May 09, 2012 Regelungstechnisches Seminar Technische Universität München

Numerical Solution of large and sparse Matrix Equations in Model Order Reduction

Numerische Lösung großer, dünn besetzter Matrix-Gleichungen zur Modellordnungsreduktion

Jens Saak

Computational Methods in Systems and Control Theory Max-Planck-Institut für Dynamik komplexer Technischer Systeme

Contents

- 2 Balanced Truncation
- 3 Large Scale Lyapunov Equations
 - 4 Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Model Order Reduction

- The System Description
- Basic Idea of MOR

2 Balanced Truncation

- 3 Large Scale Lyapunov Equations
- 4 Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Model Order Reduction

The System Description

Consider the

where

- $x \in \mathbb{R}^n$ state,
- $u \in \mathbb{R}^m$ input, or control,
- $y \in \mathbb{R}^p$ output, or measurement,

and

$$E, A \in \mathbb{R}^{n \times n}, \qquad B \in \mathbb{R}^{n \times m}, \qquad C \in \mathbb{R}^{p \times n}.$$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Model Order Reduction

The System Description

Consider the

linear time invariant (LTI) System

 $\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$

 $(\Sigma(E; A, B, C))$

Example "FEM for the heat equation"

- E FEM mass matrix,
- A discretized spatial differential operator,
- x temperatures in degrees of freedom.

0		

Balanced Truncation

Lyapunov Equations

Recent Contributions

LTI System
$$\Sigma = (E; A, B, C)$$
:
 $E \dot{x}(t) = A x(t) + B u(t), \quad y(t) = C x(t)$

Balanced Truncation

Lyapunov Equations

Recent Contributions

LTI System
$$\Sigma = (E; A, B, C)$$
:
E $\dot{x}(t) = A \quad x(t) + B \quad u(t), \quad y(t) = C \quad x(t)$
Model Order Reduction
Find Projection Matrices
T_r $\in \mathbb{R}^{n \times k}$ and **T**_l $\in \mathbb{R}^{n \times k}$,
 $k \ll n$.

Balanced Truncation

Lyapunov Equations

Recent Contributions

LTI System
$$\Sigma = (E; A, B, C)$$
:
 $E \dot{x}(t) = A x(t) + B u(t), \quad y(t) = C x(t)$
Model Order Reduction
Find Projection Matrices
 $T_r \in \mathbb{R}^{n \times k} \text{ and } T_l \in \mathbb{R}^{n \times k},$
 $k \ll n.$
 $T_l^T E T_r \dot{x}(t) = T_l^T A T_r \tilde{x}(t) + T_l^T B u(t), \quad \tilde{y}(t) = C$

I

Balanced Truncation

Lyapunov Equations

Recent Contributions

TI System
$$\Sigma = (E; A, B, C)$$
:
E $\dot{x}(t) = A$ $x(t) + B$ $u(t), \quad y(t) = C$ $x(t)$
Model Order Reduction
Find Projection Matrices
 $T_r \in \mathbb{R}^{n \times k}$ and $T_l \in \mathbb{R}^{n \times k},$
 $k \ll n.$
E $\dot{x}(t) = \tilde{A}$ $\tilde{x}(t) + \tilde{B}$ $u(t), \quad \tilde{y}(t) = \tilde{C}$ $\tilde{x}(t)$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Model Order Reduction Basic Idea of MOR

LTI System
$$\Sigma = (E; A, B, C)$$
:
 $E \dot{x}(t) = A x(t) + B u(t), \quad y(t) = C x(t)$
Model Order Reduction
Find Projection Matrices
 $T_r \in \mathbb{R}^{n \times k} \text{ and } \overline{T_l} \in \mathbb{R}^{n \times k},$
 $k \ll n.$
 $\tilde{E} \dot{x}(t) = \tilde{A} \tilde{x}(t) + \tilde{B} u(t), \quad \tilde{y}(t) = \tilde{C} \tilde{x}(t)$

Goal: $\tilde{y}(t) \approx y(t)$

Balanced Truncatio

Lyapunov Equations

Recent Contributions

Balanced Truncation

- 2 Balanced Truncation
 - BT Basics
 - Implementation

Balanced Truncation

Balanced Truncation

Lyapunov Equations

BT Basics

Idea:

• The system Σ , in realization (E; A, B, C), is called balanced, if the solutions P, Q of the Lyapunov equations $APE^T + EPA^T + BB^T = 0, \qquad A^TQE + E^TQA + C^TC = 0,$ satisfy: $P = E^TQE = \text{diag}(\sigma_1, \dots, \sigma_n),$ where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0.$

Balanced Truncation

Lyapunov Equations

BT Basics

Balanced Truncation

Idea:

BT Basics

Balanced Truncation

Balanced Truncation

Lyapunov Equations

Idea:

• The system Σ , in realization (E; A, B, C), is called balanced, if the solutions P, Q of the Lyapunov equations $APE^{T} + EPA^{T} + BB^{T} = 0,$ $A^{T}QE + E^{T}QA + C^{T}C = 0.$ satisfy: $P = E^T Q E = \text{diag}(\sigma_1, \ldots, \sigma_n),$ where $\sigma_1 > \sigma_2 > \ldots > \sigma_n > 0$. • $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ . A balanced realization is computed via state space transformation \mathcal{T} : (E; A, B, C) \mapsto (TET⁻¹; TAT⁻¹, TB, CT⁻¹) $=\left(\left[\begin{array}{ccc}E_{11}&E_{12}\\E_{21}&E_{22}\end{array}\right];\left|\begin{array}{ccc}A_{11}&A_{12}\\A_{21}&A_{22}\end{array}\right|,\left|\begin{array}{ccc}B_{1}\\B_{2}\end{array}\right|,\left[\begin{array}{ccc}C_{1}&C_{2}\end{array}\right]\right).$

BT Basics

Balanced Truncation

Lyapunov Equations

Idea:

• The system Σ , in realization (E; A, B, C), is called balanced, if the solutions P, Q of the Lyapunov equations $APE^{T} + EPA^{T} + BB^{T} = 0,$ $A^{T}QE + E^{T}QA + C^{T}C = 0.$ satisfy: $P = E^T Q E = \text{diag}(\sigma_1, \ldots, \sigma_n),$ where $\sigma_1 > \sigma_2 > \ldots > \sigma_n > 0$. • $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ . A balanced realization is computed via state space transformation $\mathcal{T}: (E; A, B, C) \mapsto (TET^{-1}; TAT^{-1}, TB, CT^{-1})$ $= \left(\left| \begin{array}{cc} E_{11} & E_{12} \\ F_{21} & F_{22} \end{array} \right|; \left| \begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right|, \left| \begin{array}{cc} B_1 \\ B_2 \end{array} \right|, \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] \right).$ • Truncation \rightsquigarrow reduced order model: $(\hat{E}; \hat{A}, \hat{B}, \hat{C}) = (E_{11}; A_{11}, B_1, C_1)$.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Implementation

The SR Method

Compute (Cholesky) factors of the solutions to the Lyapunov equation,

 $P = S^T S, \quad Q = R^T R.$

Balanced Truncation

Implementation

The SR Method

Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$P = S^T S, \quad Q = R^T R.$$

Ompute singular value decomposition

$$SER^{T} = \begin{bmatrix} U_{1}, U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix}$$

Balanced Truncation

Implementation

The SR Method

Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$P = S^T S, \quad Q = R^T R.$$

Ompute singular value decomposition

$$SER^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}$$

• Define
$$T_I := R^T V_1 \Sigma_1^{-1/2},$$

• Then the reduced order model is $(I; T_I^T A T_r, T_I^T B, C T_r)$.

 $T_r := S^T U_1 \Sigma_1^{-1/2}.$

Large Scale Lyapunov Equations

2 Balanced Truncation

- Large Scale Lyapunov Equations
 LRCF-ADI
 - Shift Parameters

4 Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Large Scale Lyapunov Equations

Lyapunov Equation

Consider

$$FX + XF^T = -GG^T$$

with $F \in \mathbb{R}^{n \times n}$ Hurwitz, $G \in \mathbb{R}^{n \times p}$, $p \ll n$.

Observation in practice:

[Penzl '99, Ant./Sor./Zhou '02, Grasedyck '04, Truhar/Veselic '07]

$$\operatorname{rank}(X,\tau) = \mathbf{r} \ll \mathbf{n}$$

 $\Rightarrow \text{ Compute low-rank solution factor} \\ \tilde{Z} \in \mathbb{R}^{n \times r}, \ r \ll n. \\ X \approx \tilde{Z} \tilde{Z}^{T}$

		Lyapunov Equations	
Large Scal	e Lyapunov Equ	lations	Ø
LRCF-ADI		e.g.,[Ben	INER/LI/PENZL '08]
Consider	$FX + XF^T = -GG^T$	$F \in \mathbb{R}^{n \times n} \ G \in \mathbb{R}$	ρ <i>n×p</i>

consider		00	. C 14	,0 . 14	
Task	Find $Z \in \mathbb{C}^{n,nz}$	such that <i>n</i> z	$z \ll n$ and	$X \approx ZZ^H$	

Large Scale Lyapunov Equations

Available low rank solvers in the literature:

• LR-ADI

[PENZL '00], [LI/WHITE '02], [BENNER/LI/PENZL '08], [BENNER/S.'05-'10],
[BENNER/KÜRSCHNER/S. '11-'12], [STYKEL '04-],
[ROMMES/FREITAS/MARTINS '08], [HEINKENSCHLOSS/SORENSEN/SUN '08]

Smith

[Penzl '00], [Antoulas/Gugercin/Sor. '03]

Krylov

[Jaimoukha/Kasenally '94], [Saad '90], [Simoncini '07-]

Sign function method

[Benner/Quintana-Ortí 99],[Benner/Baur 06]

• SDA [Chu et al. '11-]

Balanced Truncation

Lyapunov Equations

Recent Contributions

Large Scale Lyapunov Equations

Alternating directions implicit (ADI) iteration for Lyapunov equations [WACHSPRESS '88/'95

$$\begin{array}{rcl} X_0 & = & 0\\ (F+\overline{p_j}I)X_{j-\frac{1}{2}} & = & -GG^T - X_{j-1}(F^T - \overline{p_j}I)\\ (F+p_jI)X_j & = & -GG^T - X_{j-\frac{1}{2}}^H(F^T - p_jI) \end{array}$$

equations

Balanced Truncation

Lyapunov Equations

\bigcirc

Large Scale Lyapunov Equations

Alternating directions implicit (ADI) iteration for Lyapunov

[Wachspress '88/'95]

$$\begin{array}{rcl} X_0 & = & 0\\ (F+\overline{p_j}I)X_{j-\frac{1}{2}} & = & -GG^T - X_{j-1}(F^T-\overline{p_j}I)\\ (F+p_jI)X_j & = & -GG^T - X_{j-\frac{1}{2}}^H(F^T-p_jI) \end{array}$$

 \rightsquigarrow Rewrite as one step iteration and factorize $X_i = Z_i Z_i^H$, $i = 0, \dots, J$

$$Z_{0}Z_{0}^{H} = 0$$

$$Z_{j}Z_{j}^{H} = -2\operatorname{Re}(p_{j})(F + p_{j}I)^{-1}GG^{T}(F + \overline{p_{j}}I)^{-T} + (F + p_{j}I)^{-1}(F - p_{j}I)Z_{j-1}Z_{j-1}^{T}(F - \overline{p_{j}}I)^{T}(F + \overline{p_{j}}I)^{-T}$$

$$\Rightarrow \quad Z_{j} = [\sqrt{-2p_{j}}(F + p_{j}I)^{-1}G, \ (F + p_{j}I)^{-1}(F - p_{j}I)Z_{j-1}]$$

Large Scale Lyapunov Equations

Using

$$P_i := \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i+1})}} \left[I_n - (p_{i+1} + \overline{p_i})(F + p_i I)^{-1} \right].$$

and $z_J = \sqrt{-2 \operatorname{Re}(p_J)} (F + p_J I)^{-1} G$, the iterate Z_J can be rewritten as $Z_J = [z_J, P_{J-1} z_J, P_{J-2} (P_{J-1} z_J), \dots, P_1 (P_2 \cdots P_{J-1} z_J)]$

[J. R. LI/WHITE '02]

Balanced Truncation

Lyapunov Equations

Large Scale Lyapunov Equations

Using

$$P_i := \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i+1})}} \left[I_n - (p_{i+1} + \overline{p_i})(F + p_i I)^{-1} \right].$$

and $z_J = \sqrt{-2 \operatorname{Re}(p_J)} (F + p_J I)^{-1} G$, the iterate Z_J can be rewritten as $Z_J = [z_J, P_{J-1} z_J, P_{J-2} (P_{J-1} z_J), \dots, P_1 (P_2 \cdots P_{J-1} z_J)]$

[J. R. LI/WHITE '02]

 \rightsquigarrow Rearranging the order of shifts

⇒ Low-rank Cholesky factor ADI iteration (LRCF-ADI) [PENZL '99, BENNER/LI/PENZL '08]

$$\begin{split} V_1 &= \sqrt{-2 \operatorname{Re}(p_1)} (F + p_1 I)^{-1} G, & Z_1 := V_1 \\ V_j &= \frac{\sqrt{\operatorname{Re}(p_j)}}{\sqrt{\operatorname{Re}(p_{j-1})}} \left[I - (p_j + \overline{p_{j-1}}) (F + p_j I)^{-1} \right] V_{i-1}, \quad Z_j := [Z_{j-1}, \ V_j]. \end{split}$$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Large Scale Lyapunov Equations

Simplified schematic illustration of LRCF-ADI:

Iteration 1:

odel Order Reduction Bala O OO

Lyapunov Equations

Recent Contributions

Large Scale Lyapunov Equations

Simplified schematic illustration of LRCF-ADI:

Iteration 2:

Model Order Reduction Do Constant Truncation Cyapunov Equations Constant Co

Simplified schematic illustration of LRCF-ADI:

Iteration 3:

Large Scale Lyapunov Equations **LRCF-ADI** Simplified schematic illustration of LRCF-ADI: Iteration k: Computation Solve $(F + p_k I_n) \tilde{V} = V_{k-1}$ for \tilde{V} $V_k = \sqrt{\frac{\operatorname{Re}(p_k)}{\operatorname{Re}(p_{k-1})}} \left(V_{k-1} - (p_k + \overline{p_{k-1}}) \tilde{V} \right)$ $Z_k = V_1 V_2 V_3 \cdots V_k$

		Lyapunov Equations 000000●000	Recent Contributions
Large Scale	Lyapunov Equ	uations e.g.,[Be	NNER/LI/PENZL '08]

Consider	$FX + XF^T = -GG^T$	$F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}$
Task	Find $Z \in \mathbb{C}^{n,nz}$, such that nz	$z \ll n$ and $X pprox ZZ^{H}$

		Lyapunov Equations	
Large Scale	e Lyapunov Equ	iations e.g.,[BE	NNER/LI/PENZL '08]

Consider
$$FX + XF^T = -GG^T$$
 $F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times p}$ TaskFind $Z \in \mathbb{C}^{n,nz}$, such that $nz \ll n$ and $X \approx ZZ^H$

sk Find
$$Z \in \mathbb{C}^{n,nz}$$
, such that $nz \ll n$ and $X \approx ZZ^{F}$

Algorithm

$$V_1 = \sqrt{-2 \operatorname{Re}(p_1)} (F + p_1 I)^{-1} G,$$
 $Z_1 = V_1$

$$V_i = \frac{\sqrt{\operatorname{Re}\left(p_i\right)}}{\sqrt{\operatorname{Re}\left(p_{i-1}\right)}} \begin{bmatrix} I - (p_i + \overline{p_{i-1}})(F + p_i I)^{-1} \end{bmatrix} V_{i-1} \quad Z_i = [Z_{i-1}V_i]$$

For certain shift parameters $\{p_1, ..., p_J\} \subset \mathbb{C}_{<0}$.

Stop if

•
$$||V_i V_i^H||$$
 is small, or

• $||FZ_iZ_i^H + Z_iZ_i^HF^T + GG^T||$ is small.

			Lyapunov Equations	Recent Contributions
La _{G-L}	arge Sca .RCF-ADI (E	le Lyapunov Equa	ations	e.g., [S. '09]
	Consider	$FXE^T + EXF^T = -GG$	^T $\boldsymbol{E}, \boldsymbol{F} \in \mathbb{R}^{n \times n}, \boldsymbol{G}$	$\in \mathbb{R}^{n imes p}$
	Task	Find $Z \in \mathbb{C}^{n,nz}$, such the	at $\mathit{nz}\ll \mathit{n}$ and $\mathit{X}pprox \mathit{Z}$	Z ^H
	Algorithm			
	$V_1 =$	$\sqrt{-2\operatorname{Re}(p_1)}(F+p_1E)^{-1}G,$	$Z_1 = V_1$	1
	$V_i = -$	$rac{\sqrt{\operatorname{Re}\left(p_{i} ight)}}{\sqrt{\operatorname{Re}\left(p_{i-1} ight)}}\left[I-(p_{i}+\overline{p_{i-1}})(F+$	$p_i \boldsymbol{E})^{-1} \mathbf{E} V_{i-1} Z_i = [Z_i]$	$V_{i-1}V_i$]

For certain shift parameters $\{p_1,...,p_J\}\subset \mathbb{C}_{<0}.$

Stop if

- $||V_i V_i^H||$ is small, or
- $||FZ_iZ_i^H E^T + EZ_iZ_i^H F^T + GG^T||$ is small.

			Lyapunov Equations	
La	rge Sca	ale Lyapunov Equ	ations	Ø
S-L	RCF-ADI <mark>(</mark> (E, F) index 1)	e.g.,[Rommes/Fr	reitas/Martins '08]
	Consider	$\tilde{F}XE_{11}^{T} + E_{11}X\tilde{F}^{T} = -\hat{G}$	$\tilde{G}\tilde{G}^{T}$ $\boldsymbol{E}_{11}, \tilde{F} \in \mathbb{R}^{n \times n}, \tilde{G}$	$\hat{b} \in \mathbb{R}^{n \times p}$
	Task	Find $Z \in \mathbb{C}^{n,nz}$, such t	hat $\mathit{nz}\ll \mathit{n}$ and $\mathit{X}pprox \mathit{Z}$	ZH
	Algorithm	1		
	$\begin{bmatrix} V_1 \\ * \end{bmatrix} = \checkmark$	$\overline{(-2\operatorname{Re}(p_1))} \begin{bmatrix} F_{11} + p_1 E_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}^{-1}$	$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \qquad $	$V_1 = V_1$
	$\begin{bmatrix} V_i \\ * \end{bmatrix} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{\operatorname{Re}(p_i)}}{\operatorname{Re}(p_{i-1})} \begin{bmatrix} I - (p_i + \overline{p_{i-1}}) \begin{bmatrix} F_{11} + p_{i-1} \\ F_{21} \end{bmatrix}$	$\begin{bmatrix} F_{11} & F_{12} \\ F_{22} \end{bmatrix}^{-1} \begin{bmatrix} E_{11}V_{i-1} \\ 0 \end{bmatrix} = Z$	$Z_i = [Z_{i-1}V_i]$

For certain shift parameters $\{p_1,...,p_J\}\subset \mathbb{C}_{<0}.$

Stop if

- $||V_i V_i^H||$ is small, or
- $\|\tilde{F}Z_iZ_i^H E_{11}^T + E_{11}Z_iZ_i^H \tilde{F}^T + \tilde{G}\tilde{G}^T\|$ is small.

Large Scale Lyapunov Equations LRCF-ADI for higher index DAEs

arbitrary index DAEs

- [Mehrmann/Stykel '04]
- Require spectral projectors *P*₁, *P*_r onto the left and right deflating subspaces corresponding to the finite eigenvalues,
- and projected Lyapunov equations

$$F^{T}XE + E^{T}XF = -P_{r}^{T}GG^{T}P_{r},$$
$$X = P_{l}^{T}XP_{l}.$$

Large Scale Lyapunov Equations LRCF-ADI for higher index DAEs

arbitrary index DAEs

- Require spectral projectors P_I , P_r onto the left and right deflating subspaces corresponding to the finite eigenvalues,
- and projected Lyapunov equations

$$F^{T}XE + E^{T}XF = -P_{r}^{T}GG^{T}P_{r},$$
$$X = P_{l}^{T}XP_{l}.$$

• Drawback: Usually P_I , P_r not easily accessible.

[Mehrmann/Stykel '04]
Large Scale Lyapunov Equations LRCF-ADI for higher index DAEs

- Require spectral projectors P_I , P_r onto the left and right deflating subspaces corresponding to the finite eigenvalues,
- and projected Lyapunov equations

$$F^{T}XE + E^{T}XF = -P_{r}^{T}GG^{T}P_{r},$$
$$X = P_{l}^{T}XP_{l}.$$

• Drawback: Usually P_I , P_r not easily accessible.

Stokes-like DAEs (index 2)

Heinkenschloss/Sorensen/Sun '08]

- Structure exploitation \rightsquigarrow avoid P_I , P_r .
- Similar to S-LRCF-ADI.

Lyapunov Equations

\bigcirc

Large Scale Lyapunov Equations Shift Parameters

Optimal shift parameters

For $J\ {\rm ADI}$ iterations, the optimal shift parameters solve the rational minmax problem

$$\min_{p_1,\ldots,p_J \subset \mathbb{C}_-} \left(\max_{1 \leq \ell \leq n} \left| \prod_{i=1}^J \frac{\overline{p_i} - \lambda_\ell}{p_i + \lambda_\ell} \right| \right), \ \lambda_\ell \in \Lambda(F).$$

Lyapunov Equations

Large Scale Lyapunov Equations Shift Parameters

For $J\ {\rm ADI}$ iterations, the optimal shift parameters solve the rational minmax problem

$$\min_{p_1,\ldots,p_J \subset \mathbb{C}_-} \left(\max_{1 \leq \ell \leq n} \left| \prod_{i=1}^J \frac{\overline{p_i} - \lambda_\ell}{p_i + \lambda_\ell} \right| \right), \ \lambda_\ell \in \Lambda(F).$$

Heuristic *Penzl* shifts

[PENZL '99]

Since λ_{ℓ} not easily available in large-scale setting, take small numbers of Ritz values of F and F^{-1} (generated with Arnoldi) instead.

Lyapunov Equations

Recent Contributions

Large Scale Lyapunov Equations Shift Parameters

Required by all LRCF-ADI variants:

Proper shifts

A set of the form

$$\{p_1,\ldots,p_J\} = \{\nu_1,\ldots,\nu_L\} \subset \mathbb{C}_-,$$

where either $\nu_i = p_i \in \mathbb{R}_-$ or $\nu_i = \{p_i, \overline{p_i}\} \subset \mathbb{C}_-$ is referred to as proper set of shift parameters.

That means:

- both p_i and $\overline{p_i}$ are shifts and follow each other,
- ZZ^H is real, although Z is complex.

Recent Contributions

- 2 Balanced Truncation
- 3 Large Scale Lyapunov Equations

4

Recent Contributions

- Real Solution Fators for Complex Shifts
- Efficient LRCF-ADI for Second Order Systems
- A Dual LRCF-ADI Iteration for Balanced Truncation

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Generation of purely real solution factors in the presence of complex ADI shift parameters.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Real Solution Fators for Complex Shifts

Theorem

[Benner/Kürschner/S. '11]

The LRCF-ADI iterates associated to
$$\nu_j = \{p_j, p_{j+1} := \overline{p_j}\}$$
 are constructed by

$$V_j = \sqrt{rac{\operatorname{Re}(p_j)}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_j + \overline{p_{j-1}})(F + p_j I_n)^{-1} V_{j-1}
ight),$$

and $V_{j+1} = V_j - 2\overline{p_j}(F + \overline{p_j}I_n)^{-1}V_j$.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Theorem

[Benner/Kürschner/S. '11]

The LRCF-ADI iterates associated to
$$\nu_j = \{p_j, \ p_{j+1} := \overline{p_j}\}$$
 are constructed by

$$V_{j} = \sqrt{\frac{\operatorname{Re}(p_{j})}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_{j} + \overline{p_{j-1}})(F + p_{j}I_{n})^{-1}V_{j-1}\right),$$

and $V_{j+1} = \overline{V_{j}} + \beta_{j}\operatorname{Im}(V_{j}), \qquad \beta_{j} := 2\frac{\operatorname{Re}(p_{j})}{\operatorname{Im}(p_{j})}.$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Theorem

[Benner/Kürschner/S. '11]

The LRCF-ADI iterates associated to
$$\nu_j = \{p_j, p_{j+1} := \overline{p_j}\}$$
 are constructed by

$$V_{j} = \sqrt{\frac{\operatorname{Re}(p_{j})}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_{j} + \overline{p_{j-1}})(F + p_{j}I_{n})^{-1}V_{j-1}\right),$$

and $V_{j+1} = \overline{V_{j}} + \beta_{j}\operatorname{Im}(V_{j}), \qquad \beta_{j} := 2\frac{\operatorname{Re}(p_{j})}{\operatorname{Im}(p_{j})}.$

Moreover, if $\nu_j = p_j \in \mathbb{R}_-$ it holds $\operatorname{Im}(V_j) = 0$.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Theorem

[Benner/Kürschner/S. '11]

The LRCF-ADI iterates associated to
$$\nu_j = \{p_j, p_{j+1} := \overline{p_j}\}$$
 are constructed by

$$V_{j} = \sqrt{\frac{\operatorname{Re}(p_{j})}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_{j} + \overline{p_{j-1}})(F + p_{j}I_{n})^{-1}V_{j-1}\right),$$

and $V_{j+1} = \overline{V_{j}} + \beta_{j}\operatorname{Im}(V_{j}), \qquad \beta_{j} := 2\frac{\operatorname{Re}(p_{j})}{\operatorname{Im}(p_{j})}.$

Moreover, if $\nu_j = p_j \in \mathbb{R}_-$ it holds $\operatorname{Im}(V_j) = 0$.

\Rightarrow the second linear system involving $\overline{p_i}$ becomes redundant.

Recent Contributions

Real Solution Fators for Complex Shifts

Consequence of the theorem

Augmentation of Z_{j-1} by the results of the iterations j and j+1, s.t., $Z_{j+1} = [Z_{j-1}, \hat{Z}]$ with $\hat{Z} := [V_j, V_{j+1}]$. It holds

 $\hat{Z} = [V_j, V_{j+1}] = [\operatorname{Re}(V_j) + \operatorname{i}\operatorname{Im}(V_j), \operatorname{Re}(V_{j+1}) + \operatorname{i}\operatorname{Im}(V_{j+1})]$

Recent Contributions

Real Solution Fators for Complex Shifts

Consequence of the theorem

Augmentation of Z_{j-1} by the results of the iterations j and j+1, s.t., $Z_{j+1} = [Z_{j-1}, \hat{Z}]$ with $\hat{Z} := [V_j, V_{j+1}]$. It holds

 $\hat{Z} = [V_j, V_{j+1}] = [\operatorname{Re}(V_j) + i\operatorname{Im}(V_j), \operatorname{Re}(V_j) - i\operatorname{Im}(V_j) + \beta_j\operatorname{Im}(V_j)]$

Recent Contributions

Real Solution Fators for Complex Shifts

Consequence of the theorem

Augmentation of Z_{j-1} by the results of the iterations j and j + 1, s.t., $Z_{j+1} = [Z_{j-1}, \hat{Z}]$ with $\hat{Z} := [V_j, V_{j+1}]$. It holds $\hat{Z} = [V_j, V_{j+1}] = [\operatorname{Re}(V_j) + i \operatorname{Im}(V_j), \operatorname{Re}(V_j) - i \operatorname{Im}(V_j) + \beta_j \operatorname{Im}(V_j)]$ $= \underbrace{[\operatorname{Re}(V_j), \operatorname{Im}(V_j)]}_{=:\tilde{Z}} \begin{bmatrix} I_m & I_m \\ i I_m & (\beta_j - i) I_m \end{bmatrix}$

Recent Contributions

Real Solution Fators for Complex Shifts

Consequence of the theorem

Augmentation of Z_{j-1} by the results of the iterations j and j+1, s.t., $Z_{j+1} = [Z_{j-1}, \hat{Z}]$ with $\hat{Z} := [V_j, V_{j+1}]$. It holds $\hat{Z} = [V_j, V_{j+1}] = [\operatorname{Re}(V_j) + i \operatorname{Im}(V_j), \operatorname{Re}(V_j) - i \operatorname{Im}(V_j) + \beta_j \operatorname{Im}(V_j)]$ $= \underbrace{[\operatorname{Re}(V_j), \operatorname{Im}(V_j)]}_{=:\tilde{Z}} \begin{bmatrix} I_m & I_m \\ iI_m & (\beta_j - i)I_m \end{bmatrix}$ $\Rightarrow \hat{Z}\hat{Z}^H = \tilde{Z} \begin{bmatrix} 2I_m & \beta_j I_m \\ \beta_j I_m & (\beta_j^2 + 2)I_m \end{bmatrix} \tilde{Z}^T$

Recent Contributions

Real Solution Fators for Complex Shifts

Consequence of the theorem

Augmentation of Z_{i-1} by the results of the iterations j and j + 1, s.t., $Z_{i+1} = [Z_{i-1}, \hat{Z}]$ with $\hat{Z} := [V_i, V_{i+1}]$. It holds $\hat{Z} = [V_i, V_{i+1}] = [\operatorname{Re}(V_i) + i\operatorname{Im}(V_i), \operatorname{Re}(V_j) - i\operatorname{Im}(V_j) + \beta_j\operatorname{Im}(V_j)]$ $=\underbrace{\left[\operatorname{Re}\left(V_{j}\right), \operatorname{Im}\left(V_{j}\right)\right]}_{-:\tilde{z}}\begin{bmatrix}I_{m} & I_{m}\\ \mathrm{i}I_{m} & (\beta_{j}-\mathrm{i})I_{m}\end{bmatrix}$ $\Rightarrow \hat{Z}\hat{Z}^{H} = \tilde{Z}\begin{bmatrix} 2I_{m} & \beta_{j}I_{m} \\ \beta_{i}I_{m} & (\beta_{i}^{2}+2)I_{m} \end{bmatrix} \tilde{Z}^{T}$ $= \tilde{Z} \begin{vmatrix} \sqrt{2}I_m & 0\\ \frac{\beta_j}{\sqrt{2}}I_m & \sqrt{\frac{1}{2}\beta_j^2 + 2}I_m \end{vmatrix} \begin{vmatrix} \sqrt{2}I_m & 0\\ \frac{\beta_j}{\sqrt{2}}I_m & \sqrt{\frac{1}{2}\beta_j^2 + 2}I_m \end{vmatrix} \tilde{Z}^{T}$ -711⁺7⁺

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

$$\Rightarrow \quad \hat{Z}\hat{Z}^{H} = Z_{\mathbb{R}}Z_{\mathbb{R}}^{T}$$
with $Z_{\mathbb{R}} := \tilde{Z}L = \left[\sqrt{2}\operatorname{Re}\left(V_{j}\right) + \frac{\beta_{j}}{\sqrt{2}}\operatorname{Im}\left(V_{j}\right), \ \sqrt{\frac{\beta_{j}^{2}}{2} + 2} \cdot \operatorname{Im}\left(V_{j}\right)\right] \in \mathbb{R}^{n \times 2m}.$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

$$\Rightarrow \quad \hat{Z}\hat{Z}^{H} = Z_{\mathbb{R}}Z_{\mathbb{R}}^{T}$$

with $Z_{\mathbb{R}} := \tilde{Z}L = \left[\sqrt{2}\operatorname{Re}(V_{j}) + \frac{\beta_{j}}{\sqrt{2}}\operatorname{Im}(V_{j}), \sqrt{\frac{\beta_{j}^{2}}{2} + 2} \cdot \operatorname{Im}(V_{j})\right] \in \mathbb{R}^{n \times 2m}.$

Advantages:

- computation of real LRCFs,
- only one complex linear system needed for each complex pair,
- original sparsity preserved.

Disadvantages:

- still one complex linear system per complex pair,
- intermediate V_j is complex.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Simplified schematic illustration of this strategy in LRCF-ADI:

```
Iteration j, j + 1:
```


Solve
$$(F + p_j I_n) \tilde{V} = V_{j-1}$$
 for \tilde{V}
 $V_j = \sqrt{\frac{\operatorname{Re}(p_j)}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_j + \overline{p_{j-1}})\tilde{V}\right)$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Simplified schematic illustration of this strategy in LRCF-ADI:

Iteration j, j + 1:

Computation
Solve
$$(F + p_j I_n) \tilde{V} = V_{j-1}$$
 for \tilde{V}
 $V_j = \sqrt{\frac{\operatorname{Re}(p_j)}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_j + \overline{p_{j-1}})\tilde{V}\right)$
 $V_{j+1} = \overline{V_j} + \beta_j \operatorname{Im}(V_j), \quad \beta_j := 2\frac{\operatorname{Re}(p_j)}{\operatorname{Im}(p_j)}$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Simplified schematic illustration of this strategy in LRCF-ADI:

Iteration j, j + 1:

Computation
Solve
$$(F + p_j I_n) \tilde{V} = V_{j-1}$$
 for \tilde{V}
 $V_j = \sqrt{\frac{\operatorname{Re}(p_j)}{\operatorname{Re}(p_{j-1})}} \left(V_{j-1} - (p_j + \overline{p_{j-1}})\tilde{V}\right)$
 $V_{j+1} = \overline{V_j} + \beta_j \operatorname{Im}(V_j), \quad \beta_j := 2\frac{\operatorname{Re}(p_j)}{\operatorname{Im}(p_j)}$
 $\tilde{Z} = [\operatorname{Re}(V_j), \operatorname{Im}(V_j)]$
 $L = \begin{bmatrix} \sqrt{2}I_m & 0\\ \frac{\beta_j}{\sqrt{2}}I_m \sqrt{\frac{1}{2}\beta_j^2 + 2}I_m \end{bmatrix}$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Real Solution Fators for Complex Shifts

Simplified schematic illustration of this strategy in LRCF-ADI:

Iteration j, j + 1:

Balanced Truncatio

Lyapunov Equations

Recent Contributions

Recent Contributions

Efficient balancing based MOR for damped vibrational Models.

		Lyapunov Equations 000000000	Recent Contributions
Recent Cor	tributions		
Efficient LRCF-ADI for Second Order Systems [BENNER/S. '09, BENNER/KÜRSCHNER/S.			
Second Orde	er Form	First Order Form	
$M\ddot{x} + L$	$D\dot{x} + Kx = Bu$	$\mathcal{E}\dot{z} = \mathcal{A}z + \mathcal{B}u$	
• x displace • $z = (\dot{x}^T, \dot{x}^T)$	ements, $(x^T)^T$	$\mathcal{E} = \begin{bmatrix} 0 & F \\ M & D \end{bmatrix}, \mathcal{A} = \begin{bmatrix} F \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -K \end{bmatrix}$,

- *M*,*D*,*K* invertible,
- F arbitrary but invertible.

$$\mathcal{E} = \begin{bmatrix} 0 & F \\ M & D \end{bmatrix}, \quad \mathcal{A} = \begin{bmatrix} F & 0 \\ 0 & -K \end{bmatrix},$$
$$\mathcal{B} = \begin{bmatrix} 0 \\ B \end{bmatrix}.$$

main task per step:

 $(\mathcal{A}+p_i\mathcal{E})x=\mathcal{E}f$

main task per step:

 $(\mathcal{A}+p_i\mathcal{E})x=\mathcal{E}f$

SO-LRCF-ADI

$$(p_i^2 M - p_i D + K)x_2 = (p_i M - D)f_2 - Mf_1, \qquad x_1 = f_2 - p_i x_2.$$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

ADI stopping criteria, quality of reduced order models and efficient solution of the two dual Lyapunov equations.

Max Planck Institute Magdeburg

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation

Key Target

$$V_i = \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i-1})}} \left[I - (p_i + \overline{p_{i-1}})(F + p_i E)^{-1}\right] EV_{i-1},$$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation

Key Target

$$V_{i} = \frac{\sqrt{\operatorname{Re}(p_{i})}}{\sqrt{\operatorname{Re}(p_{i-1})}} \left[I - (p_{i} + \overline{p_{i-1}})(F + p_{i}E)^{-1} \right] EV_{i-1},$$

$$LU := (F + p_{i}E) \quad \Rightarrow \quad U^{H}L^{H} = (F^{T} + \overline{p_{i}}E^{T})$$

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation

Key Target

$$V_i = \frac{\sqrt{\operatorname{Re}(p_i)}}{\sqrt{\operatorname{Re}(p_{i-1})}} \left[I - (p_i + \overline{p_{i-1}}) U^{-1} L^{-1} \right] EV_{i-1},$$

- complex shifts come in conjugate pair,
- they are used one after another,
- \rightsquigarrow reverse order of complex conjugate shifts for the second equation.

Balanced Truncation

Lyapunov Equations

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation

Key Target

$$\begin{split} V_i &= \frac{\sqrt{\operatorname{Re}\left(p_i\right)}}{\sqrt{\operatorname{Re}\left(p_{i-1}\right)}} \left[I - \left(p_i + \overline{p_{i-1}}\right)U^{-1}L^{-1}\right] EV_{i-1}, \\ W_i &= \frac{\sqrt{\operatorname{Re}\left(p_i\right)}}{\sqrt{\operatorname{Re}\left(p_{i-1}\right)}} \left[I - \left(\overline{p_i} + p_{i-1}\right)L^{-H}U^{-H}\right] E^T W_{i-1}. \end{split}$$

- complex shifts come in conjugate pair,
- they are used one after another,
- \rightsquigarrow reverse order of complex conjugate shifts for the second equation.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation: Stopping the iteration

Problem

- Number of columns in LRCFs limits ROM dimension.
- Lyapunov residuals usually totally unrelated to ROM quality.

Idea

Use goal oriented stopping criteria.

Lyapunov Equations

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation: Stopping the iteration

Problem

- Number of columns in LRCFs limits ROM dimension.
- Lyapunov residuals usually totally unrelated to ROM quality.

Idea

Use goal oriented stopping criteria.

Identify and monitor the property of interest to underlying application.

Recent Contributions

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation: Stopping the iteration

Problem

- Number of columns in LRCFs limits ROM dimension.
- Lyapunov residuals usually totally unrelated to ROM quality.

Idea

Use goal oriented stopping criteria.

Identify and monitor the property of interest to underlying application.

In Balanced Truncation MOR:

Assume we are interested in an order k ROM.

Recent Contributions

Ø

A Dual LRCF-ADI Iteration for Balanced Truncation: Stopping the iteration

Problem

- Number of columns in LRCFs limits ROM dimension.
- Lyapunov residuals usually totally unrelated to ROM quality.

Idea

Use goal oriented stopping criteria.

Identify and monitor the property of interest to underlying application.

In Balanced Truncation MOR:

Recent Contributions

Assume we are interested in an order k ROM.

- Monitor the relative change of k leading HSVs.
- Stop when leading HSVs do no longer change.

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Max Planck Institute Magdeburg

31/32

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Max Planck Institute Magdeburg
Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Iteration: 32

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Iteration: 35

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

A Dual LRCF-ADI Iteration for Balanced Truncation

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Max Planck Institute Magdeburg

31/32

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

Balanced Truncation

Lyapunov Equations

Recent Contributions

Recent Contributions

- *-LRCF-ADI is an efficient solver for large and sparse Lyapunov equations of several kinds.
- It can be modified to always compute real solution factors → real reduced order models in BT.
- Efficiently extensible to the second order case.
- Lyapunov residuals do not always give the right information for BT-MOR. HSV monitoring qualitatively gives more reliable results.
- Quantification of the previous is work in progress.
- Extension of the ideas [ROMMES/FREITAS/MARTINS '08] and [HEINKENSCHLOSS/SORENSEN/SUN '08] to index three mechanical systems with holonomic constraints under investigation.

- *-LRCF-ADI is an efficient solver for large and sparse Lyapunov equations of several kinds.
- It can be modified to always compute real solution factors → real reduced order models in BT.
- Efficiently extensible to the second order case.
- Lyapunov residuals do not always give the right information for BT-MOR. HSV monitoring qualitatively gives more reliable results.
- Quantification of the previous is work in progress.
- Extension of the ideas [ROMMES/FREITAS/MARTINS '08] and [HEINKENSCHLOSS/SORENSEN/SUN '08] to index three mechanical systems with holonomic constraints under investigation.

Thank you for your attention.