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Background

Model order reduction (MOR) is a common theme within the simulation, control and
optimization of complex physical processes.
However, significant modifications to the underlying physical model, such as
• geometric variations,
• changes in material properties,
• alterations in boundary conditions
should be preserved in the reduced-order system. Thus, new methods for parametric
model order reduction (PMOR) are required.
Consider a linear parametric system

Eẋ(t) =
d∑

i=1

piAix(t) + Bu(t), y (t) = Cx(t),

where E , Ai ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n.

The goal of PMOR is to obtain an accurate, reduced, parametric model

Ê ˙̂x(t) =
d∑

i=1

piÂi x̂(t) + B̂u(t), ŷ (t) = Ĉx̂(t),

with Ê , Âi ∈ Rq×q, B̂ ∈ Rq×m, and Ĉ ∈ Rp×q, which not only has much less degrees of
freedom q � n, but also preserves all parameters.

Interpolatory Methods for PMOR

Derivation of a unifying projection-based framework for interpolatory PMOR with
• preservation of structural parameter dependence (linear or nonlinear),
•matching gradient and Hessian of the system response at interpolation points,
• optimal choice of interpolation data for special SISO parameterizations.
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•H2-optimal rational interpolation.
•Thermal compact model with 3 parame-

ters.
•Dimension reduced from 4257 to 14.

Automatic PMOR for Microsystem Simulation

In current design processes for complex microsystems, numerical simulation plays an
important role. We developed two different approaches: the first one is an implicit
multimoment-matching method, the second depends on balanced truncation. Both
approaches are coupled with rational interpolation and have the following properties:
• preservation of parameter dependence (linear, nonlinear, time varying),
• efficient computation of the reduced model,
• integration into design process for microsystems.
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• Implicit multi-moment matching PMOR.
•Multi-moments are matched.
•Reduced model of Gyroscope with

2 geometrical parameters.
•Dimension reduced from 17913 to 235.

•Balanced truncation/rational interpolation.
•Anemometer example, 1 parameter.
•Absolute H∞ error.
•Use of sparse grids for higher dimensional

parameter spaces.
•Dimension reduced from 29008 to 75.

PMOR via Bilinear MOR

In this project, we consider linear parameter-varying (LPV) systems of the form

ẋ(t) = Ax(t) +
d∑

i=1

pi(t)Aix(t) + B0u0(t), y (t) = Cx(t),

where A, Ai ∈ Rn×n, B0 ∈ Rn×m and C ∈ Rp×n.

The advantage is that there exists a close connection to bilinear control systems

ẋ(t) = Ax(t) +
m∑

i=1

Nix(t)ui(t) + Bu(t), y (t) = Cx(t),

where A, Ni ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n.

Further information

•Parameters are incorporated in a nonlinear system and are automatically preserved.
•Balanced truncation relies on generalized Lyapunov equations.
•Quality of a reduced model Σ̂ can be measured by bilinear H2-norm:

||Σ̂||2H2
:=

∞∑
k=1

∫ ∞
−∞

...
∫ ∞
−∞

1
(2π)k Hk(iω1, ... , iωk)HT

k (iω1, ... , iωk),

where Hk denote generalized transfer functions of the system.
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Orig. dim. n = 16912 

Red. dim. r = 65

•Simulation of a cyclic voltammogram.
•Time-varying system with non-zero initial

condition.
•Dimension reduced from 16912 to 65.
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Future Directions

•PMOR for nonlinear parametric systems from chemical, biological engineering.
•Optimal choice of interpolation points for more general parametric systems.
•PMOR for coupled systems.
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