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Motivation
Adaptive Spindel Support (ASS) with Piezo Actuators

Figure: ASS mounted in Parallel-Kinematic Machine

Source: B. Kranz, Fraunhofer IWU, Dresden, Germany.

Max Planck Institute Magdeburg M. M. Uddin, Second Order to Second Order Balancing for Index-1 Vibrational Systems 2/19



Motivation Balanced Truncation for Large Scale Systems LRCF-ADI MOR for Second Order Index-1 Systems Numerical Results

Motivation
Adaptive Spindel Support (ASS) with Piezo Actuators

Figure: (a) ASS mounted in (b) Parallel-Kinematic Machine

Source: B. Kranz, Fraunhofer IWU, Dresden, Germany.

Max Planck Institute Magdeburg M. M. Uddin, Second Order to Second Order Balancing for Index-1 Vibrational Systems 2/19



Motivation Balanced Truncation for Large Scale Systems LRCF-ADI MOR for Second Order Index-1 Systems Numerical Results

Motivation
Adaptive Spindel Support (ASS) with Piezo Actuators

Mathematical Model for Controller Design

FEM

Second Order Index-1 System

Mẍ(t) +Dẋ(t) +Kx(t) = Hu(t)

y(t) = HT x(t)

M mass matrix, D damping matrix, K stiffness matrix
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Motivation
Adaptive Spindel Support (ASS) with Piezo Actuators

Mathematical Model for Controller Design

FEM

Second Order Index-1 System

[
M1 0
0 0

] [
z̈(t)
ϕ̈(t)

]
+

[
D1 0
0 0

] [
ż(t)
ϕ̇(t)

]
+

[
K11 K12

KT
12 K22

] [
z(t)
ϕ(t)

]
=

[
H1

H2

]
u(t)

y(t) =
[
HT

1 HT
2

] [z(t)
ϕ(t)

]
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Motivation
Goal

Full Dimension Second
Order Index-1 systems MOR

Reduced Second
Order Index-1 Systems

M
O

R

Reduced Second
Order Standard Systems

M
O

R

MOR
Optimization, Control

or Simulation
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Balanced Truncation for Large Scale Systems
First Order Systems

Given LTI continuous-time system

Σ : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Dau(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and A,B,C andDa are matrices

The realization (A,B,C ,Da), of the system Σ, is called balanced, if
the solutions P,Q of the Lyapunov equations (LE)

� AP + PAT + BBT = 0, [controllability]

� ATQ + QA + CTC = 0, [observability]

satisfy: P = Q = diag(σ1, . . . , σn) where σ1 ≥ σ2 ≥ . . . ≥ σn > 0

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ
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Balanced Truncation for Large Scale Systems
First Order Systems

Given LTI continuous-time system

Σ : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Dau(t)

A balanced realization is computed via state space transformation

T : (A,B,C ,Da) 7→ (TAT−1,TB,CT−1,Da)

=

([
A1 A2

A3 A4

]
,

[
B1

B2

]
,
[
C1 C2

]
,Da

)
Form k � n dimensional reduced order model:

Σ̂ : ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉ x̂(t) + D̂au(t)

where (Â, B̂, Ĉ , D̂a) = (A1,B1,C1,Da)

Such that ‖y − ŷ‖∞ is small enough
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Balanced Truncation for Large Scale Systems
First Order Systems

The SR Method (Implementation of BT)

1 Compute (Cholesky) factors of the solutions to the Lyapunov
equation,

P = STS , Q = RTR

2 Compute singular value decomposition

SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T
1

V T
2

]
3 Define

W := RTV1Σ
−1/2
1 ∈ Rn×k V := STU1Σ

−1/2
1 ∈ Rn×k

4 Then
Σ̂ = (Â, B̂, Ĉ , D̂a) = (W TAV ,W TB,CV ,Da)

Max Planck Institute Magdeburg M. M. Uddin, Second Order to Second Order Balancing for Index-1 Vibrational Systems 6/19



Motivation Balanced Truncation for Large Scale Systems LRCF-ADI MOR for Second Order Index-1 Systems Numerical Results

Balanced Truncation for Large Scale Systems
Second Order Systems

Second Order Form

Mẍ + Dẋ + Kx = Hu

y = Lx

x displacements

z =
[
ẋT , xT

]T
M,D,K ∈ Rn1×n1 invertible

J arbitrary but invertible

First Order Form

E ż = Az + Bu
y = Cz

E =

[
0 J
M D

]
, A =

[
J 0
0 −K

]
,

B =

[
0
H

]
, C =

[
0 L

]
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E =
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[
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Balanced Truncation for Large Scale Systems
Second Order Systems

Second Order Form

Mẍ + Dẋ + Kx = Hu

y = Lx

x displacements

z =
[
ẋT , xT

]T
M,D,K ∈ Rn1×n1 invertible

J = M for symmetric system

First Order Form

E ż = Az + Bu
y = Cz

E =

[
0 M
M D

]
, A =

[
M 0
0 −K

]
,

B =

[
0
H

]
, C =

[
0 L

]

First order form is symmetric since A and E symmetric

Apply BT methods on first order systems
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Balanced Truncation for Large Scale Systems
Second Order Systems

Second Order Systems

Mẍ + Dẋ + Kx = Hu, y = Lx

Second Order Projected Systems

W TMV ¨̂x + W TDV ˙̂x + W TKV x̂ = W THu

ŷ = LV x̂

Second Order Reduced Systems

M̂ ¨̂x + D̂ ˙̂x + K̂ x̂ = Ĥu, ŷ = L̂x̂

Projectors

W ,V ∈ Rn1×k?
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Balanced Truncation for Large Scale Systems
Second Order Systems

Second Order Systems

Mẍ + Dẋ + Kx = Hu, y = Lx

Second Order Projected Systems

W TMV ¨̂x + W TDV ˙̂x + W TKV x̂ = W THu

ŷ = LV x̂

Second Order Reduced Systems

M̂ ¨̂x + D̂ ˙̂x + K̂ x̂ = Ĥu, ŷ = L̂x̂

First Order Form

E ż = Az + Bu, y = Cz

E =

[
0 M
M D

]
, B =

[
0
H

]
,

A =

[
M 0
0 −K

]
, C =

[
0
L

]T

Gramians

P =

[
Pv P0

PT
0 Pp

]
≈ STS

=

[
ST
v

ST
p

] [
Sv Sp

]
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E =

[
0 M
M D

]
, B =

[
0
H

]
,

A =

[
M 0
0 −K

]
, C =

[
0
L

]T

Gramians

Q =

[
Qv Q0

QT
0 Qp

]
≈ RTR

=

[
RT
v

RT
p

] [
Rv Rp

]
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Balanced Truncation for Large Scale Systems
Second Order Systems

Four Types of Left and Right Projectors

type SVD left proj. W right proj. V

vv SvMRT
v = UvvΣvvV

T
vv RT

v Vvv ,rΣ
− 1

2
vv ,1 ST

v Uvv ,1Σ
− 1

2
vv ,1

pp SpMRT
p = UppΣppV

T
pp RT

p Vpp,rΣ
− 1

2
pp,r ST

p Upp,rΣ
− 1

2
pp,r

vp SvMRT
p = UvpΣvpV

T
vp RT

p Vvp,rΣ
− 1

2
vp,r ST

v Uvp,rΣ
− 1

2
vp,r

pv SpMRT
v = UpvΣpvV

T
pv RT

v Vpv ,rΣ
− 1

2
pv ,r ST

p Upv ,rΣ
− 1

2
pv ,r

vv = velocity-velocity, pp = position-position,

vp = velocity-position, pv = position-velocity,

r = first r columns of the respective matrix

Form four types of reduced order model:

M̂ = W TMV , D̂ = W TDV , K̂ = W TKV ,

Ĥ = W TH, L̂ = LV
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Solving Large Lyapunov Equations
LRCF-ADI [Benner/Li/Penzl ’08 ]

Given FX + XFT = −GGT F ∈ Rn×n,G ∈ Rn×p

To solve Controllability LE : F = A and G = B

To solve Observability LE : F = AT and G = CT

Task Find Z ∈ Cn×nz , such that nz � n and X ≈ ZZH

Algorithm

V1 =
√
−2Re (p1)(F + p1I )−1G , Z1 = V1

Vi =

√
Re (pi )√

Re (pi−1)

[
Vi−1 − (pi + pi−1)(F + pi I )

−1Vi−1

]
, Zi = [Zi−1Vi ]

For certain shift parameters {p1, ..., pl} ⊂ C−

Stop the algorithm if ‖FZiZ
H
i + ZiZ

H
i FT + GGT‖ is small
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Solving Large Lyapunov Equations
G-LRCF-ADI (E invertible) [Saak ’09 ]

Given FXET + EXFT = −GGT E ,F ∈ Rn×n,G ∈ Rn×p

To solve Controllability LE : F = A and G = B

To solve Observability LE : F = AT and G = CT

Task Find Z ∈ Cn×nz , such that nz � n and X ≈ ZZH

Algorithm

V1 =
√
−2Re (p1)(F + p1E)−1G , Z1 = V1

Vi =

√
Re (pi )√

Re (pi−1)

[
Vi−1 − (pi + pi−1)(F + piE)−1EVi−1

]
, Zi = [Zi−1Vi ]

For certain shift parameters {p1, ..., pl} ⊂ C−

Stop the algorithm if ‖FZiZ
H
i ET + EZiZ

H
i FT + GGT‖ is small
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Solving Large Lyapunov Equations
S-LRCF-ADI (index-1) [Rommes/Freitas/Martins ’08 ]

Index-1 system[
E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
F11 F12

F21 F22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t)

Given F̃XET
11 + E11XF̃T = −G̃ G̃T , E11, F̃ ∈ Rn×n, G̃ ∈ Rn×p

F̃ = F11 − F12F22
−1F21, G̃ = B1 − F12F22

−1B2

Task Find Z ∈ Cn×nz , such that nz � n and X ≈ ZZH

Algorithm
[
V1

∗

]
=
√
−2Re (p1)

[
F11 + p1E11 F12

F21 F22

]−1 [B1

B2

]
, Z1 = V1[

Vi

∗

]
=

√
Re (pi )√

Re (pi−1)

[
Vi−1 − (pi + pi−1)

[
F11 + piE11 F12

F21 F22

]−1 [E11Vi−1

0

]]
, Zi = [Zi−1Vi ]
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Solving Large Lyapunov Equations
S-LRCF-ADI (Real low-rank factor) [Benner/Kürschner/Saak ’12]

Given F̃XET
11 + E11XF̃ = −G̃ G̃T , E11, F̃ ∈ Rn×n, G̃ ∈ Rn×p

F̃ = F11 − F12F
−1
22 F21, G̃ = B1 − F12F

−1
22 B2

Task Find Z ∈ Rn×nz , such that nz � n and X ≈ ZZH

Observation:

If pi+1 = pi
Vi+1 = Vi + βIm(Vi )

Zi+1 = [Zi−1,
√

2Re(Vi ) + β√
2
Im(Vi ),

√
β2

2
+ 2 Im(Vi )]

where β = 2Re(pi )
Im(pi )
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Solving Large Lyapunov Equations
Efficient Solvers for Second Order Systems [Benner/Kürschner/Saak ’12]

Second Order Form

Mẍ + Dẋ + Kx = Hu

x displacements

z =
[
ẋT , xT

]T
M,D,K invertible

First Order Form

E ż = Az + Bu

E =

[
0 M
M D

]
, A =

[
M 0
0 −K

]
,

B =

[
0
H

]

G-LRCF-ADI

main task per step: (A+ piE)x = Ef , x = [xT1 , x
T
2 ]T

SO-LRCF-ADI

(p2i M − piD + K )x2 = (piM − D)f2 −Mf1, x1 = f2 − pix2
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MOR for Second Order Index-1 Systems
Problem Structure

Second Order Index-1 Systems

[
M1 0
0 0

]
︸ ︷︷ ︸
M

[
z̈(t)
ϕ̈(t)

]
+

[
D1 0
0 0

]
︸ ︷︷ ︸
D

[
ż(t)
ϕ̇(t)

]
+

[
K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
z(t)
ϕ(t)

]
=

[
B1

B2

]
︸ ︷︷ ︸
H

u(t)

y =
[
C1 C2

]︸ ︷︷ ︸
L

[
z(t)
ϕ(t)

]

where M,D,K ∈ Rn1×n1 , H ∈ Rn1×p and L ∈ Rm×n1

Properties

All matrices are sparse

M and D are singular, K22 is invertible
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MOR for Second Order Index-1 Systems
Problem Structure

Compact Form of the Systems

M1︸︷︷︸
M

z̈(t) + D1︸︷︷︸
D

ż(t) + (K11 − K12K
−1
22 K21︸ ︷︷ ︸

K

)z(t) = (B1 − K12K
−1
22 B2︸ ︷︷ ︸

H

)u(t)

y = (C1 − C2K
−1
22 K21︸ ︷︷ ︸

L

)z(t) + C2K
−1
22 B2︸ ︷︷ ︸
Da

u(t)
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MOR for Second Order Index-1 Systems
Problem Structure

ROM of Compact Form (applying W , V )

M̂1︸︷︷︸
M̂

¨̂z(t) + D̂1︸︷︷︸
D̂

˙̂z(t) + (K̂11 − K̂12K
−1
22 K̂21︸ ︷︷ ︸

K̂

)ẑ(t) = (B̂1 − K̂12K
−1
22 B2︸ ︷︷ ︸

Ĥ

)u(t)

ŷ = (Ĉ1 − C2K
−1
22 K̂21︸ ︷︷ ︸

L̂

)ẑ(t) + C2K
−1
22 B2︸ ︷︷ ︸
Da

u(t)

M̂1 = W TM1V , D̂1 = W TD1V , K̂11 = W TK11V , K̂12 = W TK12

K̂21 = K21V , B̂1 = W TB1, Ĉ1 = C1V
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MOR for Second Order Index-1 Systems
Problem Structure

ROM of Compact Form (applying W , V )

M̂1︸︷︷︸
M̂

¨̂z(t) + D̂1︸︷︷︸
D̂

˙̂z(t) + (K̂11 − K̂12K
−1
22 K̂21︸ ︷︷ ︸

K̂

)ẑ(t) = (B̂1 − K̂12K
−1
22 B2︸ ︷︷ ︸

Ĥ

)u(t)

ŷ = (Ĉ1 − C2K
−1
22 K̂21︸ ︷︷ ︸

L̂

)ẑ(t) + C2K
−1
22 B2︸ ︷︷ ︸
Da

u(t)

ROM of Index-1 Form[
M̂1 0
0 0

]
︸ ︷︷ ︸
M̂

[
¨̂z(t)
ϕ̈(t)

]
+

[
D̂1 0
0 0

]
︸ ︷︷ ︸
D̂

[
˙̂z(t)
ϕ̇(t)

]
+

[
K̂11 K̂12

K̂21 K22

]
︸ ︷︷ ︸

K̂

[
ẑ(t)
ϕ(t)

]
=

[
B̂1

B2

]
︸ ︷︷ ︸
Ĥ

u(t)

y =
[
Ĉ1 C2

]︸ ︷︷ ︸
L̂

[
ẑ(t)
ϕ(t)

]
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MOR for Second Order Index-1 Systems
Efficient LRCF-ADI Methods

Second Order Index-1 Systems[
M1 0
0 0

]
︸ ︷︷ ︸
M

[
z̈(t)
ϕ̈(t)

]
+

[
D1 0
0 0

]
︸ ︷︷ ︸
D

[
ż(t)
ϕ̇(t)

]
+

[
K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
z(t)
ϕ(t)

]
=

[
B1

B2

]
︸ ︷︷ ︸
H

u(t)

y =
[
C1 C2

]︸ ︷︷ ︸
L

[
z(t)
ϕ(t)

]
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MOR for Second Order Index-1 Systems
Efficient LRCF-ADI Methods

State-Space Form (x1 = ż , x2 = z) 0 J 0
M1 D1 0
0 0 0


︸ ︷︷ ︸

E

ẋ1(t)
ẋ2(t)
ϕ̇(t)

 =

J 0 0
0 −K11 −K12

0 −K21 −K22


︸ ︷︷ ︸

A

x1(t)
x2(t)
ϕ(t)

+

 0
B1

B2


︸ ︷︷ ︸
B

u(t)

y(t) =
[
0 C1 C2

]︸ ︷︷ ︸
C

x1(t)
x2(t)
ϕ(t)
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MOR for Second Order Index-1 Systems
Efficient LRCF-ADI Methods

State-Space Form (x1 = ż , x2 = z) 0 J 0
M1 D1 0
0 0 0


︸ ︷︷ ︸

E

ẋ1(t)
ẋ2(t)
ϕ̇(t)

 =

J 0 0
0 −K11 −K12

0 −K21 −K22


︸ ︷︷ ︸

A

x1(t)
x2(t)
ϕ(t)

+

 0
B1

B2


︸ ︷︷ ︸
B

u(t)

y(t) =
[
0 C1 C2

]︸ ︷︷ ︸
C

x1(t)
x2(t)
ϕ(t)



Advantages

B1 = CT
1 , B2 = CT

2 ⇒ B = CT

J = M1 ⇒ E ,A symmetric

⇒ System symmetric ⇒ Lyapunov equations coincide
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MOR for Second Order Index-1 Systems
Efficient LRCF-ADI Methods

Linear System Inside the ADI M1 µ1M1 0
µ1M1 µ1(D1 − K11) −K12

0 −K21 −K22


x (i)1

x
(i)
2

Λ

 =

0
f1
f2



Solve

[
µ2
1M1 − µ1D1 + K11 K12

K21 K22

] [
x
(i)
2

Λ

]
=

[
f1
f2

]
for x

(i)
2

If i = 1, f1 = −B1, f2 = −B2 and x
(1)
1 = −µ1x

(1)
2

Otherwise, f1 = (piV
(2)
i−1 − V

(1)
i−1)M1 + D1V

(2)
i−1, f2 = 0 and

x
(i)
1 = −pix (i)2 + V

(2)
i−1

Vi−1 =

[
V

(1)
i−1

V
(2)
i−1

]
(see ADI methods)
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Numerical Results
ASS Model (Fraunhofer IWU)

Dimension of full model: 290 137

ADI optimal shift parameters: 40

ADI iteration steps 400 to compute Z ∈ Rn×nz

Number of inputs/outputs: 9

Tolerance for ROM: 10−3

Dimension of reduced order models in different balancing levels:

different types ROM dimension
velocity-velocity (vv) 223
position-position (pp) 52
velocity-position (vp) 76
position-velocity (pv) 76
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Numerical Results
Sigma Plot
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Numerical Results
Sigma Plot
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Numerical Results
Single Input to Single Output Relation
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Numerical Results
Single Input to Single Output Relation
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Conclusion and Outlook

Overview
Second order to second order MOR techniques are shown for second
order index-1 systems, and applied to ASS model

The accuracy of the method is demonstrated by a frequency domain
error analysis

Even very low order surrogate models (10dof) preserve the main
features of the transfer behavior of the full (290137dof) FEM model

They are expected to perform well in controller design

Our approach performs well on any computer that can solve the
finite element model

Future Work
Implicit handling of higher index, e.g., structural dynamics with
holonomic constraints
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