Sommersemester 2009 Prof. Dr. Peter Benner Dipl.-Math. Jens Saak Dipl.-Ing. Martin Bernauer

Numerische Mathematik- 5. Übung

Aufgabe 1

Es sei das Gleichungssystem Ax = b gegeben, wobei

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 10^{-10} & 10^{-10} \\ 1 & 10^{-10} & 10^{-10} \end{bmatrix}, \quad b = \begin{bmatrix} 2(1+10^{-10}) \\ -10^{-10} \\ 10^{-10} \end{bmatrix}$$

- a) Bestimmen Sie die Lösung des Gleichungssystems.
- **b**) Zeigen Sie $\kappa_{\infty}(A) = 2 \cdot 10^{10}$.
- c) Zeigen Sie, dass für jedes gestörte System $(A+E)\hat{x}=b$ mit $|E|\leq 10^{-8}|A|$ die Beziehung $|x-\hat{x}|\leq 10^{-7}\,|x|$ gilt.
- **d)** Zeigen Sie $\kappa_{\infty}(DAD) \leq 5$ für $D = \text{diag}(10^{-5}, 10^5, 10^5)$.

Aufgabe 2

Bestimmen Sie die LR-Zerlegung mit Spaltenpivotisierung für die folgenden Matrizen:

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 1 & 8 \\ 2 & 2 & 2 & 2 \\ 3 & 4 & 4 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix} \quad W_n = \begin{bmatrix} 1 & 0 & \dots & 0 & 1 \\ -1 & 1 & \ddots & \vdots & 1 \\ -1 & -1 & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 1 & 1 \\ -1 & \dots & -1 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Aufgabe 3 (Cholesky Zerlegung)

Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische und positiv definite Matrix (d.h. $x^T A x > 0 \ \forall x \in \mathbb{R}^n$).

a) Zeigen Sie die Existenz und Eindeutigkeit einer oberen Dreiecksmatrix R mit positiven Diagonaleinträgen, so dass $A = R^T R$ (Cholesky-Zerlegung).

Hinweis: Beweis durch vollständige Induktion bzgl. der Dimension der Matrix; Darstellung der Matrix A_i in der Form

$$A_i = \left[\begin{array}{cc} A_{i-1} & v \\ v^T & \alpha \end{array} \right] \quad \text{mit } \alpha \in \mathbb{R}^+.$$

b) Leiten Sie einen Algorithmus zur Berechnung von R her.