulting from the necessity to work with numbers from
Mpp, t, emin, emaxq instead of R and the evaluation of expressions with a finite significand.

§ methodological errors: Methodological errors depend on different factors. On the one
hand, the accuracy of the model underlying the computation plays a role. On the other
hand, also the solution method applied to solve or evaluate the model has a crucial
contribution to this type of error.

The methodological error in any case strictly depends on the task at hand and the way it is
solved.

Conditioning / Condition Number / Stability

Error Analysis
Conditioning / Condition Number / Stability

Ñ a property of the mathematical problem only

Example
We consider to affine linear functions

f1pxq “ a1x ` b1 and f2pxq “ a2x ` b2,

where a1 “ 10´5 and a2 “ 105. b1 and b2 are determined such that f1px
˚q “ f2px

˚q “ 0.
Some algorithm computing the root x̃˚ of f1 (or f2) stops once |f1px̃

˚q| ď δ (or |f2px̃
˚q| ď δ),

with δ “ 10´3 is fulfilled. Now, we have for x̃˚:

f1 : x̃˚ P rx˚ ´ 100, x˚ ` 100s and f2 : x̃˚ P
“

x˚ ´ 10´8, x˚ ` 10´8
‰

§ f1 corresponds to a badly conditioned problem

§ f2 corresponds to a well conditioned problem

Error Analysis
Conditioning / Condition Number / Stability

Ñ a property of the mathematical problem only

Example
We consider to affine linear functions

f1pxq “ a1x ` b1 and f2pxq “ a2x ` b2,

where a1 “ 10´5 and a2 “ 105. b1 and b2 are determined such that f1px
˚q “ f2px

˚q “ 0.
Some algorithm computing the root x̃˚ of f1 (or f2) stops once |f1px̃

˚q| ď δ (or |f2px̃
˚q| ď δ),

with δ “ 10´3 is fulfilled. Now, we have for x̃˚:

f1 : x̃˚ P rx˚ ´ 100, x˚ ` 100s and f2 : x̃˚ P
“

x˚ ´ 10´8, x˚ ` 10´8
‰

§ f1 corresponds to a badly conditioned problem

§ f2 corresponds to a well conditioned problem

Error Analysis
Conditioning / Condition Number / Stability

We consider the problem of evaluating the function y “ f pxq, where f : D Ñ V maps the data
x P D onto the result y P V .

Definition
Let ∆x be the perturbation on the input data x . Then the evaluation of f computes

y `∆y “ f px `∆xq,

where ∆y covers the error of the perturbed computation. Then the condition number cpf , xq
is given by the bound on the relative error:

}∆y}

}y}
ď cpf , xq ¨

}∆x}

}x}
.

Ñ The condition number gives information about how an error in the input could be amplified
by evaluating a function f pxq.

Ñ The corresponding property for an algorithm is called stability.

Error Analysis
Conditioning / Condition Number / Stability

We consider the problem of evaluating the function y “ f pxq, where f : D Ñ V maps the data
x P D onto the result y P V .

Definition
Let ∆x be the perturbation on the input data x . Then the evaluation of f computes

y `∆y “ f px `∆xq,

where ∆y covers the error of the perturbed computation. Then the condition number cpf , xq
is given by the bound on the relative error:

}∆y}

}y}
ď cpf , xq ¨

}∆x}

}x}
.

Ñ The condition number gives information about how an error in the input could be amplified
by evaluating a function f pxq.

Ñ The corresponding property for an algorithm is called stability.

Error Analysis
Conditioning / Condition Number / Stability

We consider the problem of evaluating the function y “ f pxq, where f : D Ñ V maps the data
x P D onto the result y P V .

Definition
Let ∆x be the perturbation on the input data x . Then the evaluation of f computes

y `∆y “ f px `∆xq,

where ∆y covers the error of the perturbed computation. Then the condition number cpf , xq
is given by the bound on the relative error:

}∆y}

}y}
ď cpf , xq ¨

}∆x}

}x}
.

Ñ The condition number gives information about how an error in the input could be amplified
by evaluating a function f pxq.

Ñ The corresponding property for an algorithm is called stability.

Forward Error Analysis

Error Analysis
Forward Error Analysis

Notation:

§ x P D are the data for the problem,

§ f : D Ñ V is the mathematical problem mapping data to values,

§ and y “ f pxq P V is the exact result, whereas

§ ŷ is the numerically computed result (e.g. with the help of an algorithm).

Obvious question: How do y and ŷ relate to each other?

}y ´ ŷ} “?,
}y ´ ŷ}

}y}
“?

Ñ Forward error analysis performs a step by step analysis of the propagation and the
accumulation of the rounding errors.

Error Analysis
Forward Error Analysis

Notation:

§ x P D are the data for the problem,

§ f : D Ñ V is the mathematical problem mapping data to values,

§ and y “ f pxq P V is the exact result, whereas

§ ŷ is the numerically computed result (e.g. with the help of an algorithm).

Obvious question: How do y and ŷ relate to each other?

}y ´ ŷ} “?,
}y ´ ŷ}

}y}
“?

Ñ Forward error analysis performs a step by step analysis of the propagation and the
accumulation of the rounding errors.

Error Analysis
Forward Error Analysis

Notation:

§ x P D are the data for the problem,

§ f : D Ñ V is the mathematical problem mapping data to values,

§ and y “ f pxq P V is the exact result, whereas

§ ŷ is the numerically computed result (e.g. with the help of an algorithm).

Obvious question: How do y and ŷ relate to each other?

}y ´ ŷ} “?,
}y ´ ŷ}

}y}
“?

Ñ Forward error analysis performs a step by step analysis of the propagation and the
accumulation of the rounding errors.

Error Analysis
Forward Error Analysis

Example
Let the mathematical problem be that of solving the simple quadratic equation y2 ´ 2ay ` b “ 0, for given
a, b P Mpp, t, emin, emaxq. The two solutions are known to be

y1 “ a´
a

a2 ´ b, and y2 “ a`
a

a2 ´ b.

We concentrate on the computation of y1. Exactly following the solution formula above is giving the below
algorithm in exact and finite arithmetic (following the standard model for floating point arithmetic):

exact computation numerical realization
1. c :“ a ¨ a ùñ ĉ “ a2p1` δ1q

2. d :“ c ´ b ùñ d̂ “ pĉ ´ bqp1` δ2q

3. e :“
?
d ùñ ê “

a

d̂p1` δ3q

4. y1 :“ a´ e ùñ ŷ1 “ pa´ êqp1` δ4q

Here we have |δi | ď u, i “ 1, . . . , 4 due to the standard model assumption.

Error Analysis
Forward Error Analysis

Example
Now inserting all computed quantities we find

ŷ1 “

"

a´
b

pa2p1` δ1q ´ bqp1` δ2qp1` δ3q

*

p1` δ4q

“ ap1` δ4q

´

!

a2 p1` δ1qp1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooooooooooomooooooooooooooooooooooon

“ 1` δ1 ` δ2 ` 2δ3 ` 2δ4 `Opu2
q

“: 1` ε1, |ε1| ď 6u`Opu2
q

´b p1` δ2qp1` δ3q
2
p1` δ4q

2
looooooooooooooooomooooooooooooooooon

1` δ2 ` 2δ3 ` 2δ4 `Opu2
q

“: 1` ε2, |ε2| ď 5u`Opu2
q

) 1
2

“ a` aδ4 ´

b

pa2 ´ bq ` pa2ε1 ´ bε2q

“ a` aδ4 ´
a

a2 ´ b ´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q `Opu2q

Error Analysis
Forward Error Analysis

Example
The last step exploits that using a Taylor expansion of gpxq :“

?
x at

x `∆x “ a2 ´ b
loomoon

“:x

` a2ε1 ´ bε2
looooomooooon

“:∆x

,

we get

gpx `∆xq “
?
x `∆x “

?
x `

1

2
?
x

∆x `Opp∆xq2q,

where |∆x | ď 6p|a2| ` |b|qu “ Opuq.

Error Analysis
Forward Error Analysis

Example
Using this knowledge for the numerical result it follows

ŷ1 “ y1 ´
1

2
?
a2 ´ b

pa2ε1 ´ bε2q ` aδ4 `Opu2q

and thus for the relative error we get

|ŷ1 ´ y1|

|y1|
“

1

|a´
?
a2 ´ b|

¨
1

2
?
a2 ´ b

ˇ

ˇ

ˇ
a2ε1 ´ bε2 ` 2aδ4

a

a2 ´ b
ˇ

ˇ

ˇ

loooooooooooooooooomoooooooooooooooooon

ďa2¨6u` |b|¨5u
loomoon

ă|b|¨6u

`|a|
?

a2´b¨2u

`Opu2q

ď 3
a2 ` |b| ` |a|

?
a2 ´ b

?
a2 ´ b ¨ |a´

?
a2 ´ b|

u`Opu2q

The forward error may be large if the denominator is small. This can happen in two cases that can both be
traced back to cancellation happening in the computation of y1.

piq a2 « b ùñ cancellation in 2. d :“ a2 ´ b,
piiq |b| ! a2 ^ a ą 0 ùñ cancellation in 4. y1 “ a´ e.

Backward Error Analysis

Error Analysis
Backward Error Analysis

Given the result of the computation ŷ — can we express ŷ as the exact solution of a
mathematical problem for slightly perturbed data? That means:

Does there exist a ∆x , such that ŷ “ f px `∆xq?

Asking this question makes sense, since for inaccurate data x we only know the correct value
up to, e.g., measurement errors. If the analysis for ŷ “ f px `∆xq now provides a ∆x that is of
the magnitude of the data errors (i.e., measurement inaccuracies), then the computation result
is as good as we can expect. An answer to the above question is derived by a so called
backward error analysis.

Error Analysis
Backward Error Analysis

Given the result of the computation ŷ — can we express ŷ as the exact solution of a
mathematical problem for slightly perturbed data? That means:

Does there exist a ∆x , such that ŷ “ f px `∆xq?

Asking this question makes sense, since for inaccurate data x we only know the correct value
up to, e.g., measurement errors. If the analysis for ŷ “ f px `∆xq now provides a ∆x that is of
the magnitude of the data errors (i.e., measurement inaccuracies), then the computation result
is as good as we can expect. An answer to the above question is derived by a so called
backward error analysis.

Error Analysis
Backward Error Analysis

Definition
η :“ inft}∆x}; ŷ “ f px `∆xqu is the (absolute) backward error of ŷ ,
ηrel :“ η{}x} is called the relative backward error, where } . } is a suitable norm in the set of
data D.

D V

x ‚

x `∆x ‚

‚ y

‚ y `∆y

f

f

backward
error forward er-

ror

numerical com-
putation

Error Analysis
Backward Error Analysis

Definition
η :“ inft}∆x}; ŷ “ f px `∆xqu is the (absolute) backward error of ŷ ,
ηrel :“ η{}x} is called the relative backward error, where } . } is a suitable norm in the set of
data D.

D V

x ‚

x `∆x ‚

‚ y

‚ y `∆y

f

f

backward
error forward er-

ror

numerical com-
putation

Error Analysis
Backward Error Analysis

Definition
If for any x P D a method for computing y “ f pxq produces a ŷ “ f px `∆xq for a small
relative backward error

ˇ

ˇ

∆x
x

ˇ

ˇ, then the method is said to be (numerically) backward stable.
The concrete definition of small depends on the problem, but might, e.g., mean ∆x is of the
size of the unavoidable data errors.

On the other hand, a method is called (numerically) forward stable if it produces a relative

forward error
ˇ

ˇ

ˇ

∆y
y

ˇ

ˇ

ˇ
of the same magnitude that a backward stable method would.

Error Analysis
Backward Error Analysis

Remark
§ A forward stable method does not necessarily need to be backward stable to meet the

definition.

§ The definition primarily conveys that a forward stable algorithm produces an error
approximately proportional to the data error, influenced by the condition number.

§ Even if the backward error of the computed solution is small, this error can be amplified
by a factor as large as the condition number when transitioning to the forward error in a
forward stable method.

We always have:

backward stable ñ forward stable

The opposite implication does, however, in general not hold.

Error Analysis
Backward Error Analysis

Remark
§ A forward stable method does not necessarily need to be backward stable to meet the

definition.

§ The definition primarily conveys that a forward stable algorithm produces an error
approximately proportional to the data error, influenced by the condition number.

§ Even if the backward error of the computed solution is small, this error can be amplified
by a factor as large as the condition number when transitioning to the forward error in a
forward stable method.

We always have:

backward stable ñ forward stable

The opposite implication does, however, in general not hold.

Error Analysis
Backward Error Analysis

The verification of backward stability involves a backward error analysis, where the computed result
ŷ is considered as the exact computation for perturbed data. This perturbed data is then compared to
the original data.

Example
Consider y1 “ a´

?
a2 ´ b and ŷ1 the corresponding solution of the quadratic equation for perturbed

data a and b

y 2
´ 2pa`∆aqy ` pb `∆bq “ 0

To this end, we require an expression of the form

ŷ1 “ pa`∆aq ´

b

pa`∆aq2 ´ pb `∆bq.

Error Analysis
Backward Error Analysis

Example
As for the forward error analysis we get

ŷ1 “ ap1` δ4q

´

!

a2
p1` δ1qp1` δ2qp1` δ3q

2
looooooooooooooomooooooooooooooon

“1`δ1`δ2`2δ3`Opu2q

“:1`ε1, |ε1|ď4u`Opu2q

p1` δ4q
2
´ b p1` δ1qp1` δ3q

2
p1` δ4q

2
loooooooooooooooomoooooooooooooooon

“:1`ε2, |ε2|ď5u`Opu2q

) 1
2

“ a` aδ4 ´

!

pa` aδ4q
2
´ b p 1` ε2 ´

a2

b
ε1p1` δ4q

2

looooooooooooomooooooooooooon

“1`ε2´
a2

b
ε1`Opu2q

“:1`δb, |δb |ď5u` 4a2

|b|
u`Opu2q

q

)

1
2

“ pa` aδ4q ´

b

pa` aδ4q
2
´ pb ` bδbq

Error Analysis
Backward Error Analysis

Example
Now defining ∆a :“ aδ4, ∆b :“ bδb we can estimate the relative backward error as

|ηa|

|a|
ď

|∆a|

|a|
ď |δ4| ď u,

|ηb|

|b|
ď |δb| ď

ˆ

5`
4a2

|b|

˙

looooomooooon

amplification factor

u`Opu2
q.

Note that the relative error is the infimum over all possible errors ∆x “ ∆ ra, bs. A small backward
error, as we would expect it from a numerically backward stable algorithm, is derived if a2

« |b|. The
error may get large in case a2

" b.

Remark
The separate consideration of the backward errors in a and b is called component-wise error analysis.
For a norm-wise consideration one tries to estimate 1

}r ab s}2

η.

Perturbation Analysis

Error Analysis
Perturbation Analysis

Determine whether the problematic error amplification is:

§ problem immanent,

§ caused by the specific algorithmic approach chosen for solving the problem.

Ñ reformulate the algorithm to avoid the second problem.

Ñ Use perturbation analysis to find the condition number of the problem.

Again, let
f : D Ñ V , f P C2pDq, y “ f pxq, ŷ “ f px `∆xq,

where C2pDq is the set of two times differentiable functions on D.

Error Analysis
Perturbation Analysis

Determine whether the problematic error amplification is:

§ problem immanent,

§ caused by the specific algorithmic approach chosen for solving the problem.

Ñ reformulate the algorithm to avoid the second problem.

Ñ Use perturbation analysis to find the condition number of the problem.

Again, let
f : D Ñ V , f P C2pDq, y “ f pxq, ŷ “ f px `∆xq,

where C2pDq is the set of two times differentiable functions on D.

Error Analysis
Perturbation Analysis

Determine whether the problematic error amplification is:

§ problem immanent,

§ caused by the specific algorithmic approach chosen for solving the problem.

Ñ reformulate the algorithm to avoid the second problem.

Ñ Use perturbation analysis to find the condition number of the problem.

Again, let
f : D Ñ V , f P C2pDq, y “ f pxq, ŷ “ f px `∆xq,

where C2pDq is the set of two times differentiable functions on D.

Error Analysis
Perturbation Analysis

Question: How does the disturbanced of the data ∆x influence the computed result ŷ?

Obviously, the large the slope of tangent of f in x the more ŷ deviates from y when the input
is perturbed.

Mathematically speaking, we have

f px `∆xq “ f pxq ` f 1pxq∆x ` op∆xq,

with g P op∆xq means that lim∆xÑ0
gp∆xq

∆x “ 0. This yields:

ŷ ´ y “ f px `∆xq ´ f pxq

“ f pxq ` f 1pxq∆x ` op∆xq ´ f pxq

“ f 1pxq ¨∆x ` op∆xq « f 1pxq ¨∆x .

Ñ the factor |f 1pxq| amplifies the data errors in the result ŷ
Ñ asymptotic or local perturbation analysis since it focuses on a local neighborhood of x

Error Analysis
Perturbation Analysis

Question: How does the disturbanced of the data ∆x influence the computed result ŷ?

Obviously, the large the slope of tangent of f in x the more ŷ deviates from y when the input
is perturbed.

Mathematically speaking, we have

f px `∆xq “ f pxq ` f 1pxq∆x ` op∆xq,

with g P op∆xq means that lim∆xÑ0
gp∆xq

∆x “ 0. This yields:

ŷ ´ y “ f px `∆xq ´ f pxq

“ f pxq ` f 1pxq∆x ` op∆xq ´ f pxq

“ f 1pxq ¨∆x ` op∆xq « f 1pxq ¨∆x .

Ñ the factor |f 1pxq| amplifies the data errors in the result ŷ
Ñ asymptotic or local perturbation analysis since it focuses on a local neighborhood of x

Error Analysis
Perturbation Analysis

As seen before, the relative error is the more important one, we obtain:

ŷ ´ y

y
“

f 1pxq∆x

y
` op∆xq

“
f 1pxq ¨ x

f pxq
¨

∆x

x
` op∆xq

and thus

|ŷ ´ y |

|y |
“

ˇ

ˇ

ˇ
f 1pxq ¨ x

ˇ

ˇ

ˇ

|f pxq|
loooomoooon

“:cpf ,xq

¨
|∆x |

|x |
` op|∆x |q. (8)

Error Analysis
Perturbation Analysis

Definition
Let f P CpDq, x , x `∆x P D and f px `∆xq “ ŷ . The infimum of all numbers cabspf , xq for
which

‖y ´ ŷ‖ ď cabspf , xq ‖∆x‖` op‖∆x‖q

holds, is called (absolute) condition number of f in x .
Analogously, the infimum of all numbers cpf , xq “ crelpf , xq, such that

‖y ´ ŷ‖
‖y‖

ď crelpf , xq
‖∆x‖
‖x‖

` o

ˆ

‖∆x‖
‖x‖

˙

is true, is denoted as (relative) condition number of f in x.

Error Analysis
Perturbation Analysis

If f is differentiable then in analogy to (8)

cabspf , xq “
∥∥f 1pxq∥∥

and

cpf , xq “ crelpf , xq ď
‖x‖

‖f pxq‖
∥∥f 1pxq∥∥ ,

where f 1 is the Jacobi matrix of f : D Ñ V in x and the norms have to be compatible.
Optimal: The norm for f 1 is induced from the norm of x . (Õ later in the lecture)

Error Analysis
Perturbation Analysis

Example

Error Analysis
Perturbation Analysis

We consider the quadratic equation again: Here we have x “
“

a
b

‰

P R2 and

f pa, bq “ a´
a

a2 ´ b, y “ f pa, bq, ŷ “ f pa`∆a, b `∆bq.

Further, let us assume

max

"

|∆a|

|a|
,
|∆b|

|b|

*

ď ε ! 1.

For the evaluation of the Taylor expansion we require the partial derivatives of f with respect to the
data a, b:

Bf

Ba
pa, bq “ 1´

1

2
pa2
´ bq

´ 1
2 ¨ 2a “ 1´

a
?
a2 ´ b

“

?
a2 ´ b ´ a
?
a2 ´ b

“ ´
f pa, bq
?
a2 ´ b

,

Bf

Bb
pa, bq “

1

2
¨

1
?
a2 ´ b

.

Error Analysis
Perturbation Analysis

Example
Further assuming that a2

ą b ą 0 or b ă 0, such that
?
a2 ´ b P R, we find

ŷ ´ y “ f pa, bq `
Bf

Ba
pa, bq ¨∆a`

Bf

Bb
pa, bq ¨∆b ` opεq ´ f pa, bq

“ ´
f pa, bqa
?
a2 ´ b

¨
∆a

a
`

1

2
¨

b
?
a2 ´ b

∆b

b
` opεq

and thus

|ŷ ´ y |

|y |
ď

|a|
?
a2 ´ b

loooomoooon

“:capf ,a,bq

¨
|∆a|

|a|
`

|b|

2
?
a2 ´ b ¨ |a´

?
a2 ´ b|

looooooooooooooomooooooooooooooon

“:cbpf ,a,bq

¨
|∆b|

|b|
` opεq (9)

ď
1

?
a2 ´ b

ˆ

|a| `
|b|

2|a´
?
a2 ´ b|

˙

¨ ε` opεq. (10)

Error Analysis
Perturbation Analysis

Example
The inequality (9) here represents the component-wise perturbation analysis and (10) the norm-wise
one. A norm-wise consideration also follows from the Cauchy-Schwarz-Inequality applied to

ŷ ´ y “ p∇f pa, bqqT
„

∆a
∆b

` opεq,

such that

|ŷ ´ y | ď ‖∇f pa, bq‖ ¨
∥∥∥∥„ ∆a

∆b

∥∥∥∥` opεq.

Here, we are only interested in the (usually more precise) component wise consideration.

Error Analysis
Perturbation Analysis

Example

case 1: a2
« b For a2

Ñ b it follows capf , a, bq Ñ 8 and also cbpf , a, bq Ñ 8.

The problem thus is ill-conditioned, i.e., we can not expect “good” results. A large
forward error is “unavoidable”. The large forward errors in this case are therefore
caused by the bad conditioning of the problem. This corresponds to the observation
that the backward error is still small in this case.

case 2: a2
" b In this case capf , a, bq « 1. The same can easily be seen for cbpf , a, bq when

considering b
a2 Ñ 0 ô b Ñ 0 and applying L’Hôpitals rule. That means, we find that

the problem is well conditioned in this case.

Ñ Since the method for computing y1 is performing well in most cases and only misbehaves in the
case where a2

« b, we also call the method conditionally stable.

Conclusion

Error Analysis
Conclusion

1. cpf , xq in general not only depends on the problem but also on the data supplied to it. A
mathematical problem thus is not generally good or bad, but it depends on where in D we
evaluate it.

2. Condition numbers can be categorized as follows:
cpf , xq « 1 ñ well conditioned.
cpf , xq " 1 ñ ill-conditioned.
cpf , xq ! 1 may be bad as well since we can easily “lose information” due to the

large possible backward errors.

Error Analysis
Conclusion

3. An unstable algorithm can result from the decomposition of a (possibly well conditioned)
mathematical problem into a concatenation of sub-tasks, i.e.,

f pxq “ pgk ˝ gk´1 ˝ . . . ˝ g1qpxq,

where one or more of the gj are ill-conditioned. For example, if the gj are elementary
operations and one of them is suffering from cancellation, then the loss of information
resulting from the cancellation may prevail the remaining computation.

4. The main property of the connection between forward error, backward error and condition
number is sketched by the rough rule:

forward error « condition numberˆ backward error.

This again illustrates the implication

backward stability ñ forward stable

Error Analysis
Conclusion

good conditioning & stable algorithm ùñ reliable result.

bad conditioning or unstable algorithm ùñ unsure result.

Error Analysis
Conclusion

Error Analysis
Conclusion

Error Analysis
Conclusion

	
	Machine Numbers
	p–adic expansion
	Decimal System
	Binary System
	Octal System
	Hexadecimal System
	Normalized Floating Point Representation
	Computer Representable Numbers

	Rounding Errors and Error Propagation
	Rounding Rules
	Overflows and Underflows
	Rounding Errors
	Computer Arithmetic
	Error Propagation

	The IEEE Standard 754
	IEEE 754-1985
	IEEE 754-2008
	An alternate 16-bit floating point format

	Error Analysis
	Conditioning / Condition Number / Stability
	Forward Error Analysis
	Backward Error Analysis
	Perturbation Analysis
	Conclusion

