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Motivation

Problem Definition

• Derive and investigate numerical algorithms for optimal
control-based boundary feedback stabilization of multi-
field flow problems.

• Explore the potentials and limitations of feedback-
based (Riccati) stabilization techniques.

• Employ recent advances in reducing complexity of Ric-
cati solvers to achieve stabilization with cost propor-
tional to the simulation of the forward problem.

Previous Work

• Stabilization of flows described by Navier-Stokes equa-
tions (NSE)

∂

∂t
v− 1

Re
∆v + v · ∇v +∇p = 0

div v = 0

 in (0,∞)× Ω, (1)

to steady-state solution, with Ω ⊂ Rd , d = 2, 3, the
velocity field v(t , x) ∈ Rd , the pressure p(t , x) ∈ R, the
time t ∈ (0,∞), the spatial variable x ∈ Ω, and the
Reynolds number Re ∈ R+.

• Construction based on associated linear quadratic
control problem (LQR) for boundary control [4].

• Numerical treatment for 2D case with linearized NSE
described in [1].

Discretization Scheme

• Standard finite element discretization of linearized ver-
sion of (1) yields

M ż = Az + Gp + Bu,
0 = GTz,
y = Cz,

(2)

with the discretized velocity z(t) ∈ Rnv and pressure
p(t) ∈ Rnp, the symmetric positive definite mass ma-
trix M ∈ Rnv×nv , the system matrix A ∈ Rnv×nv and
the discretized gradient G ∈ Rnv×np of rank np. To put
this in the context of an LQR problem one addition-
ally gets the feedback matrix B ∈ Rnv×nr and the input
u(t) ∈ Rnr , which describes the boundary control. Be-
cause we can observe only parts of the velocity there
arises an output equation with the output y(t) ∈ Rna

and the output matrix C ∈ Rna×nv .

Feedback Control Approach

Projection Method

To rewrite the DAE system (2) with differential index two
as a generalized state space system, we use the projec-
tor

Π = I − G(GTM−1G)GTM−1,

defined in [3]. The projected system is of the form

M ˙̃z = Az̃ + Bu,
y = Cz̃,

(3)

withM =MT � 0 and z̃(t) ∈ Rnv−np.
To solve the algebraic Riccati equation associated to the
system (3) we use a Newton-ADI-method. Instead of
solving the projected dense Lyapunov equations in the
innermost loop, we use [3, Lemma 5.2] and have to solve
the saddle point system[

AT + piMT G
GT 0

] [
Λ
∗

]
=
[
Y
0

]
, (4)

for a couple of right hand sides Y and a different shift pi

in each ADI step during each Newton step.

Application Tasks

• Feedback control approach applied to multi-field flow
problems.

• Coupling of flow with other physical field equations.
• Suggest different scenarios with increasing difficulty.
• Adapt the solvers for the different structures that arise
for the scenarios.

Kármán Vortex Street

• First scenario for proof of concept.
• Feedback input: inject or exhaust fluid on two ports on
the backside of the obstacle.

• Goal: get laminar flow behind the obstacle.
• Note: at the moment non-optimal feedback.

Figure 1: Unstable flow field

Figure 2: After 1 sec boundary feedback

Figure 3: After 15 sec boundary feedback

Reactor Model

• Coupling of flow with spread of concentration.
• Control: influence the inflow of concentration

↪→piecewise constant inflow of concentration.
• Goal: get a fixed rate of reaction on the obstacle.
• Note: at the moment just delayed control.
• Pictures: left without and right with control.

Figure 4: Before first correction (19.9 sec)

Figure 5: After 30.0 sec

Figure 6: Achieve goal after 180.0 sec

Solving Large-Scale Saddle
Point Systems

Preconditioning

• Using a block preconditioner P based on [2, Chapter 8]
to solve (4) efficiently with an iterative solver.

P =
[

PF 0
GT −PSC

]
⇒ P−1 =

[
P−1

F 0
P−1

SCGTP−1
F −P−1

SC

]
, (5)

with PF ≈ F = AT + piMT and PSC = GTF−1G (Schur
complement).

• Using MULTIGRID-methods to approximate PF ≈ F .
• Need an approximation of the dense PSC as well.
• Schur complement approximation is derived from a
least-squares commutator approach [2, Chapter 8.2].

PSC ≈ SpF−1
p Mp ⇒ P−1

SC ≈ M−1
p FpS−1

p ,

where Sp is the discretized Laplacian on the pressure
space and Fp, Mp are the system and mass matrices
as before, just defined on the pressure space as well.

Iterative Solver

• Using GMRES with preconditioner (5) to solve (4).
• Convergence of preconditioned GMRES is robust with
respect to the mesh parameter.

• Reynolds number Re and ADI shifts pi influence con-
vergence rate.
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