

Towards parametric model order reduction for nonlinear PDE systems in networks MoRePas II 2012

Michael Hinze Martin Kunkel Ulrich Matthes Morten Vierling Andreas Steinbrecher Tatjana Stykel

Fachbereich Mathematik Universität Hamburg Michael.Hinze@uni-hamburg.de

October 4, 2012

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Motivation: Coupled circuit and semiconductor models

Aim

- Accurate reduced order models for semiconductors in networks
- Validity over relevant parameter range
- Accurate *physical* reduced order model of the coupled system

Outline

Motivation

PDAE-model

- Finite Element Method
- Simulation results
- Construction of the reduced model
- Location dependence of reduced model
- Residual based parameter sampling
- PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel
- Next steps

Coupled circuit and semiconductor models [M. Günther '01, C. Tischendorf '03]

Kirchhoff's' laws (no semiconductors) read

$$Aj = 0, \quad v = A^{\top}e$$

A: incidence matrix.

Voltage-current relations of components:

$$j_C = \frac{\mathrm{d}q_C}{\mathrm{d}t}(v_C, t), \ j_R = g(v_R, t), \ v_L = \frac{\mathrm{d}\phi_L}{\mathrm{d}t}(j_L, t)$$

Modified Nodal Analysis: join all equations to DAE system

$$\begin{aligned} A_C \frac{\mathrm{d}q_C}{\mathrm{d}t} \left(A_C^\top e(t), t \right) + A_R g \left(A_R^\top e(t), t \right) + A_L j_L(t) + A_V j_V(t) &= -A_I i_s(t), \\ \frac{\mathrm{d}\phi_L}{\mathrm{d}t} \left(j_L(t), t \right) - A_L^\top e(t) &= 0, \\ A_V^\top e(t) &= v_s(t). \end{aligned}$$

Coupled circuit and semiconductor models [M. Günther '01, C. Tischendorf '03]

How can semiconductors be introduced?

replace semiconductor by a (possibly nonlinear) electrical network,

stamp semiconductor network into surrounding network,

apply Modified Nodal Analysis.

• Here: use PDE model for semiconductors \rightarrow DD equations.

Coupled circuit and semiconductor models [M. Günther '01, C. Tischendorf '03]

PDE-model (drift-diffusion equations) for semiconductors

 $egin{aligned} & \operatorname{div}\left(arepsilon
abla\psi
ight) = q(n-p-C), \ & -q\partial_t n + \operatorname{div} J_n = -qR(n,p), \ & q\partial_t p + \operatorname{div} J_p = -qR(n,p), \ & J_n = \mu_n q(-U_T
abla n - n
abla\psi), \ & J_p = \mu_p q(-U_T
abla p - p
abla\psi), \end{aligned}$

on $\Omega \times [0, T]$ with $\Omega \subset \mathbb{R}^d$ (d = 1, 2, 3). Dirichlet boundary constraints at $\Gamma_{O,k}$:

 $\psi(t,x) = \text{next slide}, \quad n(t,x) = \tilde{n}(x), \quad p(t,x) = \tilde{p}(x)$

and Neumann boundary constraints at Γ_I :

$$\nabla \psi(t,x) \cdot \nu(x) = J_n \cdot \nu(x) = J_p(t,x) \cdot \nu(x) = 0$$

or mixed boundary conditions at MI contacts (MOSFETs).

Couple semiconductor to circuit [M. Günther '01, C. Tischendorf '03]

Couple semiconductor to circuit [M. Günther '01, C. Tischendorf '03]

Coupling conditions:

$$\begin{split} j_{S,k}(t) &= \int_{\Gamma_{O,k}} (J_n + J_p - \varepsilon \partial_t \nabla \psi) \cdot \nu \, d\sigma, \\ \psi(t,x) &= \psi_{bi}(x) + (A_S^\top e(t))_k \\ & \text{for } (t,x) \in [0,T] \times \Gamma_{O,k}, \end{split}$$

and add current j_s to Kirchhoff's current law:

$$\begin{aligned} A_{C}\frac{\mathrm{d}q_{C}}{\mathrm{d}t}\left(A_{C}^{\top}\boldsymbol{e},t\right)+A_{R}g\left(A_{R}^{\top}\boldsymbol{e},t\right)+A_{L}j_{L}+A_{V}j_{V}+A_{S}j_{S}=-A_{I}i_{S},\\ \frac{\mathrm{d}\phi_{L}}{\mathrm{d}t}\left(j_{L},t\right)-A_{L}^{\top}\boldsymbol{e}=0,\\ A_{V}^{\top}\boldsymbol{e}=v_{S}. \end{aligned}$$

Add DD-equations + coupling conditions for each semiconductor.

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Mixed formulation

The electric field $E = -\nabla \psi$ plays dominant role in DD-equations.

Mixed formulation[Brezzi et al. '05]Provide additional variable g_ψ and equation $g_\psi = \nabla \psi.$

Scaled DD equations then read:

$$\lambda \operatorname{div} g_{\psi} = n - p - C,$$

 $-\partial_t n +
u_n \operatorname{div} J_n = R(n, p),$
 $\partial_t p +
u_p \operatorname{div} J_p = -R(n, p),$
 $g_{\psi} =
abla \psi,$
 $J_n =
abla n - ng_{\psi},$
 $J_p = -
abla p - pg_{\psi}.$

Finite Element approximation

Finite elements

- ▶ piecewise constant ansatz functions for ψ , *n* and *p*. Basis functions: φ_i , *i* = 1,..., *N*, *N* = | \mathcal{T} |.
- Raviart-Thomas elements for g_{ψ} , J_n and J_p . Basis functions: ϕ_j , i = 1, ..., M, $M = |\mathcal{E}| - |\mathcal{E}_N|$.

$$RT_0 := \{ y : \Omega \to \mathbb{R}^d : y|_T(x) = a_T + b_T x, \ a_T \in \mathbb{R}^d, \ b_T \in \mathbb{R}, \\ [y]_E \cdot \nu_E = 0, \text{ for all inner edges } E \}.$$

Galerkin ansatz:

$$\psi^h(t,x)=\sum_{i=1}^N\psi_i(t)arphi_i(x),\quad g^h_\psi(t,x)=\sum_{j=1}^Mg_{\psi,j}(t)\phi_j(x),$$

and analogously for n, p, J_n , and J_p .

Full model

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Basic test circuit, simulation results

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Snapshot-POD (Proper Orthogonal Decomposition) [L. Sirovich '87]

Full simulation yields snapshots (here: $y = \psi, n, p, ...$)

$$\{y(t_i,\cdot)\}_{i=1,\ldots,m} \subset \operatorname{span}\{\varphi_j\}_{j=1,\ldots,N}, \quad \text{with} \quad y(t_i,x) = \sum_{j=1}^N \vec{y}_j(t_i)\varphi_j(x).$$

Gather coefficients in matrix

$$Y:=\left(\vec{y}(t_1),\ldots,\vec{y}(t_m)\right)\in\mathbb{R}^{N\times m}.$$

POD in Hilbert space X as eigenvalue problem:

$$Kv^k = \sigma_k^2 v^k$$
, with $K_{ij} := \langle y(t_i, \cdot), y(t_j, \cdot) \rangle_X$.

Note that $K = Y^{\top} M Y$ with $M_{ij} = \langle \varphi_i, \varphi_j \rangle_X$. Write POD in terms of SVD:

$$\tilde{U}\Sigma\tilde{V}^{\top} = L^{\top}Y$$
, with $LL^{\top} := M$.

Then, the s-dimensional POD basis is

$$\left\{ u^{i} := \sum_{j=1}^{N} \vec{u}^{i}_{j} \varphi_{j}(\cdot) \right\}_{i=1,\ldots,s}, \qquad U := (\vec{u}^{1},\ldots,\vec{u}^{s}) := L^{-\top} \tilde{U}_{(:,1:s)}.$$

Model Order Reduction

- Simulate the complete network at one or more reference parameters.
- Take snapshots of the state of each semiconductor at time points t_i.
- ▶ Perform POD component wise on ψ , n, p, g_{ψ} , J_n and J_p .
- ▶ Use the POD basis functions as (non local) FEM ansatz functions:

$$\psi^{POD}(t,x) = \sum_{i=1}^s \gamma_{\psi,i}(t) u^i_\psi(x)$$

Reduced model

Computational complexity

Computational complexity of reduced model still depends on n_{FEM} :

$$U^{\top} \mathcal{F}(n^{POD}, p^{POD}, g_{\psi}^{POD}) = \underbrace{U^{\top}}_{n_{POD} \times n_{FEM}} \underbrace{\mathcal{F}}_{n_{FEM}}(\underbrace{U_n}_{n_{FEM} \times n_{POD}} \gamma_n, U_p \gamma_p, U_{g_{\psi}} \gamma_{g_{\psi}}).$$

With matrix-matrix multiplications in Jacobian computation:

Discrete Empirical Interpolation Md. (DEIM) [S. Chaturantabut, D. Sorensen '09]

DEIM

► Do POD on snapshots { $F(n(t_i), p(t_i), g_{\psi}(t_i))$ }, obtain basis $W \in \mathbb{R}^{n_{FEM} \times n_{DEIM}}$ (block diagonal matrix).

Ansatz

```
F(U_n\gamma_n(t), U_p\gamma_p(t), U_{g_{\psi}}\gamma_{g_{\psi}}(t)) \approx Wc(t)
```

is overdetermined.

Select n_{DEIM} "useful" rows:

$$P^{\top}F(\ldots)\approx P^{\top}Wc(t).$$

• If $P^{\top}W$ is regular:

$$F(\ldots) \approx Wc(t) = W(P^{\top}W)^{-1}P^{\top}F(\ldots)$$

The regularity of $P^{\top}W$ can be guaranteed, see [CS09]. Again we apply the method component-wise.

Discrete Empirical Interpolation Md. (DEIM) [S. Chaturantabut, D. Sorensen '09]

Reduced model

 $U^{\top}F(U_n\gamma_n, U_p\gamma_p, U_{g_{ib}}\gamma_{g_{ib}})$

with DEIM:

 $(U^{\top}W(P^{\top}W)^{-1}) \quad \underbrace{P^{\top}F(U_{n}\gamma_{n}, U_{\rho}\gamma_{\rho}, U_{g_{\psi}}\gamma_{g_{\psi}})}_{\mathcal{F}}$

 $n_{POD} \times n_{DEIM}$, block-dense

n_{DEIM} n_{FEM}

Results for 1D-diode:

	n _{FEM}	FEM	n _{POD}	ROM	n _{DEIM}	ROM + DEIM
	3003	3.15 sec.	220	3.52 sec.	187	1.93 sec.
	15009	23.5 sec.	229	19.9 sec.	198	4.04 sec.
	48015	82.3 sec.	229	74.2 sec.	199	9.87 sec.
order		$pprox n_{FEM}^{1.18}$		$pprox n_{FEM}^{1.10}$		$pprox n_{FEM}^{0.578}$

Discrete Empirical Interpolation Md. (DEIM) [S. Chaturantabut, D. Sorensen '09]

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Reduced model depends on position of diode in network

Bridge rectifier with 4 diodes:

Reduced model depends on position of diode in network

The distance between the spaces U^1 and U^2 which are spanned, e.g., by the POD-functions U^1_{ψ} of the diode S_1 and U^2_{ψ} of the diode S_2 respectively, is measured by

$$d(U^1, U^2) := \max_{\substack{u \in U^1 \ \|v\|_2 = 1}} \min_{\substack{v \in U^2 \ \|v\|_2 = 1}} \|u - v\|_2 = \sqrt{2 - 2\sqrt{\lambda}},$$

where λ is the smallest eigenvalue of the positive definite matrix SS^{\top} with $S_{ij} = \langle u_{\psi,i}^1, u_{\psi,j}^2 \rangle_2$.

Δ	$d(U^{1}, U^{2})$	$d(U^{1}, U^{3})$
10 ⁻⁴	0.61288	$5.373 \cdot 10^{-8}$
10 ⁻⁵	0.50766	$4.712 \cdot 10^{-8}$
10 ⁻⁶	0.45492	$2.767 \cdot 10^{-7}$
10 ⁻⁷	0.54834	$1.211 \cdot 10^{-6}$

Table: Distances between reduced models in the rectifier network.

Modes

MOR yields a similar but different model for the diodes S_1 and S_2 :

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Problem setting

MOR test problem

Basic circuit with frequency *f* of the voltage source $v_s(t) = 5[V] \cdot \sin(2\pi f \cdot t)$ as model parameter.

Lack of information

Select number of snapshots so that
$$\Delta(s) = \sqrt{\frac{\sum_{i=s+1}^{m} \sigma_i^2}{\sum_{i=1}^{m} \sigma_i^2}} \approx tol.$$

Reduced model at a fixed frequency

First test: Compare reduced and unreduced system at a fixed frequency.

Reduced model over parameter space

Construction of reduced model requires snapshots from full simulations at reference parameters.

Is the model valid over a large parameter space?

reference parameter: $P_1 := \{f_1\} := \{10^{10}[Hz]\}$ parameter space $\mathcal{P} = [10^8, 10^{12}]$

Reduced model over parameter space - sampling

Goal

Find new sampling parameter f_{k+1} (reference frequency) without simulating the full, unreduced system. Set $P_{k+1} := P_k \cup \{f_{k+1}\}$.

- We do not consider the PDE discretization error.
- Rigorous upper bound for the error not available

$$\|\mathcal{E}(f; P_k)\| = \|y^h(f) - y^{POD}(f; P_k)\| \leq ?(s)$$

where $y^h := (\psi^h, n^h, p^h, g^h_{\psi}, J^h_n, J^h_p)^{\top}, y^{POD} := (\psi^{POD}, n^{POD}, \ldots)^{\top}.$

- Rigorous RB methods, Greedy algorithm [see e.g. A. Patera, G. Rozza '07]: a-posteriori error estimates required.
- Linear ODEs [see e.g. B. Haasdonk, M. Ohlberger '09]: build difference between residual and unreduced equation to derive an ODE for the error.

Residual based sampling

Define residual $\mathcal{R}(z^{POD}(f; P_k))$: insert $z^{POD}(f; P_k)$ into unreduced equation,

$$\boldsymbol{\mathcal{R}} := \begin{pmatrix} 0 \\ -M_L \dot{n}^{POD}(t) \\ M_L \dot{p}^{POD}(t) \\ 0 \\ 0 \\ 0 \end{pmatrix} + A_{FEM} \begin{pmatrix} \psi^{POD}(t) \\ n^{POD}(t) \\ p^{POD}(t) \\ g_{\psi}^{POD}(t) \\ J_n^{POD}(t) \\ J_p^{POD}(t) \end{pmatrix} + \mathcal{F}(n^{POD}, p^{POD}, g_{\psi}^{POD}) - b(e^{POD}(t)).$$

Residual admits different scales.

Scale with block diagonal matrix-valued function

 $D(f) := \text{diag}(\ d_{\psi}(f)I,\ d_{n}(f)I,\ d_{p}(f)I,\ d_{g_{\psi}}(f)I,\ d_{J_{n}}(f)I,\ d_{J_{p}}(f)I)$

and choose $d_{\psi}(f)$ according to

$$d_{\psi}(f_j) \cdot \|\mathcal{R}_{\psi}(y^{POD}(f_j; P_k))\| = rac{\|\psi^h(f_j) - \psi^{POD}(f_j; P_k)\|}{\|\psi^h(f_j)\|}, \quad \forall f_j \in P_k.$$

Residual based sampling

Algorithm: sampling

- 1. Select $f_1 \in \mathcal{P}$, $P_{test} \subset \mathcal{P}$, tol > 0, and set k := 1, $P_1 := \{f_1\}$.
- 2. Simulate the unreduced model at f_1 and calculate the reduced model with POD basis functions U_1 .
- **3**. Calculate weight functions $d_{(.)}(f) > 0$ for all $f \in P_k$.
- **4**. Calculate the scaled residual $||D(f)\mathcal{R}(z^{POD}(f, P_k))||$ for all $f \in P_{test}$.
- 5. Check termination conditions, e.g.
 - $\max_{f \in P_{test}} \|D(f)\mathcal{R}(z^{POD}(f, P_k))\| < tol,$
 - no progress in weighted residual.
- 6. Calculate $f_{k+1} := \arg \max_{f \in P_{test}} \|D(f)\mathcal{R}(z^{POD}(f, P_k))\|$.
- 7. Simulate the unreduced model at f_{k+1} and create a new reduced model with POD basis U_{k+1} using also the already available information at f_1 , ..., f_k .
- 8. Set $P_{k+1} := P_k \cup \{f_{k+1}\}, k := k + 1$ and goto 3.

Numerical example - sampling step 1

Let $f_1 := 10^{10}[Hz]$, $P_1 := \{10^{10}[Hz]\}$, $\mathcal{P} = [10^8, 10^{12}]$.

Numerical example - sampling step 2

 $P_2 = \{10^8[Hz], 10^{10}[Hz]\}$

Numerical example - sampling step 3

 $P_3 = \{10^8[Hz], 1.0608 \cdot 10^9[Hz], 10^{10}[Hz]\}$

Terminate with "no progress in residual".

Outline

Motivation

PDAE-model

Finite Element Method

Simulation results

Construction of the reduced model

Location dependence of reduced model

Residual based parameter sampling

PABTEC and POD, joint work with A. Steinbrecher & Tatjana Stykel

Next steps

Combination of PABTEC (Reis & Stykel 2010) and POD; joint work with

[A. Steinbrecher, T. Stykel]

Combination of PABTEC and POD; Int. J. Numer. Model. 2012

Substitution of nonlinear components for PABTEC and recoupling

A. Steinbrecher, T. Stykel (Int. J. Circuits Theory Appl., 2012):

Nonlinear inductor \rightarrow current source

Nonlinear capacitor \rightarrow voltage source

Nonlinear resistor \rightarrow linear circuit with 2 serial resistors and one voltage source parallel to one of the resistors

Combination of PABTEC and POD; Int. J. Numer. Model. 2012

Next steps

- Include QDD models.
- Include EM effects.
- Generalize approach to other equation networks containing simple and complex components.

Thank you for attending!

The work reported in this talk is supported by the German Federal Ministry of Education and Research (BMBF), grants 03HIPAE5 & 03MS613D.