
Scientific Computing I
Solving Linear Systems With Sparse Matrices

Martin Köhler

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical
Systems

Winter Term 2024/2025

Preliminaries

Recall

Preliminaries
Recall

§ sparse matrix: A P Rnˆn, such that y “ Ax can be computed in Opnq complexity.

§ storage:
§ only non-zero entries are stored,
§ indirect indexing is mandatory for minimal storage requirements,
§ e.g., CSR (compressed sparse row storage, with C/zero based indexing)

»

—

—

–

1 2 0 0
0 3 4 0
0 5 0 6
0 0 7 0

fi

ffi

ffi

fl

Ñ

»

–

1 2 3 4 5 6 7
0 1 1 2 1 3 2
0 2 4 6 7

fi

fl

values (double)
column indices (long)
row-pointers (long)

number of non-zeroes

Issues

Preliminaries
Issues – Cache

Indirect indexing requires the value, index and row-pointer vectors to reside in the cache
simultaneously for optimal performance.
Consider:

§ 64 bit architecture

§ in average 10 entries per row

§ 4MB cache

§ A P R24 000ˆ24 000

Required storage:

p24 000` 240 000` 240 000q ˆ 8 Bytes “ 504 000ˆ 8 Bytes

“ 4032 kBytes

That means we have p4 096´ 4 032q kBytes“ 64 kByte of cache left for instructions in
y “ Ax . In applications one easily wants to work with n “ 106 . . . 108, which on modern
computers usually easily fits into RAM. The execution speed of operations with A are thus
strictly limited by data transfer rate from the main memory to the caches.

Preliminaries
Issues – Fill in

Another important issue with sparse matrices arises with direct solvers. These require matrix
factorizations. However, it can not be guaranteed that the factors stay sparse if the matrix A is
sparse. Usually the factors get a certain amount of new entries. The new entries are referred to
as fill or fill-in. We will see more details on this phenomenon later.

Preliminaries
Issues – Fill in

Example 8.1 (Fill-In)

The diagrams below show the non-zero entry distribution in A, L and U for A sparse and
A “ LU.

A L U

worst case

best case

Definitions

Preliminaries
Definitions

Definition 8.2 (pattern)

Let A P Rnˆn be a matrix.
We call the set

PpAq “ tpi , jq : aij ­“ 0u

the pattern of A.
Furthermore, we define

PRpA, iq “ tj : aij ­“ 0u

as the pattern of the i-th row of A.

Preliminaries
Definitions

Definition 8.3 (structural rank)

Let PpAq Ă N2 be a pattern of a matrix A P Rnˆn. The number

rkSpAq “ maxtrankpBq : B P Rnˆn with PpBq “ PpAqu

is called the structural rank of A.
If rkSpAq ă n, then A is called structural rank deficient

Example 8.4

A “

„

1 1
1 1



, C “

„

0 1
0 0



,

rkSpAq “ 2 ­“ 1 “ rankpAq , rkSpC q “ 1 “ rankpC q .

Preliminaries
Definitions

Definition 8.3 (structural rank)

Let PpAq Ă N2 be a pattern of a matrix A P Rnˆn. The number

rkSpAq “ maxtrankpBq : B P Rnˆn with PpBq “ PpAqu

is called the structural rank of A.
If rkSpAq ă n, then A is called structural rank deficient

Example 8.4

A “

„

1 1
1 1



, C “

„

0 1
0 0



,

rkSpAq “ 2 ­“ 1 “ rankpAq , rkSpC q “ 1 “ rankpC q .

Preliminaries
Definitions

Remark 1

The structural rank of A is:

§ a property related to the pattern PpAq,
§ much cheaper to compute than the (numerical) rank,

§ available via sprank() in MATLAB®,

§ an upper bound to the rank of A.

Preconditioning

Ideas

Preconditioning
Ideas

We have already seen, that the solution of a linear system Ax “ b depends strongly on the
condition number of the matrix A:

‖∆x‖
‖x‖

ď κpAq
‖∆b‖
‖b‖

.

Furthermore, the convergence speed of almost all iterative solvers depend strongly on the
condition number κpAq.

Preconditioning
Ideas

Remember the following Lemma:

Lemma 8.5

Let P P Cnˆn be invertible and A P Cnˆn, then the linear systems of equations Ax “ y and
PAx “ Py for x, y P Cn are equivalent.

Goal: We need to find a P P Rnˆn such that

κpPAq ă κpAq

The perfect candidate for such a matrix P is obviously A´1, since then PA “ I and κpPAq “ 1.
However, A´1 is not accessible and especially has even worse “fill in” restrictions than the
factorizations. Good approximations to A´1 are thus required that are:

§ cheap to generate,

§ easily and efficiently applicable,

§ able to get stored with similar memory requirement as A.

Preconditioning
Ideas

Remember the following Lemma:

Lemma 8.5

Let P P Cnˆn be invertible and A P Cnˆn, then the linear systems of equations Ax “ y and
PAx “ Py for x, y P Cn are equivalent.

Goal: We need to find a P P Rnˆn such that

κpPAq ă κpAq

The perfect candidate for such a matrix P is obviously A´1, since then PA “ I and κpPAq “ 1.
However, A´1 is not accessible and especially has even worse “fill in” restrictions than the
factorizations. Good approximations to A´1 are thus required that are:

§ cheap to generate,

§ easily and efficiently applicable,

§ able to get stored with similar memory requirement as A.

Preconditioning
Ideas

Remember the following Lemma:

Lemma 8.5

Let P P Cnˆn be invertible and A P Cnˆn, then the linear systems of equations Ax “ y and
PAx “ Py for x, y P Cn are equivalent.

Goal: We need to find a P P Rnˆn such that

κpPAq ă κpAq

The perfect candidate for such a matrix P is obviously A´1, since then PA “ I and κpPAq “ 1.
However, A´1 is not accessible and especially has even worse “fill in” restrictions than the
factorizations. Good approximations to A´1 are thus required that are:

§ cheap to generate,

§ easily and efficiently applicable,

§ able to get stored with similar memory requirement as A.

Preconditioning
Ideas

Remark 2

Using a matrix P as
PAx “ Pb

is called left preconditioning. Other versions like right, or two-sided preconditioning also exist.
The ideas are very similar there, therefore we restrict the presentation to the most simple case.

Remark 3

P does not need to be a matrix, e.g., sometimes other (iterative) solvers are used.

Preconditioning
Ideas

Remark 2

Using a matrix P as
PAx “ Pb

is called left preconditioning. Other versions like right, or two-sided preconditioning also exist.
The ideas are very similar there, therefore we restrict the presentation to the most simple case.

Remark 3

P does not need to be a matrix, e.g., sometimes other (iterative) solvers are used.

Diagonal Preconditioning

Preconditioning
Diagonal Preconditioning

P´1 “ diagpAq

§ also called Jacobi preconditioning

§ very simple and cheap

§ might improve certain problems, e.g., diagonal dominant systems

§ generally not sufficient

§ more sophisticated variants use diagonal k ˆ k (k ą 1) blocks or multiple diagonals (e.g.,
tridiagonal preconditioning)

Splitting Methods

Preconditioning
Splitting Methods

Recall the Iterative Refinement. Set A “ B ` pA´ Bq, then

Ax “ b ô Bx “ b ` pB ´ Aqx .

This motivates to define:
xi`1 “ B´1b ` B´1pB ´ Aq

loooooomoooooon

M

xi .

If we can ensure ρpMq ă 1 then by a fixed point argument we can guarantee convergence.

Example 8.6

Two common examples of splitting methods are:

§ B “ diagonal of A ; Jacobi method

§ B “ lower triangle of A ; Gauß Seidel method

Incomplete Factorizations

Preconditioning
Incomplete Factorizations

Computation of LU “ A is often infeasible due to fill-in.
Basic idea: Only allow entries in L,U corresponding to PpAq. This leads to the ILUp0q often
written simply as ILU.

§ usually only provides poor approximation

§ variants allow:
§ “levels (k) of fill” (ILUpkq)
§ fill-in that exceeds a drop tolerance ε (ILUpεq)
§ adding dropped fill to the diagonal (MIC)

Sparse Approximate Inverses (SPAI)

Preconditioning
Sparse Approximate Inverses (SPAI)

The basic idea of the sparse approximate inverse (SPAI) is to find the matrix M P Rnˆn that
best approximates A´1 among all matrices with PpMq “ PpAq, in the sense

min
M

‖AM ´ I‖2
F “ min

M

n
ÿ

j“1

‖Amj ´ ej‖2
F

loooooooomoooooooon

n independent least squares problems

.

The SPAI preconditioner is especially attractive in parallel computing due to the independent
column-wise computation.

In order to improve the approximation quality, similar pattern-extension considerations as for
the incomplete factorizations can be used.

In any case, only matrix vector products are required for the application of the preconditioner,
since PAx would be evaluated as PpAxq, i.e., two subsequent matrix vector products.

Krylov Subspaces and Projection Methods

Krylov Subspaces and Projection Methods

Definition 8.7

A P Cnˆn regular, b P Cn. A projection method for Ax “ b is a procedure for approximation
of x by xm P x0 `Km, which satisfies

pb ´ Axmq K Lm. (1)

Here, x0 P Cn is an arbitrary initial vector and Km, Lm are m-dimensional subspaces of Cn.
Condition (1) represents orthogonality in the Euclidean sense.
In case Km “ Lm, (1) is called Galerkin-condition and one has an orthogonal projection
method. In case Km ­“ Lm, (1) is called Petrov-Galerkin-condition and one has an oblique
projection method.

Krylov Subspaces and Projection Methods

Definition 8.8

A P Cnˆn regular, y P Cn.

1. KmpA, yq “ spanty ,Ay ,A2y , . . . ,Am´1yu is called the m-th Krylov subspace of A for a
seed vector y .

2. A projection method with Km “ KmpA, yq is called Krylov subspace (projection)
method.

Definition 8.9 (minimal polynomial of A)

Let pνpλq “
ν
ř

j“0

ajλ
j . The polinomial pν is called minimal polynomial of A if ν P N is the

smallest degree such that pνpAq “ 0.

Krylov Subspaces and Projection Methods

Definition 8.8

A P Cnˆn regular, y P Cn.

1. KmpA, yq “ spanty ,Ay ,A2y , . . . ,Am´1yu is called the m-th Krylov subspace of A for a
seed vector y .

2. A projection method with Km “ KmpA, yq is called Krylov subspace (projection)
method.

Definition 8.9 (minimal polynomial of A)

Let pνpλq “
ν
ř

j“0

ajλ
j . The polinomial pν is called minimal polynomial of A if ν P N is the

smallest degree such that pνpAq “ 0.

Krylov Subspaces and Projection Methods

In exact arithmetic we get the exact solution with m “ ν, since

ν
ÿ

j“0

ajA
j “ 0 ô A

ν
ÿ

j“1

ajA
j´1 “ ´a0I .

Thus

A´1 “ ´
1

a0

ν
ÿ

j“1

ajA
j´1,

which, in turn, means

x “ A´1b “ ´
1

a0

ν
ÿ

j“1

ajA
j´1b P KνpA, bq.

Krylov Subspaces and Projection Methods

Now we let x0 P Cn be the initial vector and r0 :“ b ´ Ax0 the corresponding initial residual.
Further, let Km “ KmpA, r0q, Lm be subspaces, and the columns of Vm,Wm P Cnˆm bases of
Km and Lm, respectively.

Then, for xm P x0 `Km there exists a σm P Cm with xm “ x0 ` Vmσm and (1) holds iff

ô 0 “W H
m pb ´ Apx0 ` Vmσmqq

ô 0 “W H
m pb ´ Ax0q ´W H

mAVmσm

ôW H
mAVmσm “W H

m r0

ô σm “ pW
H
mAVmq

´1
W H

m r0.

Krylov Subspaces and Projection Methods

Now we let x0 P Cn be the initial vector and r0 :“ b ´ Ax0 the corresponding initial residual.
Further, let Km “ KmpA, r0q, Lm be subspaces, and the columns of Vm,Wm P Cnˆm bases of
Km and Lm, respectively.

Then, for xm P x0 `Km there exists a σm P Cm with xm “ x0 ` Vmσm and (1) holds iff

ô 0 “W H
m pb ´ Apx0 ` Vmσmqq

ô 0 “W H
m pb ´ Ax0q ´W H

mAVmσm

ôW H
mAVmσm “W H

m r0

ô σm “ pW
H
mAVmq

´1
W H

m r0.

Krylov Subspaces and Projection Methods

Thus xm “ x0 ` VmpW
H
mAVmq

´1
W H

m r0

rm “ b ´ Axm

“ b ´ Apx0 ` VmpW
H
mAVmq

´1
W H

m r0q

“ r0 ´ AVmpW
H
mAVmq

´1
W H

m r0

The projection Pm to the m-th subspace is then given as Pm “ I ´ Qm, where

Qm “ AVmpW
H
mAVmq

´1
W H

m . The above derivation proves the following simple lemma.

Krylov Subspaces and Projection Methods

Lemma 8.10

If W H
mAVm is invertible, then (1) has a unique solution given as

xm “ x0 ` VmpW
H
mAVmq

´1
W H

m r0

with corresponding residual

rm “ r0 ´ AVmpW
H
mAVmq

´1
W H

m r0

The invertibility assumption is sometimes easily guaranteed. For example if A is symmetric
positive definite (s.p.d.) with Km “ KmpA, r0q “ Lm

ñWm “ Vm and dimKm “ m

ñW H
mAVm “ V H

mAVm s.p.d.

Analogously, for A invertible and Lm “ AKm ñWm “ AVm with dimKm “ m “ dimLm, we
immediately see that W H

mAVm “ V H
mAHAVm is s.p.d..

Krylov Subspaces and Projection Methods

Lemma 8.10

If W H
mAVm is invertible, then (1) has a unique solution given as

xm “ x0 ` VmpW
H
mAVmq

´1
W H

m r0

with corresponding residual

rm “ r0 ´ AVmpW
H
mAVmq

´1
W H

m r0

The invertibility assumption is sometimes easily guaranteed. For example if A is symmetric
positive definite (s.p.d.) with Km “ KmpA, r0q “ Lm

ñWm “ Vm and dimKm “ m

ñW H
mAVm “ V H

mAVm s.p.d.

Analogously, for A invertible and Lm “ AKm ñWm “ AVm with dimKm “ m “ dimLm, we
immediately see that W H

mAVm “ V H
mAHAVm is s.p.d..

Conjugate Gradients

Krylov Subspaces and Projection Methods
Conjugate Gradients

How to choose K and L such that ||xi ´ x || gets small very fast?

Krylov Subspaces and Projection Methods
Conjugate Gradients

Definition 8.11

The gradient ∇f : C 1pRnq ÞÑ pC 0pRnqqn of a function f : Rn ÞÑ R is given by

∇f “

ˆ

Bf

Bxi

˙n

i“1

.

We consider the quadratic function

f pxq “
1

2
xTAx ´ bT x ` c

with A P Rnˆn and the minimization problem

min
xPRn

f pxq.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Definition 8.11

The gradient ∇f : C 1pRnq ÞÑ pC 0pRnqqn of a function f : Rn ÞÑ R is given by

∇f “

ˆ

Bf

Bxi

˙n

i“1

.

We consider the quadratic function

f pxq “
1

2
xTAx ´ bT x ` c

with A P Rnˆn and the minimization problem

min
xPRn

f pxq.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Solving min f pxq requires:

0 “ ∇f pxq “
1

2
AT x `

1

2
Ax ´ b.

If A is symmetric and positive definite (spd), this yields

∇f pxq “ Ax ´ b

Lemma 8.12

Let A P Rnˆn be symmetric positive definite, than finding a the minimum of

f pxq “
1

2
xTAx ´ bT x ` c

is equivalent to solving
Ax “ b

.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Solving min f pxq requires:

0 “ ∇f pxq “
1

2
AT x `

1

2
Ax ´ b.

If A is symmetric and positive definite (spd), this yields

∇f pxq “ Ax ´ b

Lemma 8.12

Let A P Rnˆn be symmetric positive definite, than finding a the minimum of

f pxq “
1

2
xTAx ´ bT x ` c

is equivalent to solving
Ax “ b

.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Proof.

ð Let f pxq be minimal, this yields ∇f pxq “ 0 and thus Ax “ b.

ñ Let x P Rn fulfilling Ax “ b and e P Rn, e ‰ 0, be a perturbation. This gives

f px ` eq “
1

2
px ` eqTApx ` eq ´ bT

px ` eq ` c

“
1

2
xTAx ` eTAx `

1

2
eTAe ´ bT x ´ bT e ` c Ax “ b

“
1

2
xTAx ´ bT x ` c ` eTb ´ bT e `

1

2
eTAe

“ f pxq `
1

2
eTAe

Since A is positive definite, eTAe ą 0 @e ‰ 0, and thus x solving Ax “ b is the minimum of f pxq.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Goal

Now, the goal is to construct a sequence with Ax˚ “ b

txiu P Rn such that xi Ñ x˚, i Ñ8

by only using matrix-vector products or vector-valued operations.

Definition 8.13

Let A P Rnˆn, b P Rn and txiu P Rn be a constructed sequence. Furthermore, let x˚ be the
solution of Ax “ b:

§ The error in the i-th step is given by ei “ xi ´ x˚.

§ The residual in the i-th step is given by ri “ b ´ Axi .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Goal

Now, the goal is to construct a sequence with Ax˚ “ b

txiu P Rn such that xi Ñ x˚, i Ñ8

by only using matrix-vector products or vector-valued operations.

Definition 8.13

Let A P Rnˆn, b P Rn and txiu P Rn be a constructed sequence. Furthermore, let x˚ be the
solution of Ax “ b:

§ The error in the i-th step is given by ei “ xi ´ x˚.

§ The residual in the i-th step is given by ri “ b ´ Axi .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Obviously, we have

§ ri “ ´Aei “ ´pAxi ´ Ax˚q “ p´Axi ` bq,

§ ri “ ´∇f pxi q.

From this point of view, the residual can be seen as direction of steepest descent. This leads
to the idea

xi`1 “ xi ` αri , αi P R

to construct a sequence.

Theorem 8.14

Let f as above, then

α “
rTi ri
rTi Ari

minimizes f along xi ` αri , i.e., d
dα f pxi ` αri q “ 0

Krylov Subspaces and Projection Methods
Conjugate Gradients

Obviously, we have

§ ri “ ´Aei “ ´pAxi ´ Ax˚q “ p´Axi ` bq,

§ ri “ ´∇f pxi q.

From this point of view, the residual can be seen as direction of steepest descent. This leads
to the idea

xi`1 “ xi ` αri , αi P R

to construct a sequence.

Theorem 8.14

Let f as above, then

α “
rTi ri
rTi Ari

minimizes f along xi ` αri , i.e., d
dα f pxi ` αri q “ 0

Krylov Subspaces and Projection Methods
Conjugate Gradients

Proof.
We regard

d

dα
f pxi ` αri q “ ∇f pxi ` αri q

T d

dα
pxi ` αri q “ ∇f pxi ` αri q

T ri

This means we have to choose α such that ∇f pxi`1q K ri . This leads

´∇f pxi ` αri q
T ri “ ´∇f pxi`1q

T ri “ rTi`1ri “ 0

pb ´ Axi`1q
T ri “ 0

pb ´ Apxi ` αri qq
T ri “ 0

pb ´ Axi q
T ri ´ αr

T
i Ari “ 0 using b ´ Axi “ ri

rTi ri “ αrTi Ari .

α “
rTi ri
rTi Ari

Krylov Subspaces and Projection Methods
Conjugate Gradients

Algorithm 8.1: Steepest Decent / Gradient Method

Input: A P Rnˆn spd, b P Rn, x0 P Rn, τ P R, kmax P N`
Output: xk minimizing ||Axk ´ b|| w.r.t. τ and kmax

1 r0 “ b ´ Ax0;
2 k Ð 0;
3 while ||rk ||2 ą τ ||r0||2 and k ď kmax do
4 rk “ b ´ Axk ;

5 α “
rTk rk
rTk Ark

;

6 xk`1 “ xk ` αrk ;
7 k Ð k ` 1;

§ only 2 matrix-vector products per step,

§ goes in “zick-zack” to the solution, directions can be used twice.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Algorithm 8.1: Steepest Decent / Gradient Method

Input: A P Rnˆn spd, b P Rn, x0 P Rn, τ P R, kmax P N`
Output: xk minimizing ||Axk ´ b|| w.r.t. τ and kmax

1 r0 “ b ´ Ax0;
2 k Ð 0;
3 while ||rk ||2 ą τ ||r0||2 and k ď kmax do
4 rk “ b ´ Axk ;

5 α “
rTk rk
rTk Ark

;

6 xk`1 “ xk ` αrk ;
7 k Ð k ` 1;

§ only 2 matrix-vector products per step,

§ goes in “zick-zack” to the solution, directions can be used twice.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Since we want to use each search direction only once, we change the iteration step to

xi`1 “ xi ` αidi ,

where di are the search directions with dT
i dj “ 0, @i ‰ j .

Now, we obtain

xi`1 ´ x˚ “ xi ` αidi ´ x˚

ei`1 “ ei ` αidi

for the error.

Again, we have to select αi such that

αi “ argminα f pxi ` αdi q,

which is equivalent to dT
i ei`1 “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Since we want to use each search direction only once, we change the iteration step to

xi`1 “ xi ` αidi ,

where di are the search directions with dT
i dj “ 0, @i ‰ j .

Now, we obtain

xi`1 ´ x˚ “ xi ` αidi ´ x˚

ei`1 “ ei ` αidi

for the error.

Again, we have to select αi such that

αi “ argminα f pxi ` αdi q,

which is equivalent to dT
i ei`1 “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Since we want to use each search direction only once, we change the iteration step to

xi`1 “ xi ` αidi ,

where di are the search directions with dT
i dj “ 0, @i ‰ j .

Now, we obtain

xi`1 ´ x˚ “ xi ` αidi ´ x˚

ei`1 “ ei ` αidi

for the error.

Again, we have to select αi such that

αi “ argminα f pxi ` αdi q,

which is equivalent to dT
i ei`1 “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Lemma 8.15

Let d0, . . . , dn´1 be pairwise orthogonal, i.e. dT
i dj “ 0, @i ‰ j . Selecting

αi “ ´
dT
i ei

dT
i di

yields dT
i ei`1 “ 0.

Proof.

αi “ ´
dT
i ei

dT
i di

αid
T
i di “ ´d

T
i ei

dT
i pei ` αidi q “ 0 “ dT

i ei`1

Krylov Subspaces and Projection Methods
Conjugate Gradients

Lemma 8.15

Let d0, . . . , dn´1 be pairwise orthogonal, i.e. dT
i dj “ 0, @i ‰ j . Selecting

αi “ ´
dT
i ei

dT
i di

yields dT
i ei`1 “ 0.

Proof.

αi “ ´
dT
i ei

dT
i di

αid
T
i di “ ´d

T
i ei

dT
i pei ` αidi q “ 0 “ dT

i ei`1

Krylov Subspaces and Projection Methods
Conjugate Gradients

Problem

In order to determine αi “ ´
dT
i ei

dT
i di

, we need to know ei . But if ei is known, the problem is

solved.

Definition 8.16

Two vectors di P Rn and dj P Rn, with A P Rnˆn spd are called A-orthogonal, if

dT
j Adi “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Problem

In order to determine αi “ ´
dT
i ei

dT
i di

, we need to know ei . But if ei is known, the problem is

solved.

Definition 8.16

Two vectors di P Rn and dj P Rn, with A P Rnˆn spd are called A-orthogonal, if

dT
j Adi “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Lemma 8.17

Let d0, . . . , dn´1 be pairwise A-orthogonal, i.e. dT
i Adj “ 0, @i ‰ j , then

αi “
dT
i ri

dT
i Adi

minimizes f pxi ` αidi q along di , i.e. dT
i Aei`1 “ 0.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Proof.
Let f pxi ` αidi q be minimal:

d

dαi
f pxi ` αidi q “ 0

∇f pxi`1q
T d

dαi
pxi ` αidi q “ ´r

T
i`1di “ 0

dT
i Aei`1 “ dT

i Apei ` αidi q “ 0

dT
i Aei ` αid

T
i Adi “ 0

αi “ ´
dT
i Aei

dT
i Adi

“
dT
i ri

dT
i Adi

Ñ Now, αi can be computed from the existing information.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Proof.
Let f pxi ` αidi q be minimal:

d

dαi
f pxi ` αidi q “ 0

∇f pxi`1q
T d

dαi
pxi ` αidi q “ ´r

T
i`1di “ 0

dT
i Aei`1 “ dT

i Apei ` αidi q “ 0

dT
i Aei ` αid

T
i Adi “ 0

αi “ ´
dT
i Aei

dT
i Adi

“
dT
i ri

dT
i Adi

Ñ Now, αi can be computed from the existing information.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Theorem 8.18

Let A P Rnˆn spd, and d0, . . . , dn´1 P Rn pairwise A-orthogonal. Then

xi`1 “ xi ` αidi

with

αi “
dT
i ri

dT
i Adi

converges to the solution x˚ of Ax “ b after n steps.

From xi`1 “ xi ` αidi follows:

ri`1 “ ´Apei ` αidi q

“ ri ´ αiAdi .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Theorem 8.18

Let A P Rnˆn spd, and d0, . . . , dn´1 P Rn pairwise A-orthogonal. Then

xi`1 “ xi ` αidi

with

αi “
dT
i ri

dT
i Adi

converges to the solution x˚ of Ax “ b after n steps.

From xi`1 “ xi ` αidi follows:

ri`1 “ ´Apei ` αidi q

“ ri ´ αiAdi .

Krylov Subspaces and Projection Methods
Conjugate Gradients

How to obtain the A-orthogonal vectors di?

We choose u0, . . . , un´1 P Rn linear independent vectors. Starting with d0 “ u0, we
A-orthogonalize ui , i ą 0, with respect to d0, . . . , di´1 to obtain di :

di “ ui `
i´1
ÿ

j“0

βijdj

Lemma 8.19

Let d0, . . . , di´1 P Rn be A-orthogonal vectors and ui P Rn linear independent from
d0, . . . , di´1. Then βij , j ă i , is given by

βij “ ´
uTi Adj
dT
j Adj

and di is A-orthogonal to d0, . . . , di´1.

Krylov Subspaces and Projection Methods
Conjugate Gradients

How to obtain the A-orthogonal vectors di?

We choose u0, . . . , un´1 P Rn linear independent vectors. Starting with d0 “ u0, we
A-orthogonalize ui , i ą 0, with respect to d0, . . . , di´1 to obtain di :

di “ ui `
i´1
ÿ

j“0

βijdj

Lemma 8.19

Let d0, . . . , di´1 P Rn be A-orthogonal vectors and ui P Rn linear independent from
d0, . . . , di´1. Then βij , j ă i , is given by

βij “ ´
uTi Adj
dT
j Adj

and di is A-orthogonal to d0, . . . , di´1.

Krylov Subspaces and Projection Methods
Conjugate Gradients

How to obtain the A-orthogonal vectors di?

We choose u0, . . . , un´1 P Rn linear independent vectors. Starting with d0 “ u0, we
A-orthogonalize ui , i ą 0, with respect to d0, . . . , di´1 to obtain di :

di “ ui `
i´1
ÿ

j“0

βijdj

Lemma 8.19

Let d0, . . . , di´1 P Rn be A-orthogonal vectors and ui P Rn linear independent from
d0, . . . , di´1. Then βij , j ă i , is given by

βij “ ´
uTi Adj
dT
j Adj

and di is A-orthogonal to d0, . . . , di´1.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Intermediate Summary

1. We have an algorithmic idea, which solves Ax “ b in n steps without LU decomposition
etc.

2. Search directions d0, . . . , di´1 must be stored to compute di .
Ñ easily runs out of memory for large n.

3. The computational complexity increases to Opn3q due to the orthogonalization procedure.
Ñ same runtime class as the LU decomposition.

4. The initial directions u0, . . . , un´1 are some how arbitrary.
Ñ should correspond to Ax “ b.

Ñ We need a strategy to compute obtain ui (and di) without requiring to many “old” search
directions dj , j ă i .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Intermediate Summary

1. We have an algorithmic idea, which solves Ax “ b in n steps without LU decomposition
etc.

2. Search directions d0, . . . , di´1 must be stored to compute di .
Ñ easily runs out of memory for large n.

3. The computational complexity increases to Opn3q due to the orthogonalization procedure.
Ñ same runtime class as the LU decomposition.

4. The initial directions u0, . . . , un´1 are some how arbitrary.
Ñ should correspond to Ax “ b.

Ñ We need a strategy to compute obtain ui (and di) without requiring to many “old” search
directions dj , j ă i .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Since the the residuum ri is the direction of the steepest decent, we set

ui “ ri .

Theorem 8.20

Let d0, . . . , di´1 P Rn be A-orthogonal search directions, then it holds

(a) The residual rj is orthogonal to di , @i ă j .

(b) The residuals ri and rj are orthogonal for all i ă j .

(c) dT
i ri “ rTi ri , @i P N.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Proof.

(a)
ej “

n´1
ÿ

k“j

δkdk

´dT
i Aej “ ´

n´1
ÿ

k“j

δkd
T
i Adk

dT
i rj “ 0, i ă j

(b)
di “ ri `

i´1
ÿ

k“0

βikdk

dT
i rj “ rTi rj `

i´1
ÿ

k“0

βikd
T
k rj , i ă j

0 “ rTi rj

(c) (b) with i “ j .

Krylov Subspaces and Projection Methods
Conjugate Gradients

Ñ Now, we know that ri`1 is orthogonal to all previous search directions d0, . . . , di by
construction.

Theorem 8.21

Let d0, . . . , di´1 P Rn be A-orthogonal search directions and ri P Rn linear independent from
d0, . . . , di´1, then the othogonalization coefficients βij in

di “ ri `
i´1
ÿ

j“0

βijdj

are given by

βij “

#

1
αi´1

rTi ri
dT
i´1Adi´1

, j “ i ´ 1

0 j ă i ´ 1
.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Ñ Now, we know that ri`1 is orthogonal to all previous search directions d0, . . . , di by
construction.

Theorem 8.21

Let d0, . . . , di´1 P Rn be A-orthogonal search directions and ri P Rn linear independent from
d0, . . . , di´1, then the othogonalization coefficients βij in

di “ ri `
i´1
ÿ

j“0

βijdj

are given by

βij “

#

1
αi´1

rTi ri
dT
i´1Adi´1

, j “ i ´ 1

0 j ă i ´ 1
.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Since βij “ 0 for j ă i ´ 1 we do not need dj , j ă i ´ 1 and longer. Furthermore, we set
βi “ βi,i´1. Now we obtain:

βi “
1

αi´1

rTi ri
dT
i´1Adi´1

, using αi´1 “
dT
i´1ri´1

dT
i´1Adi´1

“
dT
i´1Adi´1

dT
i´1ri´1

rTi ri
dT
i´1Adi´1

“
rTi ri

dT
i´1ri´1

“
rTi ri

rTi´1ri´1

Furthermore, we have

αi “
rTi ri

dT
i Adi

.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Algorithm 8.2: Conjugate Gradient Method

Input: A P Rnˆn, b P Rn, x0 P Rn, τ P R
Output: x “ A´1b

1 d0 “ r0 “ b ´ Ax0, δ0 “ ‖r0‖2
2 “ rT0 r0;

2 for i “ 0, . . . , n ´ 1 do
3 if δi ą τδ0 then
4 vi “ Adi ;

5 αi “
δi

dTi vi
;

6 xi`1 “ xi ` αidi ;
7 ri`1 “ ri ´ αivi ;

8 δi`1 “ ‖ri`1‖2
2 “ rTi`1ri`1 ;

9 βi`1 “
δi`1

δi
;

10 di`1 “ ri`1 ` βi`1di ;

11 else
12 STOP;

Krylov Subspaces and Projection Methods
Conjugate Gradients

Algorithm 8.3: Preconditioned Conjugate Gradient Method

Input: A P Rnˆn, b P Rn, x0 P Rn,A´1
« P P Rnˆn, τ P R

Output: x “ A´1b
1 r0 “ b ´ Ax0, d0 “ z0 “ Pr0, δ0 “ dT

0 r0;
2 for i “ 0 : n ´ 1 do
3 if δi ą τδ0 then
4 vi “ Adi ;

5 αi “
δi

dTi vi
;

6 xi`1 “ xi ` αidi ;
7 ri`1 “ ri ´ αivi ;
8 zi`1 “ Pri`1;

9 δi`1 “ zTi`1ri`1;

10 βi`1 “
δi`1

δi
;

11 di`1 “ zi`1 ` βi`1di ;

12 else
13 STOP;

Krylov Subspaces and Projection Methods
Conjugate Gradients

Theorem 8.22

Let
em “ xm ´ A´1b

denote the error in the m-th step of the CG algorithm. Then it holds

‖em‖A ď 2

ˆ

κ2pAq ´ 1

κ2pAq ` 1

˙m

‖e0‖A .

Remark 4

The derivation of the CG algorithm results in Km “ Lm “ KmpA, r0q and Vm “Wm. The
computation of

xm “ x0 ` VmpV
H
mAVmq

´1
V H
m r0

is done successively by the algorithm and Vm does not need to be set up.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Theorem 8.22

Let
em “ xm ´ A´1b

denote the error in the m-th step of the CG algorithm. Then it holds

‖em‖A ď 2

ˆ

κ2pAq ´ 1

κ2pAq ` 1

˙m

‖e0‖A .

Remark 4

The derivation of the CG algorithm results in Km “ Lm “ KmpA, r0q and Vm “Wm. The
computation of

xm “ x0 ` VmpV
H
mAVmq

´1
V H
m r0

is done successively by the algorithm and Vm does not need to be set up.

Krylov Subspaces and Projection Methods
Conjugate Gradients

Example 8.23

We take

A “

»

—

—

—

—

–

2 ´1 ¨ ¨ ¨ 0

´1
. . .

. . .
...

...
. . .

. . . ´1
0 ¨ ¨ ¨ ´1 2

fi

ffi

ffi

ffi

ffi

fl

and b “ A
“

1 ¨ ¨ ¨ 1
‰T

with varying dimension n. One can show that A is symmetric and positive
definite. Running Steepest Decent and CG in double precision with τ “

?
u gives:

Steepest Decent Conjugate Gradient

n κ1pAq ||b ´ Ax ||2||b||
´1
2 Steps ||b ´ Ax ||2||b||

´1
2 Steps

100 5.1 ¨ 103 1.50 ¨ 10´8 27 441 4.28 ¨ 10´14 50
1 000 5.01 ¨ 105 1.49 ¨ 10´8 1 998 614 2.10 ¨ 10´12 500

1 000 000 5.01 ¨ 1011 – – 1.43 ¨ 10´11 500 001

Krylov Subspaces and Projection Methods
Conjugate Gradients

What if A is not symmetric and/or not positive definite?

Other Krylov methods exists:

§ GMRES – Generalized Minimal Residual

§ BiCG – Bi-Conjugate Gradient

§ BiCGStab – Bi-Conjugate Gradient Stabilized

§ CGS – Conjugate Gradient Squared

§ QMR – Quasi Minimal Residual

§ TFQMR – Transpose Free Quasi Minimal Residual

§ . . .

§ ... or tweak the CG method.

Conjugate Gradient Normal Equation Residual/Conjugate Gradient
Normal Equation Error

Krylov Subspaces and Projection Methods
Conjugate Gradient Normal Equation Residual/Conjugate Gradient Normal Equation Error

Conjugate Gradient Normal Equation Residual

Instead of
Ax “ b

we solve
ATAx “ ATb,

where ATA is spd for all regular matrices. Since the residual “true” residual r “ b ´ Ax is
transformed into

r̃ “ ATb ´ ATAx “ AT r ,

this method is called Conjugate Gradient Normal Equation Residual (CGNR).

Krylov Subspaces and Projection Methods
Conjugate Gradient Normal Equation Residual/Conjugate Gradient Normal Equation Error

Conjugate Gradient Normal Equation Error

By using AAT instead of A, we obtain
AAT y “ b

and need to recover the solution x of Ax “ b by

x “ AT y .

Integrating both in the CG algorithm gives the Conjugate Gradient Normal Equation Error (CGNE)
method, which minimizes the error in each step.

Remark 5

Both methods, CGNR and CGNE, use some kind of a “squared” matrix in each step. Thus, the
condition numbers fulfill

κ2pA
TAq « pκ2pAqq

2 and κ2pAA
T q « pκ2pAqq

2
.

Krylov Subspaces and Projection Methods
Conjugate Gradient Normal Equation Residual/Conjugate Gradient Normal Equation Error

Conjugate Gradient Normal Equation Error

By using AAT instead of A, we obtain
AAT y “ b

and need to recover the solution x of Ax “ b by

x “ AT y .

Integrating both in the CG algorithm gives the Conjugate Gradient Normal Equation Error (CGNE)
method, which minimizes the error in each step.

Remark 5

Both methods, CGNR and CGNE, use some kind of a “squared” matrix in each step. Thus, the
condition numbers fulfill

κ2pA
TAq « pκ2pAqq

2 and κ2pAA
T q « pκ2pAqq

2
.

Direct Solvers for Sparse Symmetric Systems

Preliminaries

Direct Solvers for Sparse Symmetric Systems
Preliminaries

In the following, to ease the presentations, we will follow the general assumptions that

§ A P Rnˆn is sparse and symmetric,

§ and no pivoting is used.

Remark 6

For non-symmetric matrices the presented concepts have to be generalized from undirected to
directed graphs.

Direct Solvers for Sparse Symmetric Systems
Preliminaries

In the following, to ease the presentations, we will follow the general assumptions that

§ A P Rnˆn is sparse and symmetric,

§ and no pivoting is used.

Remark 6

For non-symmetric matrices the presented concepts have to be generalized from undirected to
directed graphs.

Direct Solvers for Sparse Symmetric Systems
Preliminaries

Definition 8.24
Two graphs are easily related to the matrix A P Rnˆn.

1. V “ t1, . . . , nu is called the set of vertices, i.e., variable indices.

2. The set of edges E Ď V 2 is the set of pairs pi , jq P E ô aij ­“ 0.

3. The directed connectivity graph of A – GdpAq “ pV, Eq associates a direction to an edge by the
order of indices in the pair.

4. The undirected connectivity graph of A – GpAq “ pV, Eq identifies the pairs pi , jq and pj , iq, i.e.
considers pi , jq “ pj , iq, and thus neglects the direction.

A “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

1

2

34

6 5

§ V “ t1, 2, 3, 4, 5, 6u
§ E “ tp1, 2q, p1, 6q, p2, 3q, p2, 4q, p3, 5q, p5, 6qu

Direct Solvers for Sparse Symmetric Systems
Preliminaries

Remark 7

We collect some properties of the symmetric case treated in this chapter.

§ A symmetric ñ aij “ aji ñ “pi , jq P E ô pj , iq P E”
ñ its is sufficient to the treat the undirected graph

§ If A s.p.d. then @i aii ą 0 ñ pi , iq P E , i.e., the graph contains the trivial edges (usually
not included in graphical representations of the graph)

§ The number of nonzero elements in column i equals the number of neighbors of the vertex
i in the graph GpAq.

§ Symmetric permutations, i.e., permutations of the matrix where both columns and rows
are swapped simultaneously, are equivalent to renumbering the graph, i.e., application of a
permutation to the elements of V.

§ E“̂PpAq

The Elimination Graph Model for Symmetric Matrices

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

If A is spd, we observed that the LU decomposition could be symmetrized as well. By
neglecting L to be unit diagonal, we can construct A “ LLT as follows:

A “ A0 “ H0 “

„

d1 vT
1

v1 H̃1



, H̃1 P Rn´1ˆn´1

“

„
?
d1 0

1?
d1
v1 In´1



loooooooomoooooooon

L1

„

1 0
0 H1



looomooon

A1

„
?
d1

1?
d1
vT

1

0 In´1



loooooooomoooooooon

LT
1

, H1 “ H̃1 ´
1

d1
v1v

T
1

A “ pL1L2L3 . . . Ln´1qInpL
T
n´1 . . . L

T
3L

T
2L

T
1 q

“ pL1L2L3 . . . Ln´1qInpL1L2L3 . . . Ln´1q
T

“ LLT,

which is the Cholesky Decomposition of A.

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

In the case where A is symmetric but not positive definite, we have to introduce a diagonal
matrix D such that A “ LDLT holds. This gives

A “ A0 “ H0 “

„

d1 vT
1

v1 H̃1



, H̃1 P Rn´1ˆn´1

“

„

1 0
1
d1
v1 In´1



loooooomoooooon

L1

„

d1 0
0 H1



loooomoooon

A1

„

1 1
d1
vT

1

0 In´1



looooomooooon

LT
1

, H1 “ H̃1 ´
1

d1
v1v

T
1

A “ pL1L2L3 . . . Ln´1qDpL
T
n´1 . . . L

T
3L

T
2L

T
1 q

“ pL1L2L3 . . . Ln´1qDpL1L2L3 . . . Ln´1q
T

“ LDLT,

This gives the LDLT decomposition of A.

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

In both cases, A “ LLT and A “ LDLT , the update Hj “ H̃j ´
1
dj
vjv

T
j influences the structure

of the pattern PpHjq.

In general: If PpvjvT
j qzpPpvjvT

j q X PpH̃jqq ­“ H then step j leads to fill-in in Hj .

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Example 8.25 (Graph Representation of the Cholesky Decomposition)

G0 =

1

2

34

6 5

H0 “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Example 8.25 (Graph Representation of the Cholesky Decomposition)

G1 =

2

34

6 5

H1 “

»

—

—

—

—

–

2 ˚ ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

fl

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Example 8.25 (Graph Representation of the Cholesky Decomposition)

G2 =

34

6 5

H2 “

»

—

—

–

3 ˚ ˚ ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ ˚ 6

fi

ffi

ffi

fl

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Example 8.25 (Graph Representation of the Cholesky Decomposition)

G3 =

4

6 5

H3 “

»

–

4 ˚ ˚

˚ 5 ˚

˚ ˚ 6

fi

fl

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

How can PpF q be computed?

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Definition 8.26

Let A “ LLT or A “ LDLT , then we set

F “ L` LT

and PpF q is the filled pattern of A and GpF q “ G`pAq is the filled graph if A.

Remark 8

If there is numerical cancellation during the Cholesky decomposition, i.e. elements in Hj gets
zero due to the a “lucky” distribution of the values, these elements belong to the filled pattern
and the filled graph as well.

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Definition 8.26

Let A “ LLT or A “ LDLT , then we set

F “ L` LT

and PpF q is the filled pattern of A and GpF q “ G`pAq is the filled graph if A.

Remark 8

If there is numerical cancellation during the Cholesky decomposition, i.e. elements in Hj gets
zero due to the a “lucky” distribution of the values, these elements belong to the filled pattern
and the filled graph as well.

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Example 8.27

Obviously, the filled graph G`pAq is the union the graph G0,G1,G2, and G3:

GpF q “ G`pAq “ 1

2

34

6 5

F “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚ ˚

˚ 3 ˚ ˚ ˚

˚ ˚ 4 ˚ ˚

˚ ˚ 5 ˚

˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

The procedure from the example yields the following observations regarding the underyling
graph G0, G1, . . . :

Processing a node j , i.e., performing the j-th step from Gj´1 to Gj in the Cholesky
decomposition amounts to

1. deleting node j and its adjacent edge from the graph,

2. adding edges to graph between any two nodes adjacent to j , i.e. adding edges between all
nodes that are directly connected through the node j .

Algorithm 8.4: graph eliminations process

Input: GpAq “ pV, Eq undirected graph of A
Output: G1, . . . ,Gn´1 sequence of eliminations graphs

1 for k=1:n-1 do
2 V “ Vztku (remove vertex k);
3 E “ pEztpk, lq : l neighbor of kuq Y tpx , yq : x , y neighbors of ku;

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

The procedure from the example yields the following observations regarding the underyling
graph G0, G1, . . . :

Processing a node j , i.e., performing the j-th step from Gj´1 to Gj in the Cholesky
decomposition amounts to

1. deleting node j and its adjacent edge from the graph,

2. adding edges to graph between any two nodes adjacent to j , i.e. adding edges between all
nodes that are directly connected through the node j .

Algorithm 8.4: graph eliminations process

Input: GpAq “ pV, Eq undirected graph of A
Output: G1, . . . ,Gn´1 sequence of eliminations graphs

1 for k=1:n-1 do
2 V “ Vztku (remove vertex k);
3 E “ pEztpk, lq : l neighbor of kuq Y tpx , yq : x , y neighbors of ku;

Direct Solvers for Sparse Symmetric Systems
The Elimination Graph Model for Symmetric Matrices

Lemma 8.28

Let A be a symmetric matrix with the corresponding graph GpAq and the filled graph G`pAq.
For each edge in the filled graph

pi , jq P G`pAq,

one of following condition holds:

§ pi , jq P GpAq,
§ there exists k ă minpi , jq, such that pi , kq P G`pAq and pk, jq P G`pAq.

Characterization of Fill-in

Direct Solvers for Sparse Symmetric Systems
Characterization of Fill-in

Theorem 8.29 (Fill-path-theorem)

Let L “ plijqi,j“1,...,n be a Cholesky factor of A, i.e., A “ LLT or A “ LDLT. Then having an

edge pi , jq P G`pAq, i.e. lij ‰ 0 (neglecting numerical cancellation), is equivalent to the
existence of a path between i and j in GpAq such that all nodes (vertices) in the path have
indices smaller than both i and j.

Definition 8.30

The minimum fill-in problem describes the problem of finding the optimal permutation of
vertex labels that produces the smallest possible number of new edges in G`pAq compared to
GpAq.

Direct Solvers for Sparse Symmetric Systems
Characterization of Fill-in

Example 8.31

If we want to rearrange

Ñ

we have to renumber the nodes in the graph way:

t1, 2, 3, . . . , n ´ 2, n ´ 1, nu ÞÑ tn, 2, 3, . . . , n ´ 2, n ´ 1, 1u

This is equal to swap the first with the last row and the first with last column.

Direct Solvers for Sparse Symmetric Systems
Characterization of Fill-in

Remark 9

It can be shown that the minimum fill-in problem is NP-complete and thus NP-hard in
general. Several heuristic approaches exist that come up with sub-optimal solutions.

The name ”NP-complete” is short for ”nondeterministic polynomial-time complete”. That
means the correct solution could only be found if all possibilities are checked.

Heuristic Fill-in Reduction

Direct Solvers for Sparse Symmetric Systems
Heuristic Fill-in Reduction

Since we cannot determine the optimal fill-in reducing reordering in a reasonable amount of
time, we need a heuristic, which gives a solution which is somehow close to the optimum, or
has at least some other properties, which allows the direct solvers to work better.
Mainly three classes of methods exist:

Global Strategies

§ structured permutation of the whole matrix

§ fill-in only within the resulting structure, i.e. in the band between the entries with the
largest distance to the diagonal

§ Examples: (reverse) Cuthill-McKee or nested dissection

Direct Solvers for Sparse Symmetric Systems
Heuristic Fill-in Reduction

Local Heuristics

§ can be incorporated into pivoting strategies, i.e. they can look at the “actual‘ values as
well and not only on the structure.

§ in the symmetric case: minimum degree reordering or minimum fill reordering

§ in the unsymmetric case: Markowitz criterion

Hybrid Variants

1. Permutation to block structures

2. using local or global heuristics in the blocks

Direct Solvers for Sparse Symmetric Systems
Heuristic Fill-in Reduction

Local Heuristics

§ can be incorporated into pivoting strategies, i.e. they can look at the “actual‘ values as
well and not only on the structure.

§ in the symmetric case: minimum degree reordering or minimum fill reordering

§ in the unsymmetric case: Markowitz criterion

Hybrid Variants

1. Permutation to block structures

2. using local or global heuristics in the blocks

(Reverse) Cuthill-McKee Reordering (RCM)

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.32

The bandwidth of a matrix A P Rnˆm is given by

nbpAq “ max
1ďiďn

max
1ďjďm,aij‰0

|i ´ j |.

The goal of the (Reverse) Cuthill-McKee reordering is to find a permutation P, such that

nbpPAP
T q ă nbpAq.

Since fill-in is only generated within the band, the memory requirements could be limited by

n ¨ nbpPAP
T q.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.32

The bandwidth of a matrix A P Rnˆm is given by

nbpAq “ max
1ďiďn

max
1ďjďm,aij‰0

|i ´ j |.

The goal of the (Reverse) Cuthill-McKee reordering is to find a permutation P, such that

nbpPAP
T q ă nbpAq.

Since fill-in is only generated within the band, the memory requirements could be limited by

n ¨ nbpPAP
T q.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.32

The bandwidth of a matrix A P Rnˆm is given by

nbpAq “ max
1ďiďn

max
1ďjďm,aij‰0

|i ´ j |.

The goal of the (Reverse) Cuthill-McKee reordering is to find a permutation P, such that

nbpPAP
T q ă nbpAq.

Since fill-in is only generated within the band, the memory requirements could be limited by

n ¨ nbpPAP
T q.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Remark 10

If the bandwidth nb “ nbpPAP
T q is very small or the condition

nnzpAq « n ¨ nb

hold, one neglects the sparsity structure and converts PAPT into a dense band matrix. Then
the Cholesky or LDLT decomposition is computed with specialized band solvers.

See: LAPACK dpbtrf for example

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.33

Influence of the ordering of the degrees of freedom on the resulting fill-in in the Cholesky
decomposition is demonstrated in the following two figures.

1 2 3

4

56

(a) Graph before reordering.

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Bandwidth 5 pattern.

Figure: Graph and sparsity pattern before reordering.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.33

5 3 2

1

46

(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚

2 ˚ ˚

˚ ˚ 3 ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 2 pattern.

Figure: Graph and sparsity pattern after RCM reordering.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.34

Let G “ pV, Eq be graph, then the degree of a node i P V is given by the number of neighbors
in the graph, i.e. the number of edges the node is involved.

Breadth-First-Search (BFS)

Breadth-First Search (BFS) is a graph traversal algorithm used to explore the nodes and
edges of a graph. It starts at a selected node (often called the ”root” in the context of trees)
and explores all of its neighboring nodes at the present depth prior to moving on to nodes at
the next depth level.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

(Reverse) Cuthill-McKee Reordering

Basically, Cuthill-McKee Reordering works in the following way:

1. select a root node, forms the tree that consists of all shortest paths to all other vertices in
GpAq

2. perform an ordered breadth first search on that tree to fill the permutation vector.

3. reverse the computed permutation

In contrast to a standard breadth first search, here the vertices are ordered with respect to their
increasing degree.

Ñ One observed that without the last step, the permuted matrix has the same bandwidth, but
more fill-in.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

(Reverse) Cuthill-McKee Reordering

Basically, Cuthill-McKee Reordering works in the following way:

1. select a root node, forms the tree that consists of all shortest paths to all other vertices in
GpAq

2. perform an ordered breadth first search on that tree to fill the permutation vector.

3. reverse the computed permutation

In contrast to a standard breadth first search, here the vertices are ordered with respect to their
increasing degree.

Ñ One observed that without the last step, the permuted matrix has the same bandwidth, but
more fill-in.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Algorithm 8.5: Reverse Cuthill-McKee (RCM) reordering

Input: A P Rnˆn with PpAq symmetric
Output: p P Rn such that Ã “ App, pq has reduced bandwidth

1 Q “ rs,R “ rs;
2 repeat
3 Select root node P R R;
4 R “ rR,Ps;
5 Q “ rQ, nodes adjacent to P ordered by increasing degrees;
6 while Q ­“ H do
7 R “ rR,Qp1qs,
8 Q “ rQp2 : Endq, nodes adjacent of Qp1q not contained in R by increasing degrees;

9 until all nodes are contained in R;
10 p “ Rpn : ´1 : 1q;

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.35

Let p a permutation vector, p P t1, . . . , nun, where p maps and index i to pi . Then the inverse
permutation p̃ P t1, . . . , nun fulfills

p̃ppq “ ppp̃q “
“

1 2 . . . n
‰

.

The element p̃i is given by the index j of p where pj “ i .

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Definition 8.35

Let p a permutation vector, p P t1, . . . , nun, where p maps and index i to pi . Then the inverse
permutation p̃ P t1, . . . , nun fulfills

p̃ppq “ ppp̃q “
“

1 2 . . . n
‰

.

The element p̃i is given by the index j of p where pj “ i .

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.36

This example shows the importance of the selection of the root node in Step 3 of Algorithm 8.5.
Root-Node: P “ 1

1

6 2

5 4 3

R “ r1s Q “ r6, 2s
R “ r1, 6s Q “ r2, 5s
R “ r1, 6, 2s Q “ r5, 4, 3s
R “ r1, 6, 2, 5s Q “ r4, 3s
R “ r1, 6, 2, 5, 4, 3s Q “ rs

p1 “ r3, 4, 5, 2, 6, 1s
p̃1 “ r6, 4, 1, 2, 3, 5s

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.36

6 4 1

2

35

(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚ ˚

2 ˚

˚ 3 ˚

˚ ˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 3 pattern.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.36

Root-Node: P “ 6
6

1

2

4

5

3

R “ r6s Q “ r1, 5s
R “ r6, 1s Q “ r5, 2s
R “ r6, 1, 5s Q “ r2, 3s
R “ r6, 1, 5, 2s Q “ r3, 4s
R “ r6, 1, 5, 2, 3, 4s Q “ rs

p6 “ r4, 3, 2, 5, 1, 6s
p̃6 “ r5, 3, 2, 1, 4, 6s

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.36

5 3 2

1

46

(a) Graph after RCM reordering.

»

—

—

—

—

—

—

–

1 ˚

2 ˚ ˚

˚ ˚ 3 ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Resulting bandwidth 2 pattern.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Example 8.36

The p6 permutation is the one produced by symrcm implementation in MATLAB and GNU
Octave. Note that the matrix A is transformed into the reduced-bandwidth matrix Ã as
Ã “ App, pq, while the graph uses the inverse permutation.

A bad choice for the root node is P “ 2.

Direct Solvers for Sparse Symmetric Systems
(Reverse) Cuthill-McKee Reordering (RCM)

Root-Node-Selection

The exampled showed, that P “ 6 was a good root node, P “ 1 was not the best, but
somehow “ok”, but P “ 2 end in a bad result.

As a rule of thumb, the root node should be chosen such that it has preferably long paths to
all other nodes in the graph.

Ñ Tracking the depth of each node with respect to the current root node, and start the RCM
again with the “deepest” node. Repeat until the maximum depth is no longer increasing.

Direct Solvers for Sparse Symmetric Systems
Local heuristics

We employ the following assumptions:

§ A P Rnˆn sparse symmetric

§ GpAq “ pV, Eq the corresponding undirected graph of A

§ m : V Ñ R a metric, such that mpiq ă mpjq implies that node i is “better” than node j .

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Algorithm 8.5: Generic local strategy

Input: A P Rnˆn sparse, m a metric on the nodes in GpAq, p “ rs
Output: p P Rn such that Ã “ App, pq is the reordered matrix

1 repeat
2 Select a node P (the pivot element) with minimal metric value mpPq: p “ rp,Ps;
3 Update elimination graph erasing P;
4 Update metric for all non-selected nodes;

5 until all nodes selected;

Remark 11

§ Step 4 in Algorithm 8.5 should be restricted to those nodes where m changed due to the
graph update.

§ The local pivot search allows combination with classic pivot strategies to improve the
numerical results.

Direct Solvers for Sparse Symmetric Systems
Local heuristics – Minimum degree idea

§ mpjq is the number of neighbors of node j

§ mpiq ă mpjq means node i has less neighbors than node j .

Ñ metric update only required on the neighbors

Ñ very local update

Ñ the procedure is integrated in the generation of the elimination graph.

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.37

We consider the following matrix A P R9ˆ9

A “

»

—

—

—

—

—

—

—

—

—

—

—

–

1 ˚ ˚ ˚

˚ 2 ˚ ˚

˚ ˚ 3 ˚

˚ ˚ ˚ 4 ˚

˚ 5 ˚

˚ 6 ˚ ˚ ˚

˚ 7 ˚ ˚

˚ ˚ 8 ˚

˚ ˚ ˚ 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

for which, by construction, factorization is possible without fill-in.

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.37

GpAq looks like this

1

2

3

4 5 6

7

8

9

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.37

Now the minimum degree metric suggests to choose node 5 (of degree 2) for elimination,
which results in:

1

2

3

4 6

7

8

9

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.37

This obviously introduces a new edge from node 4 to node 6, i.e., results in fill-in. This is still
better than choosing node 4 or 6 (both degree 3), which would lead to two new edges each,
i.e. more fill-in. On the other hand, all other nodes (also degree 3) could obviously be removed
without causing additional edges.

Remark 12

All heuristic approaches to the minimum fill problem in general only produce suboptimal
solutions. This is however clear, since the optimal solution is usually not accessible since it is
the solution to an NP-hard problem.

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.38 (minimum degree metric versus minimum fill metric)

The following simple graph (edges) shows the discrepancies between minimum degree and
minimum fill as metrics.

1

2

3

4

5

67

8

9

§ edges indicate the fill resulting from the removal of node 4.

§ edges resulting from the removal of node 9, already existing.

Node 4 – degree 3 and the fill measures 3. Node 9 – degree 4, fill measure 0.

Direct Solvers for Sparse Symmetric Systems
Local heuristics

Example 8.38 (minimum degree metric versus minimum fill metric)

node degree metric value fill metric value

1 1 0
2 2 1
3 2 1
4 3 3
5 5 4
6 4 0
7 4 0
8 5 4
9 4 0

Hybrid method and graph components

Direct Solvers for Sparse Symmetric Systems
Hybrid method and graph components

Definition 8.39

In an undirected graph G two vertices u and v are called connected if G contains a path from
u to v . Otherwise, they are called disconnected.
A Graph G is said to be connected if each pair of vertices is connected. A connected
component is a maximal connected subgraph of G.

§ If u, v are vertices in G from different connected components, then u, v are disconnected.
Thus, the corresponding degrees of freedom in the linear system are independent of each
other.

§ Reordering A corresponding to the connected components leads to a block diagonal
matrix. The resulting diagonal blocks can then be treated independently.

§ For general non-symmetric matrices strongly connected components have to be used.
That means, both directed paths between two vertices need to exist.
Ñ not all diagonal blocks decouple completely, since only one direction may exist for a
pair of vertices in two components.

Direct Solvers for Sparse Symmetric Systems
Hybrid method and graph components

Definition 8.39

In an undirected graph G two vertices u and v are called connected if G contains a path from
u to v . Otherwise, they are called disconnected.
A Graph G is said to be connected if each pair of vertices is connected. A connected
component is a maximal connected subgraph of G.

§ If u, v are vertices in G from different connected components, then u, v are disconnected.
Thus, the corresponding degrees of freedom in the linear system are independent of each
other.

§ Reordering A corresponding to the connected components leads to a block diagonal
matrix. The resulting diagonal blocks can then be treated independently.

§ For general non-symmetric matrices strongly connected components have to be used.
That means, both directed paths between two vertices need to exist.
Ñ not all diagonal blocks decouple completely, since only one direction may exist for a
pair of vertices in two components.

Sparse Matrix Vector Products and Reordering

Direct Solvers for Sparse Symmetric Systems
Sparse Matrix Vector Products and Reordering

Naively looking at the problem one might think:

Even if the elements in A are scattered all over the row, in the CSR format they are stored one
after the other, anyway. This would lead us to the expectation that we get no advantage due

to reordering.

RCM Reordering

Consider an RCM reordered matrix with small bandwidth. The relevant indices corresponding
to the entries are local, as well. Thus, a local portion of x is used. Additionally, the next row
has a very similar set of indices containing entries. That means, in the next row product almost
the entire portion of x can be reused, which leads to only little cache misses on x .

Direct Solvers for Sparse Symmetric Systems
Sparse Matrix Vector Products and Reordering

Naively looking at the problem one might think:

Even if the elements in A are scattered all over the row, in the CSR format they are stored one
after the other, anyway. This would lead us to the expectation that we get no advantage due

to reordering.

RCM Reordering

Consider an RCM reordered matrix with small bandwidth. The relevant indices corresponding
to the entries are local, as well. Thus, a local portion of x is used. Additionally, the next row
has a very similar set of indices containing entries. That means, in the next row product almost
the entire portion of x can be reused, which leads to only little cache misses on x .

Related Software

Direct Solvers for Sparse Symmetric Systems
Related Software

SuiteSparse – https://people.engr.tamu.edu/davis/suitesparse.html:

§ CSparse, basic direct solver library for sparse linear systems, follows the book “Direct
solution of sparse linear systems” by Tim Davis.

§ UMFPack, unsymmetric multifrontal solver, used for “\”in MATLAB and GNU Octave.

§ Cholmod, high performance Cholesky decomposition

§ various local heuristic reorderings, like Approximate Minimum Degree

SuperLU – https://portal.nersc.gov/project/sparse/superlu/:

§ Sparse LU decomposition with the Super-Node approach

ITPACK – https://www.netlib.org/itpack/:

§ Different Sparse Solvers

https://people.engr.tamu.edu/davis/suitesparse.html
https://portal.nersc.gov/project/sparse/superlu/
https://www.netlib.org/itpack/

Direct Solvers for Sparse Symmetric Systems
Related Software

	Preliminaries
	Recall
	Issues
	Definitions

	Preconditioning
	Ideas
	Diagonal Preconditioning
	Splitting Methods
	Incomplete Factorizations
	Sparse Approximate Inverses (SPAI)

	Krylov Subspaces and Projection Methods
	
	Conjugate Gradients
	Conjugate Gradient Normal Equation Residual/Conjugate Gradient Normal Equation Error

	Direct Solvers for Sparse Symmetric Systems
	Preliminaries
	The Elimination Graph Model for Symmetric Matrices
	Characterization of Fill-in
	Heuristic Fill-in Reduction
	(Reverse) Cuthill-McKee Reordering (RCM)
	Local heuristics
	Hybrid method and graph components
	Sparse Matrix Vector Products and Reordering
	Related Software

