Numerical Solution of Linear Quadratic Regulator Problems under PDE Constraints

Jens Saak joint work with
Peter Benner (CSC), Heiko Weichelt (CSC), Norman Lang (CSC),
Sabine Hein (née Görner) (MiIT Chemnitz UT)
and Hermann Mena (EPN Quito Ecuador),

Computational Methods in Systems and Control Theory (CSC)
Max Planck Institute for Dynamics of Complex Technical Systems
Outline

1. Feedback-Control of Linear Parabolic PDEs
2. Tracking Control
3. Non-linear Systems
Feedback-Control of Linear Parabolic PDEs

1. Feedback-Control of Linear Parabolic PDEs
 - Parabolic PDEs and Abstract Cauchy-Problems
 - LQR Design for Abstract Cauchy Problems
 - Differential Riccati Equations: The case $T_f < \infty$

2. Tracking Control

3. Non-linear Systems
Feedback-Control of Linear Parabolic PDEs

Consider a control problem for a parabolic partial differential equation

\[
\frac{\partial x}{\partial t} + \nabla \cdot (c(x) - k(\nabla x)) + q(x) = v(\xi, t), \quad t \in [0, T_f], \quad (PDE)
\]

on a domain \(\Omega \subset \mathbb{R}^d, d = 1, 2, 3. \)

Here:

- \(q \) uncontrolled sink or source
- \(k \) diffusive part
- \(c \) convection part

For ease of presentation we consider \(T_f = \infty. \)
Consider a control problem for a

parabolic partial differential equation

\[
\frac{\partial \mathbf{x}}{\partial t} + \nabla \cdot (\mathbf{c}(\mathbf{x}) - \mathbf{k}(\nabla \mathbf{x})) + \mathbf{q}(\mathbf{x}) = \mathbf{v}(\xi, t), \quad t \in [0, T_f], \tag{PDE}
\]

on a domain \(\Omega \subset \mathbb{R}^d, d = 1, 2, 3. \)

Here \(\mathbf{v}(\xi, t) = \mathcal{B}(\xi)\mathbf{u}(t) \)

- \(\mathbf{u} \) control
- \(\mathcal{B} \) input operator
Feedback-Control of Linear Parabolic PDEs

Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

\[
\frac{\partial x}{\partial t} + \nabla \cdot (c(x) - k(\nabla x)) + q(x) = v(\xi, t), \quad t \in [0, T_f], \quad (PDE)
\]

on a domain \(\Omega \subset \mathbb{R}^d, d = 1, 2, 3 \).

If (PDE) is linear, then a variational formulation leads to a

Cauchy problem for the

linear evolution equation

\[
\dot{x} = Ax + Bu, \quad x(0) = x_0 \in \mathcal{X}.
\]
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Formulation)

\[\dot{x} = Ax + Bu, \quad x(0) = x_0 \in \mathcal{X}, \quad \text{(Cauchy)} \]

with linear operators

\[A : \text{dom}(A) \subset \mathcal{X} \rightarrow \mathcal{X}, \quad B : \mathcal{U} \rightarrow \mathcal{X}, \]

on separable Hilbert spaces \(\mathcal{X} \) (state space), \(\mathcal{U} = \mathbb{R}^k \) (i.e., \(\mathcal{U} \) is finite dim.).
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Formulation)

Lineare evolution equation

\[
\dot{x} = Ax + Bu, \quad x(0) = x_0 \in \mathcal{X}, \quad \text{(Cauchy)}
\]

Output equation

\[
y = Cx, \quad \text{(output)}
\]

with linear operators

\[
A : \text{dom}(A) \subset \mathcal{X} \to \mathcal{X}, \quad B : \mathcal{U} \to \mathcal{X}, \quad C : \mathcal{X} \to \mathcal{Y},
\]

on separable Hilbert spaces \(\mathcal{X} \) (state space), \(\mathcal{U} = \mathbb{R}^k \) (i.e., \(\mathcal{U} \) is finite dim.) and \(\mathcal{Y} \) (observation space).
Feedback-Control of Linear Parabolic PDEs
LQR Design for Abstract Cauchy Problems (Formulation)

<table>
<thead>
<tr>
<th>lineare evolution equation</th>
<th>output equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\dot{x} = Ax + Bu, \quad x(0) = x_0 \in \mathcal{X}, \quad (\text{Cauchy})]</td>
<td>[y = Cx, \quad (\text{output})]</td>
</tr>
</tbody>
</table>

Defining \(Q := C^* \hat{Q} C \) with \(\hat{Q} = \hat{Q}^* \geq 0 \), and \(R = R^* > 0 \) we state the

cost function

\[
J(u) = \frac{1}{2} \int_{0}^{\infty} \langle \hat{Q}y, y \rangle + \langle Ru, u \rangle \, dt. \quad (\text{cost})
\]
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

\[
\dot{x} = A x + B u, \quad x(0) = x_0 \in \mathcal{X}, \quad \text{(Cauchy)}
\]

output equation

\[
y = C x, \quad \text{(output)}
\]

Defining \(Q := C^* \hat{Q} C \) with \(\hat{Q} = \hat{Q}^* \geq 0 \), and \(R = R^* > 0 \) we state the

cost function

\[
\mathcal{J}(u) = \frac{1}{2} \int_{0}^{\infty} \langle Q x, x \rangle + \langle R u, u \rangle \, dt. \quad \text{(cost)}
\]
Feedback-Control of Linear Parabolic PDEs
LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

\[
\dot{x} = Ax + Bu, \quad x(0) = x_0 \in \mathcal{X}, \quad \text{(Cauchy)}
\]

output equation

\[
y = Cx, \quad \text{(output)}
\]

cost function

\[
J(u) = \frac{1}{2} \int_0^\infty < Qx, x > + < Ru, u > \, dt. \quad \text{(cost)}
\]

We can now formulate the

LQR–problem.

Minimize (cost) with respect to (Cauchy).
Well understood in the open literature:
Analogously to ODE systems case we find the

\[u = -R^{-1}B^*X_\infty x. \]

Here \(X_\infty \) is the stabilizing, positive semidefinite, selfadjoint solution to the

Operator–Algebraic–Riccati–Equation

\[0 = \mathcal{R}(X) := Q + A^*X + XA - XBR^{-1}B^*X. \quad (O\text{-ARE}) \]

e.g. [Lions ‘71; Lasiecka/Triggiani ‘00; Bensoussan et al. ‘92/‘06; Pritchard/Salamon ‘87; Curtain/Zwart ‘95]
(Cauchy) can now be rewritten as

closed loop system

\[\dot{x} = (A - BR^{-1}B^*X_{\infty})x, \]

and the

optimal solution trajectory

is given as

\[x(t) = S(t)x_0, \]

where \(S(t) \) is the operator semigroup generated by \(A - BR^{-1}B^*X_{\infty} \).
Let \((\mathcal{X}_n)_{n \in \mathbb{N}}\) a Galerkin scheme for \(\mathcal{X}\). We formulate the
Let \((\mathcal{X}_n)_{n \in \mathbb{N}}\) a Galerkin scheme for \(\mathcal{X}\). We formulate the

\[
\dot{x} = A_n x + B_n u, \quad \mathcal{X}_n \ni x_n(0) = P_n x_0, \\
\text{(n-d Cauchy)}
\]

\[
y_n = C_n x_n, \quad \text{(n-d output)}
\]

with linear operators

\[
A_n : \text{dom}(A_n) \subset \mathcal{X}_n \to \mathcal{X}_n, \quad B_n : \mathcal{U} \to \mathcal{X}_n, \quad C_n : \mathcal{X}_n \to \mathcal{Y}_n,
\]

on n-d Hilbert spaces \(\mathcal{X}_n\) (state space) and \(\mathcal{Y}_n\) (observation space), but still \(\mathcal{U} = \mathbb{R}^k\).

\(P_n : \mathcal{X} \to \mathcal{X}_n\) the canonical orthogonal projection.
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Let \((X_n)_{n \in \mathbb{N}}\) a Galerkin scheme for \(X\). We formulate the

\[
\dot{x} = A_n x + B_n u, \quad X_n \ni x_n(0) = P_n x_0, \\
\text{(n-d Cauchy)}
\]

\[
y_n = C_n x_n, \\
\text{(n-d output)}
\]

Defining \(Q_n := C_n^* \hat{Q}_n C_n\) with \(\hat{Q}_n = \hat{Q}_n^* \geq 0\), and \(R = R^* > 0\) we formulate

\[
J_n(u) = \frac{1}{2} \int_{0}^{\infty} <\hat{Q}_n y_n, y_n> + <Ru, u> \, dt. \\
\text{(n-d Cost)}
\]
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Let \((\mathcal{X}_n)_{n \in \mathbb{N}} \) a Galerkin scheme for \(\mathcal{X} \). We formulate the

<table>
<thead>
<tr>
<th>n-d evolution equation</th>
<th>output equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{x} = A_n x + B_n u, \quad \mathcal{X}_n \ni x_n(0) = P_n x_0,) (n-d Cauchy)</td>
<td>(y_n = C_n x_n,) (n-d output)</td>
</tr>
</tbody>
</table>

Defining \(Q_n := C_n^* \hat{Q}_n C_n \) with \(\hat{Q}_n = \hat{Q}_n^* \geq 0 \), and \(R = R^* > 0 \) we formulate

<table>
<thead>
<tr>
<th>cost function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_n(u) = \frac{1}{2} \int_0^\infty < Q_n x_n, x_n > + < Ru, u > \ dt.) (n-d Cost)</td>
</tr>
</tbody>
</table>
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

n-d evolution equation

\[\dot{x} = A_n x + B_n u, \quad x_n(0) = P_n x_0, \]

(n-d Cauchy)

output equation

\[y_n = C_n x_n, \]

(n-d output)

cost function

\[J(u) = \frac{1}{2} \int_0^\infty < Q_n x_n, x_n > + < R u, u > \, dt. \]

(n-d cost)

and state the

n-d LQR–problem.

Minimize (n-d Cost) with respect to (n-d Cauchy).
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Analogously to the ∞-dim. case we now find:

\[u = -R^{-1}B^*_nX_nx_n, \]

where X_n is the stabilizing, positive semidefinite, selfadjoint solution to the

\[0 = R_n(X) := Q_n + A^*_nX + XA_n - XB_nR^{-1}B^*_nX. \]

(n-d O-ARE)
As above we can write (n-d Cauchy) as

closed loop system

\[\dot{x}_n = (A_n - B_nR^{-1}B_n^*X_n)x_n, \]

and the

optimal solution

is given as

\[x_n(t) = S_n(t)P_nx_0, \]

also again \(S_n(t) \) is the operator semigroup generated by \(A_n - B_nR^{-1}B_n^*X_n \).
The n-d LQR–problems approximate the ∞-dim LQR–problem in the following sense

- $X_n P_n v \rightarrow X v$ for $n \rightarrow \infty$ and any $v \in \mathcal{X}$,
- $S_n(t) P_n v \rightarrow S(t) v$ for $n \rightarrow \infty$ and any $v \in \mathcal{X}$,
Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR–problems approximate the ∞-dim LQR–problem in the following sense

- $X_n P_n v \to X v$ for $n \to \infty$ and any $v \in \mathcal{X}$,
- $S_n(t) P_n v \to S(t) v$ for $n \to \infty$ and any $v \in \mathcal{X}$,

that means in the strong operator-topology.

[Banks/Kunisch’84] distributed control of parabolic PDEs
[Benner/S.’05] boundary control with mixed boundary conditions
[Lasiecka/Triggiani’00] weakens regularity conditions on (Cauchy), also has convergence rates
[Ito’87/’90; Morris’94] general Cauchy problems

[...] many more
Approximation

The n-d LQR–problems approximate the ∞-dim LQR–problem in the following sense

- $X_n P_n v \to Xv$ for $n \to \infty$ and any $v \in \mathcal{X}$,
- $S_n(t) P_n v \to S(t)v$ for $n \to \infty$ and any $v \in \mathcal{X}$,

that means in the strong operator-topology.

Remarks:

- For a chosen basis (e.g. from spatial FDM/FEM discretization) all n-d operators have matrix representations and $S(t)$ coincides with the matrix-exponential $e^{(A - BR^{-1}B^T)X}t$.

Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR–problems approximate the ∞-dim LQR–problem in the following sense

- \(X_n P_n \mathbf{v} \rightarrow X\mathbf{v} \) for \(n \rightarrow \infty \) and any \(\mathbf{v} \in \mathcal{X} \),
- \(S_n(t)P_n \mathbf{v} \rightarrow S(t)\mathbf{v} \) for \(n \rightarrow \infty \) and any \(\mathbf{v} \in \mathcal{X} \),

that means in the strong operator-topology.

Remarks:

- For a chosen basis (e.g. from spatial FDM/FEM discretization) all n-d operators have matrix representations and \(S(t) \) coincides with the matrix-exponential \(e^{(A-BR^{-1}B^TX)t} \).
- \(\mathbf{u} \) and \(\mathbf{R} \) are always kept fixed, i.e., \(\mathbf{u} \) from computations for an n-d problem can directly be applied in the ∞-d problem.
- Suboptimality can be estimated in terms of the discretization error [Benner/S.‘10]
Main task in numerical solution

Efficient solution of the large sparse matrix–Riccati–equations

\[0 = \mathcal{R}_h(X) := Q_h + A_h^*X + XA_h - XB_hR^{-1}B_h^*X, \quad (\text{M-ARE}) \]

with regard to both memory and CPU usage.

Classical methods are not applicable due to their cubic complexity.
(M-ARE) is non-linear ⇒

Newton’s method for the ARE

\[R'_h|_X(N_\ell) = -R_h(X_\ell), \quad X_{\ell+1} = X_\ell + N_\ell. \]

The Frechét derivative of \(R_h \) at \(X \) is given as the Lyapunov operator

\[R'_h|_X : \quad Z \mapsto (A_h - B_h R^{-1} B_h^T X)^T Z + Z (A_h - B_h R^{-1} B_h^T X). \]

Thus we find the

Newton update

\[(A_h - B_h R^{-1} B_h^T X_\ell)^T N_{\ell+1} + N_{\ell+1} (A_h - B_h R^{-1} B_h^T X_\ell) = -R(X_\ell). \]
(M-ARE) is non-linear ⇒

Newton’s method for the ARE

\[\mathcal{R}'_h|_X(N_\ell) = -\mathcal{R}_h(X_\ell), \quad X_{\ell+1} = X_\ell + N_\ell. \]

The Fréchet derivative of \(\mathcal{R}_h \) at \(X \) is given as the Lyapunov operator

\[\mathcal{R}'_h|_X : \quad Z \mapsto (A_h - B_hR^{-1}B_h^TX)^T Z + Z(A_h - B_hR^{-1}B_h^TX). \]

Thus we find the one step Newton-Kleinman iteration

\[(A_h - B_hR^{-1}B_h^TX_\ell)^T X_{\ell+1} + X_{\ell+1}(A_h - B_hR^{-1}B_h^TX_\ell) = -C_h^T Q_h C_h - X_\ell B_h R^{-1} B_h^T X_\ell. \]
In every Newton step we solve a

Lyapunov equation

\[F^T X + XF = -GG^T. \]
(Lyapunov)
In every Newton step we solve a

\[
F^T X + XF = -GG^T. \tag{Lyapunov}
\]

Available solvers for large sparse Lyapunov equations (Lyapunov):

- **ADI** [Wachpress‘88; Penzl‘99; Benner/Li/Penzl‘08; Li/White‘02];
In every Newton step we solve a Lyapunov equation:

\[F^T X + X F = -G G^T. \]

(Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov):

ADI [Wachpress‘88; Penzl‘99; Benner/Li/Penzl‘08; Li/White‘02];

Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini et al.‘06–‘11]

Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

... many more
In every Newton step we solve a

Lyapunov equation

\[F^T X + XF = -GG^T. \] (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08; Li/White‘02];

Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini et al.‘06–‘11]

Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

... many more

ADI needs shift–paramets; Choice of shifts: [Ellner/Wachspress‘91; Penzl‘00; Benner/Mena/S.‘06; Starke ‘89; Sabino‘06; Wachspress ’08]
In every Newton step we solve a Lyapunov equation:

\[F^T X + XF = -GG^T. \]

Available solvers for large sparse Lyapunov equations (Lyapunov):

- **ADI** [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08; Li/White‘02];
- **Krylov** [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini et al.‘06–‘11]
- **Smith** [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]
- ... many more

For Systems with very few inputs **Newton-ADI** and **Newton-Smith** can iterate on the feedback \(K_h := R^{-1}B_h^T X \) directly [Penzl‘00; Banks/Ito‘91].
For $T_f < \infty$ one finds (\ast-ARE) \leadsto (\ast-DRE):
\[
\frac{\partial}{\partial t} \mathcal{R}_h(X) = -\mathcal{R}_h(X)
\]
Feedback-Control of Linear Parabolic PDEs

Differential Riccati Equations: The case $T_f < \infty$

For $T_f < \infty$ one finds (\ast-ARE) \leadsto (\ast-DRE):

$$\frac{\partial}{\partial t} \mathcal{R}_h(X) = -\mathcal{R}_h(X)$$

[**Mena 2007**]:
ODE solvers of BDF and Rosenbrock type applicable efficiently.
Feedback-Control of Linear Parabolic PDEs

Differential Riccati Equations: The case $T_f < \infty$

For $T_f < \infty$ one finds (\ast-ARE) \rightsquigarrow (\ast-DRE): $\frac{\partial}{\partial t} R_h(X) = -R_h(X)$
Feedback-Control of Linear Parabolic PDEs

Differential Riccati Equations: The case $T_f < \infty$

For $T_f < \infty$ one finds (\ast-ARE) \leadsto (\ast-DRE):

$$\frac{\partial}{\partial t} R_h(X) = -R_h(X)$$
Feedback-Control of Linear Parabolic PDEs

Differential Riccati Equations: The case $T_f < \infty$

For $T_f < \infty$ one finds (\ast-ARE) \leadsto (\ast-DRE):

$$\frac{\partial}{\partial t} \mathcal{R}_h(X) = -\mathcal{R}_h(X)$$

Low Rank Approximation again guarantees efficiency in terms of computational effort and memory usage.
Tracking Control

Differential Riccati Equations: The case $T_f < \infty$

1. Feedback-Control of Linear Parabolic PDEs

2. Tracking Control
 - Linear Systems with Inhomogenities
 - Application I: Tracking Control of Parabolic PDEs
 - Application II: Solution of Inverse Problems with Parabolic PDEs

3. Non-linear Systems
Reminder for systems with linear inhomogeneous evolution equations

\[\dot{x} = Ax + Bu + f. \]

Let \(\hat{x} \) solve the uncontrolled system \(\dot{x} = Ax + f \), then

\[f = \dot{\hat{x}} - A\hat{x}, \]

and

\[\dot{x} - \dot{\hat{x}} = A(x - \hat{x}) + Bu. \]

We can solve the system

\[\dot{z} = Az + Bu \]

for \(z = x - \hat{x} \) to compute the control \(u \).

e.g., [Godunov’97]
Consider \tilde{x} the state we want to track and the tracking problem

\[
\begin{align*}
\dot{x} &= Ax + Bv, \\
y &= C(x - \tilde{x}), \\
J(u) &= \frac{1}{2} \int_0^\infty < Q(x - \tilde{x}), x - \tilde{x}> + < Rv, v > \, dt.
\end{align*}
\]

Define $z := x - \tilde{x}$ and the Cauchy problem

\[
\begin{align*}
\dot{z} &= Az + Bv, \\
y &= Cz.
\end{align*}
\] \hspace{1cm} (1)

The optimal control then is given as $v = -Kz$ as above and (1) is equivalent to

\[
\begin{align*}
\dot{x} &= Ax - BKx + \dot{\tilde{x}} - A\tilde{x} + BK\tilde{x}.
\end{align*}
\]
Consider \tilde{x} the state we want to track and the tracking problem

$$\dot{x} = Ax + Bv, \quad y = C(x - \tilde{x}),$$

$$J(u) = \frac{1}{2} \int_0^\infty \langle Q(x - \tilde{x}), x - \tilde{x} \rangle + \langle Rv, v \rangle \, dt.$$

- $f := \dot{\tilde{x}} - A\tilde{x} + BK\tilde{x}$ is a known inhomogeneity when solving the closed loop system.

- Equations (tracking) and (1) require the same algebraic Riccati equation.
Consider \tilde{x} the state we want to track and the tracking problem:

$$\begin{align*}
\dot{x} &= Ax + Bv, \\
y &= C(x - \tilde{x}), \\
J(u) &= \frac{1}{2} \int_0^\infty < Q(x - \tilde{x}), x - \tilde{x}> + < Rv, v > dt.
\end{align*}$$

- We can compute the Feedback for (tracking) with the above technique for (1) and afterward solve the inhomogeneous closed loop system.
- Method also works for a reference pair (\tilde{x}, \tilde{u}) [Benner/Görner/S.‘06]
Consider the instationary heat equation

\[\frac{\partial}{\partial t} x(\xi, t) = \frac{\lambda}{c \rho} \Delta x(\xi, t) \quad \text{on } \Omega \times (0, T), \]

with boundary coditions:

\[\lambda \frac{\partial}{\partial \nu} x(\xi, t) = \kappa_i (x(\xi, t) - u_i(t)) \quad \text{on } \Gamma_i \times (0, T), \]

\[\lambda \frac{\partial}{\partial \nu} x(\xi, t) = \kappa_o (x(\xi, t) - x_{\text{ext}}(t)) \quad \text{on } \Gamma_o \times (0, T), \]

Identification Problem

Knowing measurements \(\hat{y} \) use the output \(y(t) = Cx(\xi, t) \in \mathbb{R}^k \) to find

the heat \(u_i \) induced via the inner boundary \(\Gamma_i \).
Consider the instationary heat equation

\[
\frac{\partial}{\partial t} x(\xi, t) = \frac{\lambda}{c \rho} \Delta x(\xi, t)
\]

on \(\Omega \times (0, T) \),

with boundary coditions:

\[
\lambda \frac{\partial}{\partial \nu} x(\xi, t) = \kappa_i (x(\xi, t) - u_i(t)) \quad \text{on} \ \Gamma_i \times (0, T),
\]

\[
\lambda \frac{\partial}{\partial \nu} x(\xi, t) = \kappa_o (x(\xi, t) - x_{\text{ext}}(t)) \quad \text{on} \ \Gamma_o \times (0, T),
\]

- Allowing for measurement uncertainties \(\rightsquigarrow \) LQG-design, e.g., [Hein ‘10] (allows nonlinear treatment of material parameters).
- Combine LQG-design to identify \(x(\xi, t) \) with tracking \(y \rightarrow \hat{y} \).

Ongoing work in the graduation thesis of N. Lang.
Non-linear Systems

Heat Distribution in Steel Profiles, a Model Problem

1. Feedback-Control of Linear Parabolic PDEs

2. Tracking Control

3. Non-linear Systems
 - Heat Distribution in Steel Profiles, a Model Problem
 - Linearization and Results
 - Optimal Control-Based Stabilization for NSEs
 - Solution to 1. Problem/no need for divergence free FE
 - Solving the Projected Matrix Equations
 - Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species
 - Results
Non-linear Systems

Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a model problem. We consider the in stationary heat equation

\[c(x) \rho(x) \frac{\partial}{\partial t} x(\xi, t) = \nabla \cdot (\lambda(x) \nabla x(\xi, t)) \quad \text{on } \Omega \times (0, T), \]
\[-\lambda(x) \frac{\partial}{\partial \nu} x(\xi, t) = \kappa_i(x(\xi, t) - u_i(t)) \quad \text{on } \Gamma_i \times (0, T), \quad \text{(heat)} \]
\[x(\xi, 0) = x_0(\xi) \quad \text{on } \Omega, \]

\[x \quad \text{state, temperature} \]
\[u \quad \text{control} \]
\[T \in \mathbb{R} \cup \{\infty\} \quad \text{final time} \]

\[c(x) \quad \text{specific heat capacity} \]
\[\rho(x) \quad \text{density} \]
\[\lambda(x) \quad \text{heat conductivity} \]
Non-linear Systems
Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a model problem. We consider the in stationary heat equation

\[
\begin{align*}
 c(x)\rho(x) \frac{\partial}{\partial t} x(\xi, t) &= \nabla \cdot (\lambda(x) \nabla x(\xi, t)) & \text{on } \Omega \times (0, T), \\
 -\lambda(x) \frac{\partial}{\partial \nu} x(\xi, t) &= \kappa_i(x(\xi, t) - u_i(t)) & \text{on } \Gamma_i \times (0, T), \quad \text{(heat)} \\
 x(\xi, 0) &= x_0(\xi) & \text{on } \Omega,
\end{align*}
\]

(heat) obviously is non-linear due to \(c, \rho \) and \(\lambda \) depending on the temperature \(x \).

Idea
Freeze the material parameters for one or more time steps. \(\Rightarrow \)
Linearization \(\Rightarrow \) method from the introduction can be applied.
Non-linear Systems

Linearization and Results

Idea

Freeze the material parameters for one or more time steps. ⇒ Linearization ⇒ method from the introduction can be applied.

Numerics semi-implicit discretization

Theory embeds to model predictive control. [Benner/S.‘07]

[Images of temperature distribution over time]
Optimal Control-Based Stabilization for NSEs

Analytical Solution [Raymond ’05–’07]

Linearized Navier-Stokes control system:

\[
\begin{align*}
\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re} \Delta z - \omega z + \nabla p &= 0 \text{ in } Q_\infty \\
\text{div } z &= 0 \text{ in } Q_\infty \\
z &= bu \text{ in } \Sigma_\infty \\
z(0) &= z_0 \text{ in } \Omega,
\end{align*}
\]

ωz with ω > 0 de-stabilizes the system further, needed to guarantee exponential stabilization, ω controls decay rate!
Optimal Control-Based Stabilization for NSEs

Analytical Solution [Raymond ’05–’07]

Linearized Navier-Stokes control system:

\[\begin{align*}
\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re} \Delta z - \omega z + \nabla p &= 0 \quad \text{in } Q_\infty \\
\text{div } z &= 0 \quad \text{in } Q_\infty \\
z &= b u \quad \text{in } \Sigma_\infty \\
z(0) &= z_0 \quad \text{in } \Omega,
\end{align*} \]

\(\omega z \) with \(\omega > 0 \) de-stabilizes the system further, needed to guarantee exponential stabilization, \(\omega \) controls decay rate!
Optimal Control-Based Stabilization for NSEs

Analytical Solution [Raymond ‘05–’07]

Linearized Navier-Stokes control system:

\[\begin{align*}
\partial_t \mathbf{z} + (\mathbf{z} \cdot \nabla) \mathbf{w} + (\mathbf{w} \cdot \nabla) \mathbf{z} - \frac{1}{Re} \Delta \mathbf{z} - \omega \mathbf{z} + \nabla p &= 0 \quad \text{in } Q_{\infty} \quad (1a) \\
\text{div } \mathbf{z} &= 0 \quad \text{in } Q_{\infty} \quad (1b) \\
\mathbf{z} &= \mathbf{b}u \quad \text{in } \Sigma_{\infty} \quad (1c) \\
\mathbf{z}(0) &= \mathbf{z}_0 \quad \text{in } \Omega, \quad (1d)
\end{align*}\]

\(\omega \mathbf{z}\) with \(\omega > 0\) de-stabilizes the system further, needed to guarantee exponential stabilization, \(\omega\) controls decay rate!

Cost functional (with \(\mathbf{P} = \text{Helmholtz projector}\))

\[J(\mathbf{z}, u) = \frac{1}{2} \int_0^\infty \langle \mathbf{Pz}, \mathbf{Pz} \rangle_{L^2(\Omega)} + \rho u(t)^2 \, dt, \quad (2)\]

the linear-quadratic optimal control problem associated to (1) becomes

\[\inf \{ J(\mathbf{z}, u) \mid (\mathbf{z}, u) \text{ satisfies (1)}, \ u \in L^2(0, \infty) \}. \quad (3)\]
Proposition [Raymond ’05, Bahdra ’09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution \(w \) by the feedback law

\[
u = -\rho^{-1}B^*Xz_H,
\]

where

\(Pz \):

\(P \) : \(L^2(\Omega) \rightarrow V_0(\Omega) \) being the Helmholtz projector

\(\capz : \div z_H \equiv 0 \);

\(X = X^* \in L(V_0(\Omega)) \) is the unique nonnegative semidefinite weak solution of the operator Riccati equation

\[
0 = I + (A + \omega I)^*X + X(A + \omega I) - X(B_{\tau}B_{\tau}^* + \rho^{-1}B_{n}B_{n}^*)X,
\]

\(A \) is the linearized Navier-Stokes operator restricted to \(V_0 \);

\(B_{\tau} \) and \(B_{n} \) correspond to the projection of the control action in the tangential and normal directions.
Optimal Control-Based Stabilization for NSEs

Analytical Solution [Raymond ’05–’07]

Proposition [Raymond ’05, Bahl dra ’09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u = -\rho^{-1}B^*Xz_H,$$

where

$z_H := Pz$, with $P : L_2(\Omega) \mapsto V_0^n(\Omega)$ being the Helmholtz projector ($\mapsto \text{div } z_H \equiv 0$);
Optimal Control-Based Stabilization for NSEs

Analytical Solution [Raymond ’05–’07]

Proposition [Raymond ’05, Bahdra ’09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution \(w \) by the feedback law

\[
 u = -\rho^{-1}B^*Xz_H,
\]

where

- \(z_H := Pz \), with \(P : L_2(\Omega) \mapsto V_0^0(\Omega) \) being the Helmholtz projector \((\mapsto \text{div} z_H \equiv 0)\);
- \(X = X^* \in \mathcal{L}(V_0^0(\Omega)) \) is the unique nonnegative semidefinite weak solution of the operator Riccati equation

\[
 0 = I + (A + \omega I)^*X + X(A + \omega I) - X(B_T B_T^* + \rho^{-1}B_n B_n^*)X,
\]

\(A \) is the linearized Navier-Stokes operator restricted to \(V_0^0 \);
The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u = -\rho^{-1}B^*Xz_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_0^0(\Omega)$ being the Helmholtz projector ($\mapsto \text{div} \ z_H \equiv 0$);
- $X = X^* \in \mathcal{L}(V_0^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

$$0 = I + (A + \omega I)^*X + X(A + \omega I) - X(B^T B^* + \rho^{-1}B_n B^*_n)X,$$

A is the linearized Navier-Stokes operator restricted to V_0^0; B^T and B_n correspond to the projection of the control action in the tangential and normal directions.
Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements. Here, we want to use standard discretization. Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.
Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements. Here, we want to use standard discretization. Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

Each step of Newton-Kleinman iteration: solve

\[A_j^T Z_{j+1} Z_{j+1}^T + Z_{j+1} Z_{j+1}^T A_j = - \dot{M} - K_j^T K_j \]

\[n_v := \text{rank}(\dot{M}) = \text{dim of ansatz space for velocities.} \]

\[\sim \text{need to solve } n_v + m \text{ linear systems of equations in each step of Newton-ADI iteration!} \]
Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements. Here, we want to use standard discretization. Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

\[A_j^T Z_{j+1} Z_{j+1}^T + Z_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j \]

\(n_v := \text{rank}(M) = \text{dim of ansatz space for velocities}. \)

\(\leadsto \text{need to solve } n_v + m \text{ linear systems of equations in each step of Newton-ADI iteration!} \)

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general. To start Newton iteration, a stabilizing initial guess is needed!
Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.
 Here, we want to use standard discretization.
 Ex. [Morris/Navasca '08] Helmholtz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

 \[A_j^T Z_{j+1} Z_{j+1}^T + Z_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j \]

 \(n_v := \text{rank}(M) = \text{dim of ansatz space for velocities.} \)

 \(\implies \) need to solve \(n_v + m \) linear systems of equations in each step of Newton-ADI iteration!

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general.
 To start Newton iteration, a stabilizing initial guess is needed!

\[\square \]
Optimal Control-Based Stabilization for NSEs
Solving the Helmholtz-projected Navier-Stokes ARE

Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements. Here, we want to use standard discretization. Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

\[A_j^T Z_{j+1} Z_{j+1}^T + Z_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j \]

\[n_v := \text{rank} (M) = \text{dim of ansatz space for velocities.} \]

\[\Rightarrow [\text{HEIN '10, BENNER '11}] \text{ linear systems of equations in each step of Newton-ADI iteration!} \]

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general.
To start Newton iteration, a stabilizing initial guess is needed!
Non-linear Systems
Solution to 1. Problem/no need for divergence free FE

- incompressible Navier-Stokes-Equations

\[
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = 0 \quad + \text{B.C.}
\]
\[
\nabla \cdot \mathbf{v} = 0
\]
Non-linear Systems

Solution to 1. Problem/no need for divergence free FE

- incompressible Navier-Stokes-Equations

\[
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = 0 \quad + \text{B.C.}
\]
\[
\nabla \cdot \mathbf{v} = 0
\]

- Spatial FE discretization

\[
M \dot{\mathbf{v}}(t) = K(\mathbf{v})\mathbf{v}(t) - Gp(t) + B_1\mathbf{u}(t)
\]
\[
0 = G^T \mathbf{v}(t)
\]
Non-linear Systems
Solution to 1. Problem/no need for divergence free FE

- incompressible Navier-Stokes-Equations
 \[
 \frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = 0 \quad + \text{B.C.}
 \]
 \[
 \nabla \cdot \mathbf{v} = 0
 \]
 (NSE)

- Spatial FE discretization
 \[
 M \dot{\mathbf{v}}(t) = K(v) \nu(t) - G p(t) + B_1 \mathbf{u}(t)
 \]
 \[
 0 = G^T \nu(t)
 \]
 (SNSE)

- Linearization and change of notation
 \[
 E_{11} \dot{\nu}(t) = A_{11} \nu(t) + A_{12} \rho(t) + B_1 \mathbf{u}(t)
 \]
 \[
 0 = A_{12}^T \nu(t)
 \]
 (DANSE)
Non-linear Systems

Solution to 1. Problem/no need for divergence free FE

\[E_{11} \dot{v}(t) = A_{11} v(t) + A_{12} p(t) + B_1 u(t) \]
\[0 = A_{12}^T v(t) \]

Multiplication of line one from the left by \(A_{12}^T E_{11}^{-1} \) together with
\[0 = A_{12}^T v(t) \Rightarrow 0 = A_{12}^T \dot{v}(t) \]
reveals the hidden manifold

\[0 = A_{12}^T E_{11}^{-1} A_{11} v(t) + A_{12}^T E_{11}^{-1} A_{12} p(t) + A_{12}^T E_{11}^{-1} B_1 u(t), \]

Inserting \(p(t) \) above leads to:
Non-linear Systems

Solution to 1. Problem/no need for divergence free FE

\[E_{11} \dot{v}(t) = A_{11} v(t) + A_{12} p(t) + B_1 u(t) \]

\[0 = A_{12}^T v(t) \]

Multiplication of line one from the left by \(A_{12}^T E_{11}^{-1} \) together with
\[0 = A_{12}^T v(t) \Rightarrow 0 = A_{12}^T \dot{v}(t) \]

reveals the hidden manifold

\[0 = A_{12}^T E_{11}^{-1} A_{11} v(t) + A_{12}^T E_{11}^{-1} A_{12} p(t) + A_{12}^T E_{11}^{-1} B_1 u(t), \]

Inserting \(p(t) \) above leads to:

Definition

\[\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \]
Non-linear Systems

Solution to 1. Problem/no need for divergence free FE

Definition

\[\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \]

Leads to

projected Riccati equation

\[\Pi C^T C \Pi^T + \Pi A_{11}^T \Pi^T X \Pi E_{11} \Pi^T + \Pi E_{11}^T \Pi^T X \Pi A_{11} \Pi^T - \Pi E_{11}^T \Pi^T X \Pi B_1 B_1^T \Pi^T X \Pi E_{11} \Pi^T = 0 \]

\[\Pi^T X \Pi = X. \]
Non-linear Systems
Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question
How do we solve systems of equations

\[
A_i := A_{11} + BK_i
\]

\[
Z = \Pi^T \Pi Z, \quad \Pi (E_{11} + p_i A_i) \Pi^T Z = \Pi \tilde{G}
\]
in the (inner) ADI steps avoiding the computation of \(\Pi \)?
Non-linear Systems
Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question
How do we solve systems of equations

\[Z = \Pi^T Z, \quad \Pi (E_{11} + p_i A_i) \Pi^T Z = \Pi \tilde{G} \]

in the (inner) ADI steps avoiding the computation of \(\Pi \)?

For \(A_i = A_{11} \)

Lemma

\[\Pi (E_{11} + p_i A_{11}) \Pi^T Z = \Pi \tilde{G} \iff \begin{bmatrix} E_{11} + p_i A_{11} & A_{12} \\ A_{12}^T & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} = \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix} \]

[Heinkenschloss/Sorensen/Sun ’08]
Non-linear Systems

Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level

Model equations:

\[\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = f \]

\[\text{div} \mathbf{v} = 0 \]

\[\partial_t c + \mathbf{v} \cdot \nabla c - \frac{1}{Re \cdot Sc} \Delta c = 0 \]

with boundary conditions:

\[\mathbf{v} = \mathbf{v}_0 \quad c = c_0 = \text{const} \quad \text{on } \Gamma_{\text{in}} \]
\[\mathbf{v} = 0 \quad \partial_n c = 0 \quad \text{on } \Gamma_{\text{wall}} \]
\[\mathbf{v} = 0 \quad c = 0 \quad \text{on } \Gamma_r, \]
Goal: stabilize concentration at certain level

Model equations:

\[
\begin{align*}
\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p &= f \\
\text{div} \mathbf{v} &= 0 \\
\partial_t c + \mathbf{v} \cdot \nabla c - \frac{1}{Re \cdot Sc} \Delta c &= 0
\end{align*}
\]

Domain:
Non-linear Systems

Results for $Re = 10$, $Sc = 10$

![Graph showing the amount of reactive substance over time with different feedback scenarios.](image-url)
Non-linear Systems

Results for $Re = 10, Sc = 10$ shown at $3 \times$ speed

no control

piecewise constant feedback

Computations by Heiko Weichelt
Thank you for your attention!