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K = −B∗X

C∗C + A∗X + XA − XBB∗X = 0

Goal

Problem Setting

Motivation:
• Stabilization of flows described by Navier-Stokes equa-

tions (NSE)

∂
∂t

v −
1

Re
∆v + v · ∇v + ∇p = 0

div v = 0

 in (0,∞) ×Ω, (1)

to steady-state solution, with Ω ⊂ Rd, d = 2, 3, the ve-
locity field v(t, x) ∈ Rd, the pressure p(t, x) ∈ R, the time
t ∈ (0,∞), the spatial variable x ∈ Ω, and the Reynolds
number Re ∈ R+.
•Construction based on associated linear quadratic control

problem (LQR) for boundary control [4].
•Numerical treatment for 2D case with linearized NSE

described in [1].
Here: Stokes equations

∂
∂t

v −
1

Re
∆v + ∇p = 0

div v = 0

 in (0,∞) ×Ω. (2)

Abstract Problem Setting

Finite element discretization of (2) yields

Mż = Az + Gp + Bu,
0 = GTz,
y = Cz,

(3)

with
• discretized velocity z(t) ∈ Rnv and pressure p(t) ∈ Rnp,
• symmetric positive definite mass matrix M ∈ Rnv×nv,
• system matrix A ∈ Rnv×nv (symmetric for Stokes) and
• discretized gradient G ∈ Rnv×np of rank np.

In the context of an LQR problem one additionally gets
• the input matrix B ∈ Rnv×nr and
• the input u(t) ∈ Rnr,

which describe the boundary control. Partial observation
furthermore leads to
• the output y(t) ∈ Rna and
• the output matrix C ∈ Rna×nv.

Semi Discretzed Problem Setting

To rewrite the DAE system (3) with differential index two
as a generalized state space system, we use the projector

ΠT = I −M−TG(GTM−1G)GT,

defined in [3]. The projected ODE system is of the form

M ˙̃z = Az̃ +Bu,
y = Cz̃,

(4)

withM =MT
� 0 and z̃(t) ∈ Rnv−np.

To solve the algebraic Riccati equation associated to the sys-
tem (4) we use a Newton-ADI-method. Instead of solving
the projected dense Lyapunov equations in the innermost
loop, we use [3, Lemma 5.2] and have to solve the saddle
point system [

AT + µiMT G
GT 0

] [
Λ
∗

]
=

[
Y
0

]
, (5)

for a couple of right hand sides Y and a different shift µi in
each ADI step during each Newton step.

Implicit Index Reduction

Contribution Details

Newton Kleinman Method
Approximate X solving:

C
T
C +ATXM +MTXA−MTXBBTXM = 0

In step i solve the Lyapunov equation:

(AT
− KT

i−1B
T)XiM +MTXi(A−BKi−1) = −Gi−1GT

i−1,

where Ki−1 = BTXi−1M and Gi−1 =
[
CT, Ki−1

]
.

Applying the low rank ADI algorithm requires to
solve

(Ai + µ jM)TV j =MV j−1, (6)

withAi = AT
− KT

i−1B
T for a possibly complex µ j

in each step.

Solve (5) instead of (6) to increase efficiency. Requires:
• Sherman-Morrison-Woodbury formula,
• block preconditioning (e.g., [2]),
• investigation of required accuracies, i.e., inexact

Newton-Kleinman-ADI.

New here:
• Investigation of special finite elements that help ensuring

“divergence free”-condition. for inexact solves.
• Interpretation of (5) in terms of the original PDE system.
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â1 â2
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Figure 4. The composite cell K = FK(K̂) where FK |T̂i
∈
[
P1(T̂i)

]2
.

denoted by T K = {T1,K , . . . , T4,K}. We define Ê as the set of all edges of the
son-triangles of K̂. Furthermore, we denote by Ê int ⊂ Ê the subset of all edges in
the interior of K̂ and by Êbnd the subset of all edges on the boundary ∂K̂. To an
edge Ê ∈ Ê , we assign a unit normal vector n̂

Ê
on Ê with an arbitrary, but fixed

orientation. For a given possibly discontinuous function ϕ̂ : K̂ → Rn, we define,
for each interior edge Ê ∈ Ê int, the jump [[ϕ̂]]

Ê
as the function

[[ϕ̂]]
Ê
(x̂) := lim

τ→+0
ϕ̂(x̂+ τ n̂

Ê
)− lim

τ→+0
ϕ̂(x̂− τ n̂

Ê
) ∀ x̂ ∈ Ê.

In the following, let 〈·, ·〉
Ê

denote the inner product in L2(Ê). Now, the local
non-conforming composite polynomial space on K̂ can be described as

Pnc
1 (K̂) :=

{
v̂ ∈ L2(K̂) : v̂|

T̂
∈ P1(T̂ ) ∀ T̂ ∈ T̂ ,〈

[[v̂]]
Ê
, 1
〉
Ê
= 0 ∀Ê ∈ Ê int

}
.

(12)

To ensure the existence of traces of a function on the edges Ê ∈ Ê we introduce
the broken Sobolev space

H1
b (T̂ ) := {v̂ ∈ L2(K̂) : v̂|

T̂
∈ H1(T̂ ) ∀ T̂ ∈ T̂ }.

The degrees of freedom of the non-conforming composite P1-element are associ-

The composite cell K = FK(K̂), where FK|T̂i
∈

[
P1(T̂i)

]2
.

Features of the composite non-conforming element [?]:
• inf-sup stable,

• low computational costs,

• pointwise mass-conservation within the son-triangles,

• L2 orthogonal basis for velocity⇒ diagonal mass matrix,

• after static condensation of interior dofs only 2×4 + 1 dofs per cell
⇒ produce a better stencil compared to the conforming case,

• optimal approximation order on general meshes,

• easy implementation.
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â3â4
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Figure 1: The composite cell K = FK(K̂) where FK |T̂i
∈
[
P1(T̂i)

]2
.
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Figure 2: Numbering of the edges of the son-triangles on the reference element
and local degrees of freedom (marked by ) of the composite Pnc

1 (K̂)-element.
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Numbering of the edges of the son-
triangles on the reference element and
local degrees of freedom (dofs) of the
compositePnc

1 (K̂)-element (marked by
for velocity and for pressure dofs)

Following [3] equation (4) is the semi
discretized formulation of (2) including
boundary data and projected to the mani-
fold of divergence free discrete functions.

The pair (A,E) then implements the semi dis-
cretized, projected spatial differential operator
from (2).

⇓

⇓

For i = 1 and X0 = 0 for every column in V j equa-
tion (6), (or (5) respectively) corresponds to solving
a modified stationary Stokes problem:

−
1

Re
(∇v j,k,∇ϕ) + (p,divϕ) + µ j(v j,k, ϕ) = (v j−1,k, ϕ),

(div v, ψ) = 0,
(7)

for test functionsϕ ∈ (H1(Ω))2 – respecting the boundary
conditions – and ψ ∈ L2(Ω), in the evaluation of the k-th
column of (6)/(5).

Similarly applications ofA andM can be pulled back to
the weak formulation level.

Advantages:
• (7) allows higher flexibility of formulation (e.g., adapting [5]),
• possibility to work matrix free,
• parallel implementations can exploit full FEM, PDE or domain

features.
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Evolution of
⇐ control

and
output⇒

for the cost function

J(y,u) =
1
2

∫
∞

0
λ‖y‖2 +

1
%
‖u‖2dt.


