Sommersemester 2009 Prof. Dr. Peter Benner Dipl.-Math. Jens Saak Dipl.-Ing. Martin Bernauer

Numerische Mathematik- 10. Übung

Aufgabe 1 (Verfahren von Schulz)

Sei $A \in \mathbb{R}^{n,n}$ regulär, $\|.\|$ eine submultiplikative Matrixnorm. Die Inverse A^{-1} der Matrix A ist offensichtlich Lösung der Gleichung

$$X^{-1} - A = 0.$$

Die naheliegende Anwendung des Newton Verfahrens auf diese nichtlineare Gleichung führt auf das Verfahren von Schulz:

$$X_{k+1} = X_k + X_k(I - AX_k)$$
 für $k = 0, 1, ...$

Zeigen Sie:

a) Für jede Startmatrix $X_0 \in \mathbb{R}^{n,n}$, die der Bedingung $||I - AX_0|| \le q < 1$ genügt, konvergiert die Matrixfolge $X_0, X_1, \dots \subset \mathbb{R}^{n,n}$ gegen die Matrix A^{-1} und es gelten die die Abschätzungen:

$$||X_k - A^{-1}|| \le \frac{||X_0||}{1 - q} ||I - AX_k|| \le \frac{||X_0||}{1 - q} q^{(2^k)}$$

b) Gilt $AX_0 = X_0A$, dann folgt $AX_k = X_kA$ für alle $\mathbb{N} \ni k > 0$