Sommersemester 2009 Prof. Dr. Peter Benner Dipl.-Math. Jens Saak Dipl.-Ing. Martin Bernauer

Numerische Mathematik- 7. Übung

Aufgabe 1 (Wärmeleitung im Stab)

Die stationäre Wärmeverteilung in einem Stab der Länge 1 wird durch die Differentialgleichung

$$-u''(x) = f(x)$$
, für $x \in (0,1)$

z.B. mit den Randbedingungen

$$x(0) = 0 = x(1)$$

beschrieben. Es werden also die Temperaturen am Anfang und Ende des Stabes jeweils auf 0 fixiert.

$$f:(0,1)\to\mathbb{R}$$

stellt dann die Wärmequellen/-senken im Stab dar. Für die Approximation der Ableitung verwendet passend zu ihrer Definition, den Differenzenquotient:

$$g'(x) \approx \frac{g(x+h) - g(x)}{h},$$

für kleine Abstände $h \in \mathbb{R}$. Sei $n \in \mathbb{N}$ gegeben. Definieren Sie $x_0 = 0$, $x_{n+1} = 1$ und für $k = 1, \ldots, n$ $x_k = x_0 + k * h$, wobei $h = \frac{1}{n+1}$. Zeigen Sie damit, dass dann die zu diesem Gitter passende Approximation $u \in \mathbb{R}^n$, also der Vektor mit den Komponenten $u_i = u(x_i)$, berechnet werden kann als die Lösung des linearen Gleichungssystems

$$Au = \hat{f},$$

mit

$$A = \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

und

$$\hat{f} = h^2 \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix} \in \mathbb{R}^n.$$