Non-Conforming Finite Elements and Riccati-Based Feedback Stabilization of the Stokes Equations

${ }^{1}$ Computational Methods in Systems and Control Theory - Max Planck Institute Magdeburg
${ }^{2}$ Institut für Analysis und Numerik - Otto von Guericke Universität Magdeburg
${ }^{3}$ Mathematics in Industry and Technology - Chemnitz University of Technology
Goal

Abstract Problem Settin

Motivation:

- Stabilization of flows described by Navier-Stokes equations (NSE)

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t} \mathbf{v}-\frac{1}{\operatorname{Re}} \Delta \mathbf{v}+\mathbf{v} \cdot \nabla \mathbf{v}+\nabla p & =0 \\
\operatorname{div} \mathbf{v} & =0
\end{array}\right\} \text { in }(0, \infty) \times \Omega
$$

to steady-state solution, with $\Omega \subset \mathbb{R}^{d}, d=2,3$, the velocity field $\mathbf{v}(t, \mathbf{x}) \in \mathbb{R}^{d}$, the pressure $p(t, \mathbf{x}) \in \mathbb{R}$, the time $t \in(0, \infty)$, the spatial variable $\mathbf{x} \in \Omega$, and the Reynolds number $\operatorname{Re} \in \mathbb{R}^{+}$

- Construction based on associated linear quadratic control problem (LQR) for boundary control [4].
- Numerical treatment for 2D case with linearized NSE described in [1].
Here: Stokes equations

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t} \mathbf{v}-\frac{1}{\operatorname{Re}} \Delta \mathbf{v}+\nabla p & =0 \tag{2}\\
\operatorname{div} \mathbf{v} & =0
\end{array}\right\} \text { in }(0, \infty) \times \Omega
$$

Problem Setting

Semi Discretzed Problem Setting

Finite element discretization of (2) yields

$$
\begin{align*}
M \dot{\mathbf{z}} & =A \mathbf{z}+G \mathbf{p}+B \mathbf{u}, \\
\mathbf{0} & =G^{T} \mathbf{z}, \tag{3}\\
\mathbf{y} & =C \mathbf{z},
\end{align*}
$$

with

- discretized velocity $\mathbf{z}(t) \in \mathbb{R}^{n_{v}}$ and pressure $\mathbf{p}(t) \in \mathbb{R}^{n_{p}}$ - symmetric positive definite mass matrix $M \in \mathbb{R}^{n_{0} \times n_{0}}$,
- system matrix $A \in \mathbb{R}^{n_{v} \times n_{v}}$ (symmetric for Stokes) and \bullet discretized gradient $G \in \mathbb{R}^{n_{v} \times n_{p}}$ of rank n_{p}.
In the context of an LQR problem one additionally gets - the input matrix $B \in \mathbb{R}^{n_{v} \times n_{r}}$ and
- the input $\mathbf{u}(t) \in \mathbb{R}^{n_{r}}$
which describe the boundary control. Partial observation furthermore leads to
- the output $\mathbf{y}(t) \in \mathbb{R}^{n_{a}}$ and
- the output matrix $C \in \mathbb{R}^{n_{a} \times n_{0}}$

To rewrite the DAE system (3) with differential index two as a generalized state space system, we use the projector

$$
\Pi^{T}=I-M^{-T} G\left(G^{T} M^{-1} G\right) G^{T}
$$

defined in [3]. The projected ODE system is of the form

$$
\begin{align*}
\mathcal{M} \dot{\mathbf{z}} & =\mathcal{A} \tilde{\mathbf{z}}+\mathcal{B} \mathbf{u}, \tag{4}\\
\mathbf{y} & =C \tilde{\mathbf{z}},
\end{align*}
$$

with $\mathcal{M}=\mathcal{M}^{T}>0$ and $\tilde{\mathbf{z}}(t) \in \mathbb{R}^{n_{v}-n_{p}}$.
To solve the algebraic Riccati equation associated to the system (4) we use a Newton-ADI-method. Instead of solving the projected dense Lyapunov equations in the innermost loop, we use [3, Lemma 5.2] and have to solve the saddle point system

$$
\left[\begin{array}{cc}
A^{T}+\mu_{i} M^{T} & G \tag{5}\\
G^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\Lambda \\
*
\end{array}\right]=\left[\begin{array}{l}
Y \\
0
\end{array}\right],
$$

for a couple of right hand sides Y and a different shift μ_{i} in each ADI step during each Newton step.

Contribution Details

Following [3] equation (4) is the semi discretized formulation of (2) including boundary data and projected to the manifold of divergence free discrete functions.
\Downarrow
The pair $(\mathcal{A}, \mathcal{E})$ then implements the semi discretized, projected spatial differential operator from (2).
\downarrow
For $i=1$ and $X_{0}=0$ for every column in V_{j} equation (6), (or (5) respectively) corresponds to solving a modified stationary Stokes problem:

$$
\begin{aligned}
-\frac{1}{\operatorname{Re}}\left(\nabla \mathbf{v}_{j, k}, \nabla \varphi\right)+(p, \operatorname{div} \varphi)+\mu_{j}\left(\mathbf{v}_{j, k}, \varphi\right) & =\left(\mathbf{v}_{j-1, k} \varphi\right), \\
(\operatorname{div} \mathbf{v}, \psi) & =\mathbf{0},
\end{aligned}
$$

for test functions $\varphi \in\left(H^{1}(\Omega)\right)^{2}$ - respecting the boundary conditions - and $\psi \in L^{2}(\Omega)$, in the evaluation of the k-th column of (6)/(5).
Similarly applications of \mathcal{A} and \mathcal{M} can be pulled back to the weak formulation level.

Advantages:

- (7) allows higher flexibility of formulation (e.g., adapting [5]), - possibility to work matrix free
- parallel implementations can exploit full FEM, PDE or domain features.

The composite cell $K=F_{K}(\widehat{K})$, where $\left.F_{K}\right|_{\hat{T}_{i}} \in\left[\mathbb{P}_{1}\left(\widehat{T}_{i}\right)\right]^{2}$.
Features of the composite non-conforming element [?]: - inf-sup stable,

- low computational costs,
- pointwise mass-conservation within the son-triangles,
- L_{2} orthogonal basis for velocity \Rightarrow diagonal mass matrix,
- after static condensation of interior dofs only $2 \times 4+1$ dofs per cell
\Rightarrow produce a better stencil compared to the conforming case,
- optimal approximation order on general meshes,
- easy implementation.

References

[1] E. Bänsch and P. Benner, Stabilization of Incompressible Flow Problems by Riccati-Based Feedback, in Constrained Optimization and Optimal Control for Partial Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, eds., vol. 160 of International Series of Numerical Mathematics, Birkhäuser, 2012, pp. 5-20.
[2] P. Benner, J. Saak, M. Stoll, and H. K. Weichelr, Efficient Solution of Large-Scale Saddle Point Systems Arising in Riccati-Based Boundary Feedback Stabilization of Incompressible Stokes Flow, Preprint SPP1253-130, DFG-SPP1253, 2012. Submitted to SISC Copper Mountain Special Section 2012.
[3] M. Heinkenschloss, D. Sorensen, and K. Sun, Balanced truncation model reduction for a class of descriptor systems with applications to the oseen equations, SIAM J. Sci. Comput., 30 (2008), pp. 1038-1063. [4] J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), pp. 790-828.

