GAMM Workshops 2012 in Anif Dynamics and Control September 19, 2012

Efficient Methods for Reduced Order State Space Modeling of Piezo-Mechanical Systems

Peter Benner, Jens Saak and M. Monir Uddin

Computational Methods in Systems and Control Theory (CSC) Max Planck Institute for Dynamics of Complex Technical Systems

Motivation

Adaptive Spindel Support (ASS) with Piezo Actuators

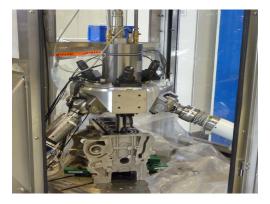


Figure: (a) ASS mounted in (b) Parallel-Kinematic Machine (PKM)

Source: B. Kranz, Fraunhofer IWU, Dresden, Germany.

 • .•		

Ø

Motivation

Adaptive Spindel Support (ASS) with Piezo Actuators

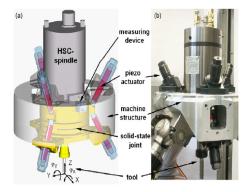
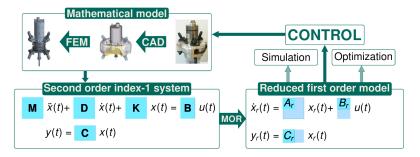


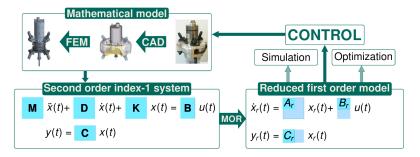
Figure: (a) ASS mounted in (b) Parallel-Kinematic Machine (PKM)

Source: B. Kranz, Fraunhofer IWU, Dresden, Germany.

Simulation, Design Optimization and Controller Design



Simulation, Design Optimization and Controller Design



Primary goal: state space ROM for use in, e.g., Simulink

			000000
Out	line		

Motivation

- 2 Balanced Truncation for Large Scale Systems
- Solving Large Lyapunov Equations
- MOR for Piezo-Mechanical Systems

5 Numerical Results

BT Basics

• Given LTI continuous-time system

$$\Sigma: \dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t),$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$ and A, B, C and D are matrices.

• The realization (A, B, C), of the system Σ, is called balanced, if the solutions P, Q of the Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

satisfy: $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n)$ where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$. • $\{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

A balanced realization is computed via state space transformation

$$\mathcal{T} : (A, B, C) \mapsto (TAT^{-1}, TB, CT^{-1})$$
$$= \left(\begin{bmatrix} A_k & A_2 \\ A_3 & A_4 \end{bmatrix}, \begin{bmatrix} B_k \\ B_2 \end{bmatrix}, \begin{bmatrix} C_k & C_2 \end{bmatrix} \right).$$

• Given LTI continuous-time system

$$\Sigma: \dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t).$$

• A balanced realization is computed via state space transformation

$$\begin{aligned} \mathcal{T}: (A, B, C) &\mapsto (TAT^{-1}, TB, CT^{-1}) \\ &= \left(\begin{bmatrix} A_k & A_2 \\ A_3 & A_4 \end{bmatrix}, \begin{bmatrix} B_k \\ B_2 \end{bmatrix}, \begin{bmatrix} C_k & C_2 \end{bmatrix} \right). \end{aligned}$$

• Truncation $\rightsquigarrow k(\ll n)$ dimensional reduced order model:

$$\hat{\Sigma}: \dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \quad \hat{y}(t) = \hat{C}\hat{x}(t) + Du(t),$$

where $(\hat{A}, \hat{B}, \hat{C}) = (A_k, B_k, C_k)$.

• Such that $||y - \hat{y}||_{\infty}$ or $||G - \hat{G}||_{\infty}$ is small enough.

• Given LTI continuous-time system

$$\Sigma: \dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t).$$

• A balanced realization is computed via state space transformation

$$\mathcal{T}: (A, B, C) \mapsto (TAT^{-1}, TB, CT^{-1})$$
$$= \left(\begin{bmatrix} A_k & A_2 \\ A_3 & A_4 \end{bmatrix}, \begin{bmatrix} B_k \\ B_2 \end{bmatrix}, \begin{bmatrix} C_k & C_2 \end{bmatrix} \right).$$

Transfer function: $G(s) = C(sI - A)^{-1}B + D$, where $s \in \mathbb{C}$, *I* is identity matrix.

• Such that $\|y - \hat{y}\|_{\infty}$ or $\|G - \hat{G}\|_{\infty}$ is small enough.

Implementation

The SR Method

Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$P = S^T S, \quad Q = R^T R.$$

Ompute singular value decomposition

$$SR^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}$$

Define

 $W := R^T V_1 \Sigma_1^{-1/2} \in \mathbb{R}^{n \times k} \qquad V := S^T U_1 \Sigma_1^{-1/2} \in \mathbb{R}^{n \times k}.$

• Then the reduced order model $\hat{\Sigma} = (\hat{A}, \hat{B}, \hat{C}) = (W^T A V, W^T B, C V).$

Given
$$FX + XF^T = -GG^T$$
 $F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}$

Task Find $Z \in \mathbb{C}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

Matrixation Balanced Truncation for Large Scale Systems + LRCF-ADI NOR for Prese Mechanical Systems Numerical Results 000000 Solving Large Lyapunov Equations [Benner/LI/PenzL '08]

Given
$$FX + XF^T = -GG^T$$
 $F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}$

Task Find $Z \in \mathbb{C}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

$$V_1 = \sqrt{-2 \operatorname{Re}(p_1)} (F + p_1 I)^{-1} G,$$
 $Z_1 = V_1$

$$V_i = rac{\sqrt{\operatorname{Re}\left(p_i
ight)}}{\sqrt{\operatorname{Re}\left(p_{i-1}
ight)}} \left[I - (p_i + \overline{p_{i-1}})(F + p_i I)^{-1}
ight] V_{i-1}, \quad Z_i = [Z_{i-1}V_i]$$

- For certain shift parameters $\{p_1,...,p_J\} \subset \mathbb{C}^-$.
- Stop the algorithm if $||FZ_iZ_i^H + Z_iZ_i^HF^T + GG^T||$ is small.

Given
$$FXE^T + EXF^T = -GG^T$$
 $E, F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}$

Task Find $Z \in \mathbb{C}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

$$V_1 = \sqrt{-2 \operatorname{Re}(p_1)} (F + p_1 E)^{-1} G,$$
 $Z_1 = V_1$

$$V_i = \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i-1})}} \left[I - (p_i + \overline{p_{i-1}})(F + p_i E)^{-1} \right] EV_{i-1}, \quad Z_i = [Z_{i-1}V_i]$$

- For certain shift parameters $\{p_1, ..., p_J\} \subset \mathbb{C}^-$.
- Stop the algorithm if $||FZ_iZ_i^H E^T + EZ_iZ_i^H F^T + GG^T||$ is small.

Index 1 system

$$\begin{bmatrix} \boldsymbol{E}_{11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t)$$

Given $\tilde{F}XE_{11}^T + E_{11}X\tilde{F}^T = -\tilde{G}\tilde{G}^T$, $E_{11}, \tilde{F} \in \mathbb{R}^{n \times n}, \tilde{G} \in \mathbb{R}^{n \times p}$

$$\tilde{F} = F_{11} - F_{12}F_{22}^{-1}F_{21}, \quad \tilde{G} = B_1 - F_{12}F_{22}^{-1}B_2$$

Task Find $Z \in \mathbb{C}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

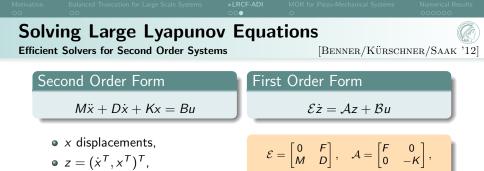
$$\begin{bmatrix} V_1 \\ * \end{bmatrix} = \sqrt{-2 \operatorname{Re}(p_1)} \begin{bmatrix} F_{11} + p_1 E_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}^{-1} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \qquad Z_1 = V_1$$

$$\begin{bmatrix} V_i \\ * \end{bmatrix} = \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i-1})}} \begin{bmatrix} I - (p_i + \overline{p_{i-1}}) \begin{bmatrix} F_{11} + p_i E_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}^{-1} \end{bmatrix} \begin{bmatrix} E_{11} V_{i-1} \\ 0 \end{bmatrix}, \qquad Z_i = [Z_{i-1} V_i]$$

Given
$$\tilde{F}XE_{11}^T + E_{11}X\tilde{F} = -\tilde{G}\tilde{G}^T$$
, $E_{11}, \tilde{F} \in \mathbb{R}^{n \times n}, \tilde{G} \in \mathbb{R}^{n \times p}$
 $\tilde{F} = F_{11} - F_{12}F_{22}^{-1}F_{21}$, $\tilde{G} = B_1 - F_{12}F_{22}^{-1}B_2$

Task Find $Z \in \mathbb{R}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

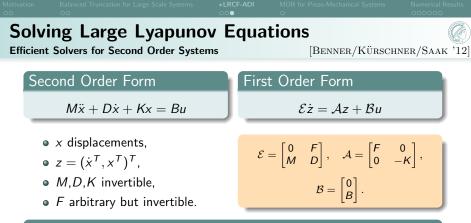
$$Z_{0} = [] \begin{bmatrix} V_{1} \\ * \end{bmatrix} = \sqrt{-2 \operatorname{Re}(p_{1})} \begin{bmatrix} F_{11} + p_{1}E_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}^{-1} \begin{bmatrix} B_{1} \\ B_{2} \end{bmatrix} \\ \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \frac{\sqrt{\operatorname{Re}(p_{i})}}{\sqrt{\operatorname{Re}(p_{i-1})}} \begin{bmatrix} I - (p_{i} + \overline{p_{i-1}}) \begin{bmatrix} F_{11} + p_{i}E_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}^{-1} \end{bmatrix} \begin{bmatrix} E_{11}V_{i-1} \\ 0 \end{bmatrix} \\ \operatorname{IF}\operatorname{Im}(p_{i}) = 0, \ Z_{i} = [Z_{i-1}, V_{i}], \ \operatorname{ELSE}\beta = 2\frac{\operatorname{Re}(p_{i})}{\operatorname{Im}(p_{i})}, \ V_{i+1} = \overline{V}_{i} + \beta\operatorname{Im}(V_{i}) \\ Z_{i+1} = [Z_{i-1}, \sqrt{2}\operatorname{Re}(V_{i}) + \frac{\beta}{\sqrt{2}}\operatorname{Im}(V_{i}), \sqrt{\frac{\beta^{2}}{2} + 2.\operatorname{Im}(V_{i})}] \end{bmatrix}$$



 $\mathcal{B} = \begin{bmatrix} 0 \\ B \end{bmatrix}.$

• M,D,K invertible,

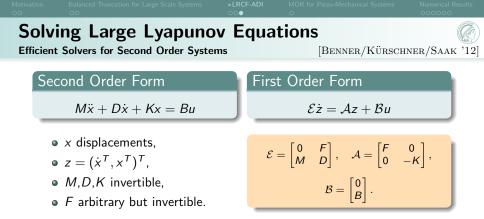
• F arbitrary but invertible.



G-LRCF-ADI

main task per step:

 $(\mathcal{A} + p_i \mathcal{E}) x = \mathcal{E}f, \ x = [x_1, x_2]^T$



G-LRCF-ADI

main task per step:

$$(\mathcal{A} + p_i \mathcal{E}) x = \mathcal{E}f, \quad x = [x_1, x_2]^T$$

SO-LRCF-ADI

$$(p_i^2 M - p_i D + K)x_2 = (p_i M - D)f_2 - Mf_1, \qquad x_1 = f_2 - p_i x_2.$$

Equation of Motion

(from FEM, here ANSYS)

$$M\ddot{\xi}(t) + D\dot{\xi}(t) + K\xi(t) = Qu(t),$$

where $M, D, K \in \mathbb{R}^{n_1 \times n_1}$ and $Q \in \mathbb{R}^{n_1 \times p}$.

Properties

- M, D, K are mass, damping and stiffness matrices, respectively.
- All matrices sparse.
- *M* and *D* are singular.
- $p \ll n_1$.

Equation of Motion

(from FEM, here ANSYS)

$$M\ddot{\xi}(t) + D\dot{\xi}(t) + K\xi(t) = Qu(t).$$

Reordering

$$\begin{bmatrix} M_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \ddot{z}(t) \\ \ddot{\varphi}(t) \end{bmatrix} + \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{z}(t) \\ \dot{\varphi}(t) \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{12}^T & K_{22} \end{bmatrix} \begin{bmatrix} z(t) \\ \varphi(t) \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} u(t).$$

- Second-order index-1 system since K_{22} is invertible.
- z(t) and $\varphi(t)$ are vectors of mechanical displacements and electrical potentials.
- $M_1, D_1, K_{11} \in \mathbb{R}^{n_d \times n_d}$, and $K_{22} \in \mathbb{R}^{n_a \times n_a}$ where $n_d + n_a = n_1$.

Equation of Motion

(from FEM, here ANSYS)

$$M\ddot{\xi}(t) + D\dot{\xi}(t) + K\xi(t) = Qu(t).$$

Reordering

$$\begin{bmatrix} M_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \ddot{z}(t) \\ \ddot{\varphi}(t) \end{bmatrix} + \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{z}(t) \\ \dot{\varphi}(t) \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{12}^T & K_{22} \end{bmatrix} \begin{bmatrix} z(t) \\ \varphi(t) \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} u(t).$$

State-Space Form

$$(x_1 = \dot{z}, x_2 = z)$$

$$\underbrace{\begin{bmatrix} 0 & \mathcal{F} & 0 \\ M_1 & D_1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\mathcal{E}} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{\varphi}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \mathcal{F} & 0 & 0 \\ 0 & -\mathcal{K}_{11} & -\mathcal{K}_{12} \\ 0 & -\mathcal{K}_{12}^T & -\mathcal{K}_{22} \end{bmatrix}}_{\mathcal{A}} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \varphi(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ Q_1 \\ Q_2 \end{bmatrix}}_{\mathcal{B}} u(t),$$

State-Space Form

$$\underbrace{\begin{bmatrix} 0 & \mathcal{F} & 0 \\ M_1 & D_1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\mathcal{E}} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{\varphi}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \mathcal{F} & 0 & 0 \\ 0 & -K_{11} & -K_{12} \\ 0 & -K_{12}^T & -K_{22} \end{bmatrix}}_{\mathcal{A}} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \varphi(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ Q_1 \\ Q_2 \end{bmatrix}}_{\mathcal{B}} u(t),$$

$$y(t) = \underbrace{\begin{bmatrix} 0 & G_1 & G_2 \end{bmatrix}}_{\mathcal{C}} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \varphi(t) \end{bmatrix}.$$

Advantages

•
$$Q_1 = G_1^T$$
, $Q_2 = G_2^T \Rightarrow \mathcal{B} = \mathcal{C}^T$,

•
$$\mathcal{F}=\mathcal{M}_1\Rightarrow\mathcal{E},\mathcal{A}$$
 symmetric.

 \Rightarrow System symmetric \Rightarrow Lyapunov equations coincide.

Linear System Inside the ADI

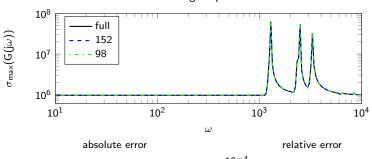
$$\begin{bmatrix} M_1 & \mu_1 M_1 & 0\\ \mu_1 M_1 & \mu_1 (D_1 - K_{11}) & -K_{12}\\ 0 & -K_{12}^T & -K_{22} \end{bmatrix} \begin{bmatrix} x_1^{(i)}\\ x_2^{(i)}\\ \Lambda \end{bmatrix} = \begin{bmatrix} 0\\ f_1\\ f_2 \end{bmatrix}.$$

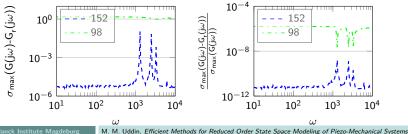
• Solve
$$\begin{bmatrix} \mu_1^2 M_1 - \mu_1 D_1 + K_{11} & K_{12} \\ K_{12}^T & K_{22} \end{bmatrix} \begin{bmatrix} x_2^{(i)} \\ \Lambda \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$
 for $x_2^{(i)}$.
• If $i = 1$, $f_1 = -B_1$, $f_2 = -B_2$ and $x_1^{(1)} = -\mu_1 x_2^{(1)}$.
• Otherwise, $f_1 = (p_i V_{i-1}^2 - V_{i-1}^1) M_1 + D_1 V_{i-1}^2$, $f_2 = 0$ and $x_1^{(i)} = -p_i x_2^{(i)} + V_{i-1}^2$. $V_{i-1} = \begin{bmatrix} V_{i-1}^1 \\ V_{i-1}^2 \end{bmatrix}$ (see ADI methods).

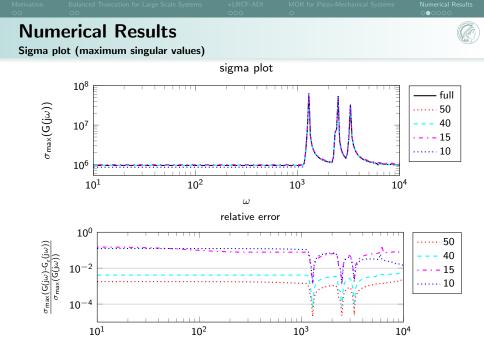
ADI shifts			ADI iterations	system dimension	
k _m	k _p	total	$Z \in R^{n,nz}$	original	reduced
60	50	40	400	290 137	≤ 152

- Number of inputs/outputs: 9
- Dimension of reduced order models versus error bounds:

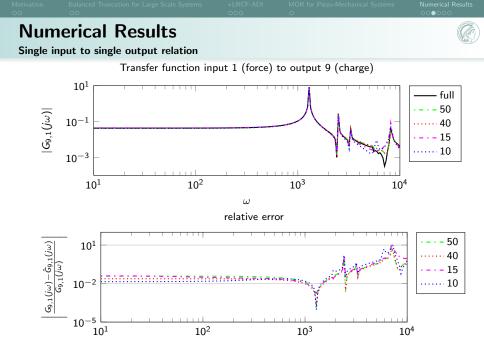
MOR tolerance	ROM dimension
10 ⁻⁵	152
10 ⁻⁴	146
10 ⁻³	140
10 ⁻²	132
10^1	123
10	98



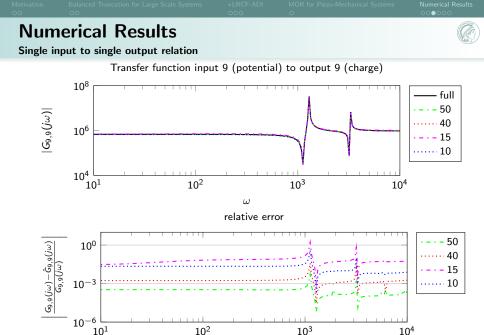




ω



ω



ω

		000000

Numerical Results

Comparison reduced models with full model

system dimension	execution time (sec)	speedup
290 137	90.00	1
152	0.0162	5 555
98	0.0049	18 367
50	0.0025	36 000
40	0.0018	50 000
15	0.0013	69 230
10	0.0009	100 000

Table: Average execution time and speedup against full order model for computing the maximum Hankel singular value at a given sampling frequency.

Hardware - software setup

- MATLAB[®]7.11.0 (R2010b),
- 4 Intel[®] Xeon[®] E7-8837 CPUs with a 2.67-GHz clock, 8 Cores each,
- 1TB of total RAM.

Conclusion and Outlook

Overview

- Efficient model reduction method is developed for second order index 1 systems, and applied to ASS model.
- The accuracy of the method is demonstrated by a frequency domain error analysis.
- Even very low order surrogate models (10dof) preserve the main features of the transfer behavior of the full (290137dof) FEM model.
- They are expected to perform well in controller design.

Future work

• Implicit handling of higher indexes, e.g., structural dynamics with holonomic constraints.

Ø

Conclusion and Outlook

Overview

- Efficient model reduction method is developed for second order index 1 systems, and applied to ASS model.
- The accuracy of the method is demonstrated by a frequency domain error analysis.
- Even very low order surrogate models (10dof) preserve the main features of the transfer behavior of the full (290137dof) FEM model.
- They are expected to perform well in controller design.

Future work

• Implicit handling of higher indexes, e.g., structural dynamics with holonomic constraints.

Thank you for your attention!

			00000
Dofe	rences		
Кеје	rences		

- - Benner, P., Kürschner, P., Saak, J.: Efficient Handling of Complex Shift Parameters in the Low-Rank Cholesky Factor ADI Method. Numerical Algorithms pp. 1–27 (2012).
 - Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Transactions on Power Systems 23(3), 1258–1270 (2008)
 - Neugebauer, R., Drossel, W.G., Bucht, A., Kranz, B., Pagel, K.: Control design and experimental validation of an adaptive spindle support for enhanced cutting processes.

CIRP Annals - Manufacturing Technology 59(1), 373–376 (2010).

- Saak, J. : Efficent numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. PhD thesis, Chemnitz University of Technology, Chemnitz, Germany, 2009.
- Uddin, M. M., Saak, J., Kranz, B. and Benner, P.: Computation of a Compact State Space Model for a Spindle Head Configuration with Piezo Actuators using Balanced Truncation.

Production Engineering Research and Development, to appear (2012).