# Efficient numerical solution of large scale matrix equations arising in LQR/LQG design for parabolic PDEs

#### Jens Saak

Professur Mathematik in Industrie und Technik (MiIT)
Fakultät für Mathematik
Technische Universität Chemnitz

#### PDE Constrained Optimization -

recent challenges and future developments Hamburg March 27-29, 2008



#### Outline



- Origin of the Matrix Equations
- Numerical methods for DRE
- 3 LRCF Newton Method for the ARE
- Recent Improvements in the Software
- **6** Conclusions and Outlook



- Origin of the Matrix Equations
  - LQR for linear parabolic PDEs
  - MPC/LQG design for Nonlinear Optimal Control Problems
  - Exponential Stabilization of Navier-Stokes and Oseen Equations
- Numerical methods for DRE
- 3 LRCF Newton Method for the ARE
- Recent Improvements in the Software
- **6** Conclusions and Outlook



LQR for linear parabolic PDEs

#### semi discrete parabolic PDE

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  $x(0) = x_0 \in \mathcal{X}$ . (Cauchy)

#### output equation

$$y(t) = Cx(t)$$
 (output)

#### cost function

$$\mathcal{J}(u) = \frac{1}{2} \int_{0}^{T_{f}} \langle y, y \rangle + \langle u, u \rangle dt$$
 (cost)

and the linear quadratic regulator problem is

#### LQR problem

Minimize the **quadratic** (cost) with respect to the **linear** constraints (Cauchy),(output).

LQR for linear parabolic PDEs

#### semi discrete parabolic PDE

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  $x(0) = x_0 \in \mathcal{X}$ . (Cauchy)

#### output equation

$$y(t) = Cx(t)$$
 (output)

#### cost function

$$\mathcal{J}(u) = \frac{1}{2} \int_{0}^{T_f} \langle Cx, Cx \rangle + \langle u, u \rangle dt$$
 (cost)

and the linear quadratic regulator problem is

#### LQR problem

Minimize the **quadratic** (cost) with respect to the **linear** constraints (Cauchy),(output).

LQR for linear parabolic PDEs



In the open literature<sup>1</sup> it is well understood that the

#### optimal feedback control

is given as

$$u = -B^T X_{\infty} x,$$

where in case  $T_f = \infty$ ,  $X_\infty$  is the minimal, positive semidefinite, selfadjoint solution of the

#### algebraic Riccati equation (ARE)

$$0 = \mathcal{R}(X) := C^T C + A^T X + XA - XBB^T X.$$

<sup>&</sup>lt;sup>1</sup> e.g. [Lions '71; Lasiecka/Triggiani '00; Bensoussan et al. '92; Pritchard/Salamon '87; Curtain/Zwart '95]

LQR for linear parabolic PDEs

In the open literature<sup>1</sup> it is well understood that the

#### optimal feedback control

is given as

$$u = -B^T X_{\infty} x,$$

where in case  $T_f < \infty$ ,  $X_\infty$  is the minimal, positive semidefinite, selfadjoint solution of the

#### differential Riccati equation (DRE)

$$-\dot{X} = \mathcal{R}(X) := C^T C + A^T X + XA - XBB^T X.$$

<sup>&</sup>lt;sup>1</sup> e.g. [Lions '71; Lasiecka/Triggiani '00; Bensoussan et al. '92; Pritchard/Salamon '87; Curtain/Zwart '95]

## Origin of the Matrix Equations MPC/LQG design for Nonlinear Optimal Control Problems



#### nonlinear parabolic PDE with noise

$$\dot{x}(t) = f(x(t)) + B u(t) + F v(t) \text{ for } t > 0, \quad x(0) = x_0 + \eta_0,$$
  
 $y(t) = C x(t) + w(t).$ 

#### Here.

- v(t) is the input noise
- w(t) is the output noise
- $\eta_0$  is the noise in the initial condition.



#### MPC/LQG design for Nonlinear Optimal Control Problems

#### nonlinear parabolic PDE with noise

$$\dot{x}(t) = f(x(t)) + B u(t) + F v(t) \text{ for } t > 0, \quad x(0) = x_0 + \eta_0,$$

$$y(t) = Cx(t) + w(t).$$

#### Strategy [Benner, Hein (geb. Görner) 2006] (based on [Ito, Kunisch 2006])

- Linearize the nonlinear state equation on sub-intervals (Model Predictive Control (MPC) or Receding Horizon Control (RHC)).
- Find estimates of the states (Linear Quadratic Gaussian Design (LQG)) on the sub-intervals.



#### MPC/LQG design for Nonlinear Optimal Control Problems

#### nonlinear parabolic PDE with noise

$$\dot{x}(t) = f(x(t)) + B u(t) + F v(t)$$
 for  $t > 0$ ,  $x(0) = x_0 + \eta_0$ ,

$$y(t) = Cx(t) + w(t).$$

#### Strategy [Benner, Hein (geb. Görner) 2006] (based on [Ito, Kunisch 2006])

- Linearize the nonlinear state equation on sub-intervals (Model Predictive Control (MPC) or Receding Horizon Control (RHC)).
- Find estimates of the states (Linear Quadratic Gaussian Design (LQG)) on the sub-intervals.

Needs the additional solution of the Filter Algebraic Riccati Equation (FARE)

$$0 = A\Sigma + \Sigma A^{T} - \Sigma C^{T} W^{-1} C \Sigma + FVF^{T}.$$

## Origin of the Matrix Equations MPC/LQG design for Nonlinear Optimal Control Problems



#### nonlinear parabolic PDE with noise

$$\dot{x}(t) = f(x(t)) + B u(t) + F v(t)$$
 for  $t > 0$ ,  $x(0) = x_0 + \eta_0$ ,

$$y(t) = Cx(t) + w(t).$$

Needs the additional solution of the Filter Algebraic Riccati Equation (FARE)

$$0 = A\Sigma + \Sigma A^{T} - \Sigma C^{T} W^{-1} C \Sigma + FVF^{T}.$$

- Here V, W are the symmetric and positive definite covariance matrices.
- ullet  $\Sigma$  is used to compute the best approximation to the state for the feedback loop

Exponential Stabilization of Navier-Stokes and Oseen Equations

#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[RAYMOND 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.



Exponential Stabilization of Navier-Stokes and Oseen Equations

#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[Raymond 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### Main Ingredients of the proof

• Helmholtz decomposition of the state  $y = Py + (I - P)y \Rightarrow$ 

Exponential Stabilization of Navier-Stokes and Oseen Equations



#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[RAYMOND 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### Main Ingredients of the proof

- Helmholtz decomposition of the state  $y = Py + (I P)y \Rightarrow$ 
  - Cauchy equation for Py
  - elliptic equation for (I P)y

Exponential Stabilization of Navier-Stokes and Oseen Equations



#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[Raymond 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### Main Ingredients of the proof

- Helmholtz decomposition of the state  $y = Py + (I P)y \Rightarrow$ 
  - Cauchy equation for Py
  - elliptic equation for (I P)y
- elimination of (I P)y from the cost functional

Exponential Stabilization of Navier-Stokes and Oseen Equations



#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[RAYMOND 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### Main Ingredients of the proof

- Helmholtz decomposition of the state  $y = Py + (I P)y \Rightarrow$ 
  - Cauchy equation for Py
  - elliptic equation for (I P)y
- elimination of (I P)y from the cost functional
- LQR design for the Cauchy equation

#### Origin of the Matrix Equations Exponential Stabilization of Navier-Stokes and Oseen Equations



#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

#### [RAYMOND 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### origin of saddle-point formulation

 Problem: Test space of divergence free functions not directly FE discretizable.

Exponential Stabilization of Navier-Stokes and Oseen Equations



#### SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

#### [RAYMOND 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback control for sufficiently small initial conditions.

#### origin of saddle-point formulation

- Problem: Test space of divergence free functions not directly FE discretizable.
- Strategies:
  - Matrix assembly after Helmholtz projection of the basis functions (expensive for reasonable grids)
  - projections on matrix level after standard Galerkin discretization following [Heinkenschloss, Sorenson, Sun 2007]



- Origin of the Matrix Equations
- Numerical methods for DRE
  - Matrix versions of the ODE solvers
  - Motivation of the low rank approximation
- 3 LRCF Newton Method for the ARE
- 4 Recent Improvements in the Software
- **6** Conclusions and Outlook

Matrix versions of the ODE solvers



 $\left[\text{Mena}\ 2007\right]$  showed that ODE solvers of BDF and Rosenbrock type can efficiently be applied to matrix valued problems.



 $\left[\text{Mena }2007\right]$  showed that ODE solvers of BDF and Rosenbrock type can efficiently be applied to matrix valued problems.



 $\left[ \text{Mena } 2007 \right]$  showed that ODE solvers of BDF and Rosenbrock type can efficiently be applied to matrix valued problems.



## Numerical methods for DRE Matrix versions of the ODE solvers



[Mena 2007] showed that ODE solvers of BDF and Rosenbrock type can efficiently be applied to matrix valued problems.





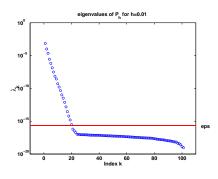
Low Rank Approximation guarantees efficiency in terms of computational effort and memory usage

### Motivation of the low rank approximation

#### The spectrum of an AREs solution

#### Motivating example

- Linear 1D heat equation with point control.
- $\Omega = [0, 1]$ .
- FEM discretization using linear B-splines.
- h=0.01.



$$X = X^T \ge 0 \Longrightarrow X = ZZ^T = \sum_{k=1}^n \lambda_k z_k z_k^T \approx \sum_{k=1}^r \lambda_k z_k z_k^T = Z_{(r)} Z_{(r)}^T.$$



- Origin of the Matrix Equations
- Numerical methods for DRE
- IRCF Newton Method for the ARE
  - Large Scale Riccati and Lyapunov Equations
  - Newton's method for solving the ARE
  - Cholesky factor ADI for Lyapunov equations
- Recent Improvements in the Software
- **6** Conclusions and Outlook

Large Scale Riccati and Lyapunov Equations

We are interested in solving

#### algebraic Riccati equations

$$0 = A^{T}X + XA - XBB^{T}X + C^{T}C =: \Re(X).$$
 (ARE)

#### where

- $A \in \mathbb{R}^{n \times n}$  sparse,  $n \in \mathbb{N}$  "large"
- lacksquare  $B \in \mathbb{R}^{n \times m}$  and  $m \in \mathbb{N}$  with  $m \ll n$
- $C \in \mathbb{R}^{p \times n}$  and  $p \in \mathbb{N}$  with  $p \ll n$

Large Scale Riccati and Lyapunov Equations

We are interested in solving

#### algebraic Riccati equations

$$0 = A^T X + XA - XBB^T X + C^T C =: \Re(X).$$
 (ARE)

#### where

- $A \in \mathbb{R}^{n \times n}$  sparse,  $n \in \mathbb{N}$  "large"
- $m{\Theta}$   $B \in \mathbb{R}^{n \times m}$  and  $m \in \mathbb{N}$  with  $m \ll n$  and
- $C \in \mathbb{R}^{p \times n}$  and  $p \in \mathbb{N}$  with  $p \ll n$

#### Lyapunov equations

$$F^TX + XF = -GG^T. (LE)$$

#### with

- $F \in \mathbb{R}^{n \times n}$  sparse or sparse + low rank update.  $n \in \mathbb{N}$  "large"
- ullet  $G \in \mathbb{R}^{n \times m}$  and  $m \in \mathbb{N}$  with  $m \ll n$

Newton's method for solving the ARE

#### Newton's iteration for the ARE

$$\mathfrak{R}'|_X(N_I) = -\mathfrak{R}(X_I), \qquad X_{I+1} = X_I + N_I,$$

where the Frechét derivative of  $\mathfrak{R}$  at X is the Lyapunov operator

$$\mathfrak{R}'|_X: Q \mapsto (A - BB^TX)^TQ + Q(A - BB^TX),$$

can be rewritten as

#### one iteration step

$$(A - BB^{T}X_{l})^{T}X_{l+1} + X_{l+1}(A - BB^{T}X_{l}) = -C^{T}C - X_{l}BB^{T}X_{l}$$

i.e. in every Newton step we have to solve a Lyapunov equation of the form (LE)



Cholesky factor ADI for Lyapunov equations

#### Recall **Peaceman Rachford ADI**<sup>2</sup>:

Consider Au = s where  $A \in \mathbb{R}^{n \times n}$  spd,  $s \in \mathbb{R}^n$ . ADI Iteration Idea:

Decompose 
$$A = H + V$$
 with  $H, V \in \mathbb{R}^{n \times n}$  such that

$$(H+pI)v=r$$
$$(V+pI)w=t$$

can be solved easily/efficiently.

<sup>&</sup>lt;sup>2</sup> [PEACEMAN & RACHFORD 1954], see also [WACHSPRESS 1966]



Cholesky factor ADI for Lyapunov equations

#### Recall **Peaceman Rachford ADI**<sup>2</sup>:

Consider Au = s where  $A \in \mathbb{R}^{n \times n}$  spd,  $s \in \mathbb{R}^n$ . ADI Iteration Idea:

Decompose A = H + V with  $H, V \in \mathbb{R}^{n \times n}$  such that

$$(H+pI)v=r$$
$$(V+pI)w=t$$

can be solved easily/efficiently.

#### **ADI** Iteration

If 
$$H, V \text{ spd} \Rightarrow \exists p_j, j = 1, 2, ... J \text{ such that} \\ u_0 = 0 \\ (H + p_j I) u_{j - \frac{1}{2}} = (p_j I - V) u_{j - 1} + s \\ (V + p_j I) u_j = (p_j I - H) u_{j - \frac{1}{2}} + s$$
 (PR-ADI)

converges to  $u \in \mathbb{R}^n$  solving Au = s.

<sup>&</sup>lt;sup>2</sup> [PEACEMAN & RACHFORD 1954], see also [WACHSPRESS 1966]



Cholesky factor ADI for Lyapunov equations

The Lyapunov operator

$$\mathcal{L}: X \mapsto F^TX + XF$$

can be decomposed into the linear operators

$$\mathcal{L}_H: X \mapsto F^T X \qquad \mathcal{L}_V: X \mapsto XF.$$

Such that in analogy to (PR-ADI) we find the

#### ADI iteration for the Lyapunov equation (LE)

$$\begin{array}{rcl} X_{0} & = & 0 \\ (F^{T} + p_{j}I)X_{j-\frac{1}{2}} & = & -GG^{T} - X_{j-1}(F - p_{j}I) \\ (F^{T} + p_{j}I)X_{j}^{T^{2}} & = & -GG^{T} - X_{j-\frac{1}{2}}^{T}(F - p_{j}I) \end{array}$$
 (LE-ADI)

Cholesky factor ADI for Lyapunov equations

#### Remarks:

• If F is sparse or sparse + low rank update, i.e.  $F = A + VU^T$  then  $F^T + p_j I$  can be written as  $\tilde{A} + UV^T$ , where  $\tilde{A} = A^T + p_j I$  and its inverse can be expressed as

$$(F^{T} + p_{j}I)^{-1} = (\tilde{A} + UV^{T})^{-1} = \tilde{A}^{-1} - \tilde{A}^{-1}U(I + V^{T}\tilde{A}^{-1}U)^{-1}V^{T}\tilde{A}^{-1}$$

by the Sherman-Morrison-Woodbury formula.

Cholesky factor ADI for Lyapunov equations

#### Remarks:

• If F is sparse or sparse + low rank update, i.e.  $F = A + VU^T$  then  $F^T + p_j I$  can be written as  $\tilde{A} + UV^T$ , where  $\tilde{A} = A^T + p_j I$  and its inverse can be expressed as

$$(F^{T} + p_{j}I)^{-1} = (\tilde{A} + UV^{T})^{-1} = \tilde{A}^{-1} - \tilde{A}^{-1}U(I + V^{T}\tilde{A}^{-1}U)^{-1}V^{T}\tilde{A}^{-1}$$

by the Sherman-Morrison-Woodbury formula.

Note: We only need to be able to multiply with A, solve systems with A and solve shifted systems with  $A^T + p_j I$ 

Cholesky factor ADI for Lyapunov equations

#### Remarks:

• If F is sparse or sparse + low rank update, i.e.  $F = A + VU^T$  then  $F^T + p_j I$  can be written as  $\tilde{A} + UV^T$ , where  $\tilde{A} = A^T + p_j I$  and its inverse can be expressed as

$$(F^{T} + p_{j}I)^{-1} = (\tilde{A} + UV^{T})^{-1} = \tilde{A}^{-1} - \tilde{A}^{-1}U(I + V^{T}\tilde{A}^{-1}U)^{-1}V^{T}\tilde{A}^{-1}$$

by the Sherman-Morrison-Woodbury formula.

• (LE-ADI) can be rewritten to iterate on the low rank Cholesky factors  $Z_j$  of  $X_j$  to exploit  $\mathrm{rk}(X_j) \ll n$ . [LI & WHITE 2002; PENZL 1999; BENNER, LI, PENZL 2000]

Cholesky factor ADI for Lyapunov equations

#### Remarks:

• If F is sparse or sparse + low rank update, i.e.  $F = A + VU^T$  then  $F^T + p_j I$  can be written as  $\tilde{A} + UV^T$ , where  $\tilde{A} = A^T + p_j I$  and its inverse can be expressed as

$$(F^{T} + p_{j}I)^{-1} = (\tilde{A} + UV^{T})^{-1} = \tilde{A}^{-1} - \tilde{A}^{-1}U(I + V^{T}\tilde{A}^{-1}U)^{-1}V^{T}\tilde{A}^{-1}$$

by the Sherman-Morrison-Woodbury formula.

- (LE-ADI) can be rewritten to iterate on the low rank Cholesky factors  $Z_j$  of  $X_j$  to exploit  $\mathrm{rk}(X_j) \ll n$ . [LI & WHITE 2002; PENZL 1999; BENNER, LI, PENZL 2000]
- When solving (ARE) to compute the feedback in an LQR-problem for a semidiscretized parabolic PDE, the LRCF-Newton-ADI can directly iterate on the feedback matrix  $K \in \mathbb{R}^{n \times p}$  to save even more memory. [Penzl 1999; Benner, Li, Penzl 2000]

### Recent Improvements in the Software



- Origin of the Matrix Equations
- 2 Numerical methods for DRE
- 3 LRCF Newton Method for the ARE
- Recent Improvements in the Software
  - Reordering Strategies
  - ADI Shift Parameters
  - Column Compression for the low rank factors
  - Generalized Systems
- **5** Conclusions and Outlook

Reordering Strategies

Use sparse direct solvers  $\Rightarrow$  Store LU or Cholesky factors frequently used (e.g. for M or  $A + p_j I$  in case of cyclically used shifts).

 $\Rightarrow$  Save storage by reordering

Upcoming LyaPack 2.0 let's you choose between:

- symmetric reverse Cuthill-McKee (RCM³) reordering
- approximate minimum degree (AMD<sup>4</sup>) reordering
- symmetric AMD<sup>4</sup>

<sup>&</sup>lt;sup>3</sup>[A. George and J. W.-H. Liu 1981]

<sup>&</sup>lt;sup>4</sup>[P. Amestoy, T. A. Davis, and I. S. Duff 1996.]

Reordering Strategies

Use sparse direct solvers  $\Rightarrow$  Store LU or Cholesky factors frequently used (e.g. for M or  $A + p_i I$  in case of cyclically used shifts).

 $\Rightarrow$  Save storage by reordering

Upcoming MESS 1.0 let's you choose between:

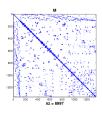
- symmetric reverse Cuthill-McKee (RCM³) reordering
- approximate minimum degree (AMD<sup>4</sup>) reordering
- symmetric AMD<sup>4</sup>

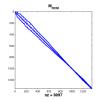
<sup>&</sup>lt;sup>3</sup>[A. George and J. W.-H. Liu 1981]

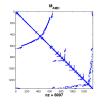
<sup>&</sup>lt;sup>4</sup>[P. Amestoy, T. A. Davis, and I. S. Duff 1996.]

Reordering Strategies

Motivating example: Mass matrix M from a FEM semidiscretization of a 2d heat equation. Dimension of the discrete system: 1357

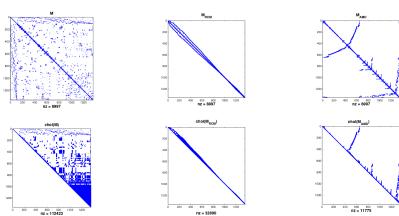






Reordering Strategies

Motivating example: Mass matrix M from a FEM semidiscretization of a 2d heat equation. Dimension of the discrete system: 1357



### Optimal ADI parameters solve the

### min-max-problem

$$\min_{\{p_j|j=1,\ldots,J\}\subset\mathbb{R}} \max_{\gamma\in\sigma(F)} \left| \prod_{j=1}^J \frac{(p_j-\lambda)}{(p_j+\lambda)} \right|$$

### Remark

- Also known as rational Zolotarev problem since he solved it first on real intervals enclosing the spectra in 1877.
- Another solution for the real case was presented by Wachspress/Jordan in 1963.

### Optimal ADI parameters solve the

### min-max-problem

$$\min_{\{p_j | j=1,...,J\} \subset \mathbb{R}} \quad \max_{\gamma \in \sigma(F)} \quad \left| \prod_{j=1}^J \frac{(p_j - \lambda)}{(p_j + \lambda)} \right|.$$

### Remark

- Wachspress and Starke presented different strategies to compute suboptimal shifts for the complex case around 1990.
- Wachspress: elliptic Integral evaluation based shifts
- Starke: Leja Point based shifts (see also [Sabino 2006])

- heuristic parameters [Penzl 1999]
  - use selected Ritz values as shifts
  - ullet suboptimal  $\Rightarrow$  convergence might be slow
  - in general complex for complex spectra
- 2 approximate Wachspress parameters [Benner, Mena, S. 2006]
  - optimal for real spectra
  - parameters real if imaginary parts are "small"
  - good approximation of the "outer" spectrum of F needed
     ⇒ possibly expensive computation
- only real heuristic parameters
  - avoids complex computation and storage requirements
  - can be slow if many Ritz values are complex
- real parts of heuristic parameters
  - avoids complex computation and storage requirements
  - suitable if imaginary parts are "small"

- heuristic parameters [Penzl 1999]
  - use selected Ritz values as shifts
  - suboptimal ⇒ convergence might be slow
  - in general complex for complex spectra
- approximate Wachspress parameters [Benner, Mena, S. 2006]
  - optimal for real spectra
  - parameters real if imaginary parts are "small"
  - good approximation of the "outer" spectrum of F needed
     ⇒ possibly expensive computation
- only real heuristic parameters
  - avoids complex computation and storage requirements
  - can be slow if many Ritz values are complex
- real parts of heuristic parameters
  - avoids complex computation and storage requirements
  - suitable if imaginary parts are "small"

- heuristic parameters [Penzl 1999]
  - use selected Ritz values as shifts
  - ullet suboptimal  $\Rightarrow$  convergence might be slow
  - in general complex for complex spectra
- approximate Wachspress parameters [Benner, Mena, S. 2006]
  - optimal for real spectra
  - parameters real if imaginary parts are "small"
  - good approximation of the "outer" spectrum of F needed
     ⇒ possibly expensive computation
- only real heuristic parameters
  - avoids complex computation and storage requirements
  - can be slow if many Ritz values are complex
- real parts of heuristic parameters
  - avoids complex computation and storage requirements
  - suitable if imaginary parts are "small"

- heuristic parameters [Penzl 1999]
  - use selected Ritz values as shifts
  - ullet suboptimal  $\Rightarrow$  convergence might be slow
  - in general complex for complex spectra
- 2 approximate Wachspress parameters [Benner, Mena, S. 2006]
  - optimal for real spectra
  - parameters real if imaginary parts are "small"
  - good approximation of the "outer" spectrum of F needed
     ⇒ possibly expensive computation
- only real heuristic parameters
  - avoids complex computation and storage requirements
  - can be slow if many Ritz values are complex
- real parts of heuristic parameters
  - avoids complex computation and storage requirements
  - suitable if imaginary parts are "small"

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

grid size: 
$$75 \times 75 \Rightarrow \#\text{states} = 5625 \Rightarrow \#\text{unknowns in } X = 5625^2 \approx 32 \cdot 10^6$$

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

grid size:  $75 \times 75 \Rightarrow \#$ states =  $5625 \Rightarrow \#$ unknowns in  $X = 5625^2 \approx 32 \cdot 10^6$ 

heuristic parameters time: 44s residual norm: 1.0461e-11 heuristic real parts time: 13s residual norm: 9.0846e-12 appr. Wachspress time: 16s residual norm: 5.3196e-12

### Remark

- heuristic parameters are complex
- problem size exceeds memory limitations in complex case

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB

Reordering Strategies
ADI Shift Parameters
Column Compression for the LRCF
Generalized Systems

## Recent Improvements in the Software

Column Compression for the low rank factors

### Problem

- Low rank factors Z of the solutions X grow rapidly, since a constant number of columns is added in every ADI step.
- If many ADI steps are used, at some point #columns in Z > rk(Z).

Column Compression for the low rank factors

### Problem

- Low rank factors Z of the solutions X grow rapidly, since a constant number of columns is added in every ADI step.
- If many ADI steps are used, at some point #columns in Z > rk(Z).

### Idea: Column compression using rank revealing QR factorization (RRQR)

Consider  $X = ZZ^T$  and rk(Z) = r. Compute the RRQR<sup>5</sup> of Z

$$Z^T = QR\Pi$$
 where  $R = \left[egin{array}{cc} R_{11} & R_{12} \ 0 & R_{22} \end{array}
ight]$  and  $R_{11} \in \mathbb{R}^{r imes r}$ 

now set 
$$\tilde{Z}^T = [R_{11}R_{12}]\Pi^T$$
 then  $\tilde{Z}\tilde{Z}^T =: \tilde{X} = X$ .

 $<sup>^{\</sup>bf 5} [ \text{Bischof & Quintana-Ortí } 1998 ]$ 

# Recent Improvements in the Software Column Compression for the low rank factors

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

Column Compression for the low rank factors

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

grid size: 
$$75 \times 75 \Rightarrow \#$$
states =  $5625 \Rightarrow \#$ unknowns in  $X = 5625^2 \approx 32 \cdot 10^6$ 

| truncation T | OL # col. i | n LRCF   time | res. norm  |
|--------------|-------------|---------------|------------|
| _            | 4           | 7 13s         | 9.0846e-12 |
| eps          | 4           | 6 14s         | 1.9516e-11 |
| √eps         | 2           | 8 13s         | 1.9924e-11 |

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB

Column Compression for the low rank factors

### Test example

Centered finite difference discretized 2d convection diffusion equation:

$$\dot{\mathbf{x}} = \Delta \mathbf{x} - 10\mathbf{x}_x - 100\mathbf{x}_y + \mathbf{b}(x, y)\mathbf{u}(t)$$

on the unit square with Dirichlet boundary conditions. (demo\_l1.m)

grid size: 
$$75 \times 75 \Rightarrow \#\text{states} = 5625 \Rightarrow \#\text{unknowns in } X = 5625^2 \approx 32 \cdot 10^6$$

| ſ | truncation TOL | # col. in LRCF | time | res. norm  |
|---|----------------|----------------|------|------------|
| ſ | -              | 47             | 13s  | 9.0846e-12 |
| Ì | eps            | 46             | 14s  | 1.9516e-11 |
| İ | $\sqrt{eps}$   | 28             | 13s  | 1.9924e-11 |

### Observation

[Benner & Quintana-Ortí 2005] showed that truncation tolerance  $\sqrt{eps}$  in the low rank factor Z is sufficient to achieve an error eps in the solution X.

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB

Generalized Systems

### Current Method

Transform

$$M\dot{x} = Ax + Bu$$
$$y = Cx$$

to

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{B}u 
y = \tilde{C}\tilde{x}$$

where 
$$M=M_LM_U$$
 and  $\tilde{x}=M_Ux$ ,  $\tilde{A}=M_L^{-1}AM_U^{-1}$ ,  $\tilde{B}=M_L^{-1}B$ ,  $\tilde{C}=CM_U^{-1}$ .

- 2 additional sparse triangular solves in every multiplication with A
- 2 additional sparse matrix vector multiplies in solution of  $\tilde{A}x = b$  and  $(\tilde{A} + p_i I)x = b$
- $\tilde{B}$  and  $\tilde{C}$  are dense even if B and C are sparse.
- + preserves symmetry if M, A are symmetric.

# Recent Improvements in the Software Generalized Systems

### Alternative Method

Transform

$$M\dot{x} = Ax + Bu$$
  
 $y = Cx$ 

where  $\tilde{A} = M^{-1}A$  and  $\tilde{B} = M^{-1}B$ 

to 
$$\dot{x} = \tilde{A}x + \tilde{B}u$$

- + state variable untouched  $\Rightarrow$  solution to (ARE), (LE) not transformed
- + exploiting pencil structure in  $(\tilde{A} + p_j I) = M^{-1}(A + p_j M)$  reduces overhead
  - current user supplied function structure inefficient here
    - $\Rightarrow$  rewrite of LyaPack kernel routines needed (work in progress)

# Recent Improvements in the Software Generalized Systems

### Alternative Method

Transform

$$M\dot{x} = Ax + Bu$$
  
 $y = Cx$ 

where  $\tilde{A} = M^{-1}A$  and  $\tilde{B} = M^{-1}B$ 

$$\dot{x} = \tilde{A}x + \tilde{B}u 
y = Cx$$

- + state variable untouched  $\Rightarrow$  solution to (ARE), (LE) not transformed
- + exploiting pencil structure in  $(\tilde{A} + p_j I)^{-1} = (A + p_j M)^{-1} M$  reduces overhead
  - current user supplied function structure inefficient here
    - $\Rightarrow$  rewrite of LyaPack kernel routines needed (work in progress)



- Origin of the Matrix Equations
- Numerical methods for DRE
- 3 LRCF Newton Method for the ARE
- Recent Improvements in the Software
- **5** Conclusions and Outlook
  - Confusions
  - Outlook

 Reordering strategies can reduce memory requirements by far

- Reordering strategies can reduce memory requirements by far
- new shift parameter selection allows easy improvements in ADI performance



- Reordering strategies can reduce memory requirements by far
- new shift parameter selection allows easy improvements in ADI performance
- Column compression via RRQR also drastically reduces storage requirements.



- Reordering strategies can reduce memory requirements by far
- new shift parameter selection allows easy improvements in ADI performance
- Column compression via RRQR also drastically reduces storage requirements. Especially helpful in differential Riccati equation solvers where 1 ARE (BDF) or 1 Lyapunov (Rosenbrock) solution needs to be stored in every step.

- Reordering strategies can reduce memory requirements by far
- new shift parameter selection allows easy improvements in ADI performance
- Column compression via RRQR also drastically reduces storage requirements. Especially helpful in differential Riccati equation solvers where 1 ARE (BDF) or 1 Lyapunov (Rosenbrock) solution needs to be stored in every step.
- Optimized treatment of generalized systems is work in progress



### Theoretical Outlook

- Improve stopping Criteria for the ADI process. e.g. inside the LRCF-Newton method by interpretation as inexact Newton method following the ideas of Sachs et al.
- Optimize truncation tolerances for the RRQR Investigate dependence of residual errors in X on the truncation tolerance
- Stabilizing initial feedback computation
  Investigate whether the method in [Gallivan, Rao, Van Dooren 2006]
  can be implemented exploiting sparse matrix arithmetics.

### Implementation TODOs

- User supplied functions and saddle point solvers for B
- Introduce solvers for DREs
- Initial stabilizing feedback computation
- Improve handling of generalized systems of the form  $M\dot{x} = Ax + Bu$ .
- Improve the current Arnoldi implementation inside the heuristic ADI Parameter computation
- RRQR and column compression for complex factors.
- ...

### Implementation TODOs

- User supplied functions and saddle point solvers for B (with Anne Heubner in SPP 1253)
- Introduce solvers for DREs (with Hermann Mena (EPN Quito))
- Initial stabilizing feedback computation
- Improve handling of generalized systems of the form  $M\dot{x} = Ax + Bu$ .
- Improve the current Arnoldi implementation inside the heuristic ADI Parameter computation
- RRQR and column compression for complex factors.
- . . . .

### Conclusions and Outlook Outlook

- User supplied functions and saddle point solvers for B (with Anne Heubner in SPP 1253)
  Introduce solvers for DREs (with Hermann Mena (EPN Quito))
  Initial stabilizing feedback compute (IN)
  Improve handling of generalization

- Improve handling of generalized systems of the form  $M\dot{x} = Ax + Bu$ .
- Improve the current Arno Implementation inside the heuristic ADI Parameter compro
- RRQR and column compression for complex factors.

