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COMPUTING ALL OR SOME EIGENVALUES OF SYMMETRIC

Hℓ-MATRICES

PETER BENNER AND THOMAS MACH

Abstract. We use a bisection method, [Par80, p. 51], to compute the eigenvalues of a sym-
metric Hℓ-matrix M . The number of negative eigenvalues of M −µI is computed via the LDLT

factorisation of M − µI. For dense matrices, the LDLT factorisation is too expensive to yield
an efficient eigenvalue algorithm in general, but not for Hℓ-matrices. In the special structure of
Hℓ-matrices there is an LDLT factorisation with linear-polylogarithmic complexity. The bisec-
tion method requires only matrix-size independent many iterations to find an eigenvalue up to
the desired accuracy, so that an eigenvalue can be found in linear-polylogarithmic time. For all

n eigenvalues, O
(

n2 (logn)4 log (‖M‖2/ǫev)
)

flops are needed to compute all eigenvalues with

an accuracy ǫev. It is also possible to compute only eigenvalues in a specific interval or the j-th
smallest one. Numerical experiments demonstrate the efficiency of the algorithm, in particular

for the case where some interior eigenvalues are required.

Keywords: symmetric hierarchical matrices, eigenvalues, Hℓ-matrices, hierachically semisepa-
rable matrices, HSS matrices, slicing the spectrum

Mathematics Subject Classification: 65F15, 65F50, 15A18

1. Introduction

In “The Symmetric Eigenvalue Problem”, Beresford N. Parlett describes a bisection method
to find the eigenvalues of a symmetric matrix M ∈ R

n×n [Par80, p. 51]. He calls this process
“slicing the spectrum”. The spectrum Λ of a real, symmetric matrix is contained in R and so the
following question is well posed: How many eigenvalues λi ∈ Λ are smaller than µ? We will call
this number ν(µ) or ν(M − µI). Obviously, ν is a function R → {0, . . . , n} ⊂ N0. If the function
ν(·) is known, one can find the m-th eigenvalue as the limit of the following process:

a: Start with an interval [a, b] with ν(a) < m ≤ ν(b).
b: Determine νm := ν(a+b

2 ). If νm > m, then continue with the interval [a, a+b
2 ], else with

[a+b
2 , b].

c: Repeat the bisection (step b) until the interval is small enough.

The function ν(·) can be evaluated using the LDLT factorisation of M − µI, since Sylvester’s
inertia law implies that the number of negative eigenvalues is invariant under congruence transfor-
mations. For dense matrices the evaluation of ν is expensive. So this method is not recommended
if no special structure, like tridiagonality, is available.

Here we considerHℓ-matrices, which have such a special structure. Hℓ-matrices can be regarded
as the simplest form ofH-matrices [Hac99]. They include, among others, tridiagonal and numerous
finite-element matrices. We will see in the next section that the LDLT factorisation forHℓ-matrices
(for all shifts) can be computed in linear-polylogarithmic complexity. We will further see that

O
(

n2k2 (log n)
4
log (‖M‖2/ǫev)

)

flops(1)

are sufficient to find all eigenvalues with an accuracy of ǫev, where k is the maximal rank of the
admissible submatrices.

There are other eigenvalue algorithms for symmetric Hℓ-matrices. In [Gör09], an eigenvalue
algorithm for Hℓ(1)-matrices based on Divide-and-Conquer is described. This algorithm, if com-
bined with an efficient strategy based on an efficient solver for Hℓ-matrices like proposed in [BG10],
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has a total complexity of O(n2 (log n)
β
). Further in [DFV09], a transformation of Hℓ- and the

related HSS-matrices into semi-separable matrices is presented, symmetry is not needed. For semi-
separable matrices there is a QR-algorithm [VVM05]. Both steps have quadratic or quadratic-
polylogarithmic complexity.

The complexity of the LDLT slicing algorithm is competitive with the existing ones if we are
interested in all eigenvalues. If we are interested only in some (interior) eigenvalues, the algorithm
will be superior, since the two others mentioned in the previous paragraph have to compute all
eigenvalues. The LDLT slicing algorithm is fundamentally different from the two other algorithms.
The computational complexity depends logarithmically on the wanted accuracy, so that it is really
cheap to get a sketch of the eigenvalue distribution. In contrast, the algorithm can compute one
eigenvalue, e.g., the smallest, second smallest, or 42nd smallest, without computing any other
eigenvalue in almost linear complexity.

In the next subsection, we will cite some definitions. Especially the definitions of Hℓ- and
H-matrices will be used in the following sections. Further, we will make a small change in the
definition of Hℓ-matrices, which increases the computational efficiency. We allow the matrices on
the lowest level to be of size nmin × nmin and not only of size 1× 1.

1.1. Definitions. Hierarchical (H-) matrices were introduced by W. Hackbusch in 1998 [Hac99].
In that paper the Hℓ-matrices are mentioned in Section 2.2.2, too. The Hℓ-matrices can be
regarded as the simplest form of H-matrices.

The following definition of Hℓ-matrices is given in [Hac09, p. 43] and [Gör09].

Definition 1.1. (Hℓ-matrix)
Let I = {1, . . . , n} be an index set and n = 2ℓ with ℓ ∈ N. A matrix M ∈ R

I×I is called an
Hℓ-matrix of block-wise rank k, short M ∈ Hℓ(k), if it fulfils the following recursive conditions:

(1) n0 = 1 / ℓ = 0: M ∈ H0(k) if M ∈ R
1×1 and

(2) nℓ = 2ℓ: M is partitioned in

M =

[

M11 M12

M21 M22

]

with M11,M22 ∈ Hℓ−1(k), M12 = A1B
T
1 and M21 = B2A

T
2 , where Ai, Bi ∈ R

nℓ−1×k′

, with
k′ ≤ k.

We are interested only in symmetric Hℓ-matrices, so we have M12 = MT
21, A1 = A2 and

B1 = B2. A symmetric H3-matrix is depicted in Figure 1.
Further we will need the concept of H-matrices. We will give a short definition of H-matrices

here, for details see [Hac09] or [GH03]. We define some necessary terms first. A hierarchical tree,
short H-tree, TI of an index set I is a tree with the special conditions:

• the index set I is the root of TI and
• a vertex r ∈ TI is either the disjoint union of its sons s ∈ S(r) or a leaf of TI .

The set of sons of a vertex r ∈ TI is called S(r). We denote the set of leaves (vertices without
sons S(·) = ∅) of the H-tree TI by L(TI). The H-tree T has a depth ℓ, which is the maximum
length of the paths from the root to each leave. If cardinality or geometrically balanced clustering
is used the depth of the tree is in O(log n) [GH03, p. 320ff].

A hierarchical product tree, short H×-tree, TI×I is a special H-tree over the index set I × I
and can be regarded as the product TI × TI . Every vertex of TI×I is the product of two vertices
of the same level of the H-tree TI .

Now we are able to define the set of H-matrices based on the H×-tree TI×I with maximum
block-wise rank k and the minimum block size nmin by

H(TI×I , k) :=

{

M ∈ R
I×I

∣

∣

∣

∣

∀r × s ∈ L(TI×I) : rank (Mr×s) ≤ k
or #r ≤ nmin or #s ≤ nmin

}

.

The low rank matrices Mr×s are stored in factored form ABT . There are a lot of arithmetic
operations for H-matrices with linear-polylogarithmic complexity [Hac09, Beb08, Gra01].
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Figure 1. Structure of an H3-matrix.

We divide the set of leaves in admissible leaves L+(T ) and inadmissible leaves L−(T ). The
submatrices corresponding to admissible leaves have at most rank k and will be stored as so called
R

k-matrices ABT , with k = rank
(

ABT
)

. The submatrices corresponding to inadmissible leaves
will be stored in the standard way as dense matrices without any approximation.

Lemma 1.2. If M ∈ Hℓ(k), then M is a hierarchical matrix of block-wise rank k, too.

Proof. The minimum block-size nmin is 1. The H-tree TI is a binary tree, which divides each
node r = {i1, . . . , im} into r1 =

{

i1, . . . , im/2

}

and r2 =
{

im/2+1, . . . , im
}

on the next level. In
the H×-tree only nodes of the type r × r are subdivided. The other nodes r × s, with r ∩ s = ∅,
correspond to blocks M12 or M21, which have at most rank k. �

In the format of hierarchical matrices, blocks of size lower than nmin are stored in the dense
matrix format. The hierarchical structure is not efficient for small matrices, since the overhead
costs are too large. We will do the same for Hℓ-matrices. We change in Definition 1.1 condition
(1) to:

(1’) ℓ = 0: n0 ≤ nmin and M ∈ H0(k) if M ∈ R
n0×n0 .

So the size of a matrix M ∈ Hℓ is increased to n = 2ℓn0. Lemma 1.2 holds for matrices fulfilling
the new definition, too.

Each tridiagonal matrix T ∈ R
2ℓ×2ℓ is an Hℓ-matrix. Due to that inclusion we should not

expect to find faster eigenvalue algorithms for Hℓ-matrices than for tridiagonal matrices. The
best known eigenvalue algorithms for symmetric tridiagonal matrices have quadratic complexity.

The hierarchically semiseparable matrices (HSS-matrices) form an important subset of the
Hℓ-matrices. There are a lot of publications [CGL05, CGP06, XCGL09, CG01, DC06] from
Chandrasekaran et al. giving all similar definitions based on hierarchically semiseparable rep-
resentation. We need a slight different definition more emphasising the relationship to Hℓ-
matrices, but we will use the same index-system like is usual for HSS-matrices: if |r − s| = 1,
then M |(r−1)2ℓ−jnmin+1:r2ℓ−jnmin,(s−1)2ℓ−jnmin+1:s2ℓ−jnmin

= Mj;r,s = Aj;r,sB
T
j;r,s is an off-diagonal

block.

Definition 1.3. (HSS-matrices)
Let M ∈ Hℓ(k). We will call M a hierarchically semiseparable matrix of (HSS) rank k, or short
M ∈ HSS(k), if M fulfils the following conditions:
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• ∀i ∈ {1, . . . , 2ℓ} : ∃Uℓ;i ∈ R
nmin×k and ∃Uj;r ∈ R

2ℓ−jnmin×k, j = 1, . . . , ℓ − 1, r = 1, . . . , 2j

with range (Uj;r) ⊂ span

([

Uj+1;2r−1

0

])

⊕span

([

0
Uj+1;2r

])

and range (Aj;r,s) ⊂ span (Uj;r);

• ∀i ∈ {1, . . . , 2ℓ} : ∃Vℓ;i ∈ R
nmin×k and ∃Vj;s ∈ R

2ℓ−jnmin×k, j = 1, . . . , ℓ − 1, s = 1, . . . , 2j

with range (Vj;s) ⊂ span

([

Vj+1;2s−1

0

])

⊕span

([

0
UV+1;2s

])

and range (Bj;r,s) ⊂ span (Vj;s).

Example 1.4. Figure 1 shows an example of a symmetric H3-matrix. For this matrix the condi-
tions of Definition 1.3 mean, that there are matrices U1, . . . , U8 ∈ R

nmin×k, with

range (B2) ⊂ span (U1)

range (A2) ⊂ span (U2)

range (B4) ⊂ span

([

U1

0

])

⊕ span

([

0
U2

])

range (B6) ⊂ span (U3)

range (A6) ⊂ span (U4)

range (A4) ⊂ span

([

U3

0

])

⊕ span

([

0
U4

])

range (B8) ⊂ span

















U1

0
0
0

















⊕ span

















0
U2

0
0

















⊕ span

















0
0
U3

0

















⊕ span

















0
0
0
U4

















...

One can show, that each Hℓ(k)-matrix is an HSS(kℓ)-matrix, too. In the next chapter we will
explain detailed how to compute all or some eigenvalues of symmetric Hℓ-matrices..

2. Slicing the Spectrum by LDLT Factorisation

In this section the details of the slicing algorithm, mentioned in the first section, will be ex-
plained. Essentially we use a bisection method halving the intervals [ai, bi], which contain the
searched eigenvalue λi, in each step. This process is stopped if the interval is small enough.

We will employ Algorithm 1. If the function ν is computed exactly, the algorithm will choose
the part of the interval containing λi. The algorithm needs O(log2((b − a)/ǫev)) iterations to

reduce the interval to size ǫev. We know λi ∈ [ai, bi], bi − ai < ǫev and λ̂i = (bi − ai)/2. And so it
holds, that

∣

∣

∣λi − λ̂i

∣

∣

∣ <
1

2
ǫev.(2)

The evaluation of the function ν(·) is the topic of the next subsection.

2.1. The Function ν(M − µI). We recall some basic linear algebra facts.

Definition 2.1. Two square matrices M and N are congruent if there exists an invertible matrix
P such that

PTMP = N.(3)

Further we will use Sylvester’s inertia law:

Theorem 2.2. (Sylvester’s inertia law, e.g., [Par80, p. 11])
Each square matrix M is congruent to a matrix diag (−Iν , 0ξ, In−ν−ξ), where ν is the number of
negative eigenvalues, ξ the number of zero eigenvalues, and n − ν − ξ is the number of positive
eigenvalues. The triple (ν, ξ, n− ν − ξ) is called M’s inertia.
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Algorithm 1: Slicing the spectrum [Par80, p. 50ff]

Input: M ∈ H(TI×I), with |I| = n and a, b ∈ R, so that Λ(M) ⊂ [a, b];

Output:
{

λ̂1, . . . , λ̂n

}

≈ Λ(M);

for i = 1, . . . , n do1

bi := b; ai := a;2

while bi − ai ≥ ǫev do3

µ := (bi − ai)/2;4

[L,D] := LDLT factorisation(M − µI);5

ν(M − µI) := |{j|Djj < 0}|;6

if ν(M − µI) ≥ i then bi := µ else ai := µ ;7

end8

λ̂i := (bi − ai)/2;9

end10

If M−µI has an LDLT factorisation M−µI = LDLT with L invertible, then D and M−µI are
congruent. Since D is diagonal we can count easily the number of positive or negative eigenvalues.
Sylvester’s inertia law tells us, that the number of negative diagonal entries in D is equal to the
number of negative eigenvalues of M − µI, ν(D) = ν(µ).

If a diagonal entry of D is zero, we have shifted with an eigenvalue. In this case one of the
leading principal submatrices of M − µI is rank deficient and the LDLT factorisation may fail,
which in this case is a welcome event as an eigenvalue has been found.

We investigate the LDLT factorisation of Hℓ-matrices in the next subsection.

2.2. LDLT Factorisation of Hℓ-Matrices.

Definition 2.3. (LDLT factorisation [GV96])
If M ∈ R

n×n is a symmetric matrix and all the leading principal submatrices of M are invertible,
then there exists a unit lower triangular matrix L and a diagonal matrix D = diag (d1, . . . , dn) such
that M = LDLT . We will call this factorisation LDLT factorisation or LDLT decomposition.

There is an algorithm to compute LDLT factorisations for hierarchical matrices, first described
in [Lin02, p. 70]. The H-LDLT factorisation is block recursive, see Algorithm 2. For a hierarchical
matrix M ∈ H(T, k) this factorisation has a complexity of

O(nk2 (log n)
2
)(4)

in fixed rank H-arithmetic. We note that the LDLT factorisation for H-matrices is much cheaper
than for dense matrices, where O(n3) flops are needed. In standard arithmetic, the stability of
the factorisation is improved by e.g. Bunch-Kaufmann pivoting [BK77]. Since pivoting would
destroy the hierarchical structure, pivoting can not be used here. Many practical problems lead to
diagonal dominant matrices and at least for them pivoting is not necessary for good results. Here
we need only an exact evaluation of ν(µ), and for this we not necessarily require a high accurate
LDLT factorisation.

We will use Algorithm 2 for Hℓ-matrices, too. In this case the solution of the equation

L21D1L
T
11 = M21

is simplified, since M21 = ABT . If D1 has a zero entry the solution will fail. But in this case
we know, that zero is an eigenvalue of M . After the computation of L21 an update is performed.
This update increases in general the rank of the submatrix M22. In fixed rank H-arithmetic the
update is followed by a truncation step, which reduces the rank again to k. For Hℓ-matrices we
will omit the truncation, since the growth of the block-wise ranks is bounded. The next lemma
gives this bound, which will be used for the complexity analysis of Algorithm 2.
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Algorithm 2: H-LDLT -factorisation M = LDLT

H-LDLT -factorisation(M);1

Input: M ∈ H(T )
Output: L ∈ H(T ), D = diag (d1, . . . , dn) with LDLT = M and L lower triangular

if M =
[

M11 M12

M21 M22

]

/∈ L(T ) then2

[L11, D1] := H-LDLT -factorisation(M11);3

Compute the solution L21 of L21D1L
T
11 = M21;4

[L22, D2] := H-LDLT -factorisation(M22 − L21D1L
T
21);5

else6

Compute the dense LDLT -factorisation LDLT = M , since inadmissible diagonal blocks7

are stored as dense matrices.
end8

return L,D;9

Lemma 2.4. Let M ∈ Hℓ(k). If the assumptions of Definition 2.3 are fulfilled, then the triangular
matrix L of the LDLT factorisation is an Hℓ(kℓ)-matrix. Further the complexity of the computation
of L and D by Algorithm 2 is

O(nk2 (log n)
4
).(5)

Proof. We will first proof the statement on the block-wise ranks and will then use this for the
complexity estimation. We number the blocks of M like in Figure 1. Each block has a number
out of the index set S =

{

1, . . . , 2l+1 − 1
}

. First we will define some functions on S. The function
m(i) is defined by

m(i) =

{

0, if i is odd,

1 +m(i/2), if i is even.

The size of block i is n02
max{m(i)−1,0} × n02

max{m(i)−1,0}. The next function t(i) gives us the
indices of blocks on the left hand side of block i:

t(i) =

{

∅, if i− 2m(i) = 0,

t(i− 2m(i)) ∪
{

i− 2m(i)
}

, else.

Finally we will need

u(i) = |t(i)| .

Algorithm 2 processes the blocks in the order of their numbering. Most operations of Algo-
rithm 2 do not change the block-wise ranks, only the update in line 5 increases the rank of some
blocks. We are interested in the final rank of block i. Obviously only updates from blocks j ∈ t(i)
act on i. We assume that t(i) =

{

j1, j2, . . . , ju(i)
}

. Let the smallest index in t(i) be j1. We com-

pute the solution of L11D1L
T
21 = MT

21 for block j1. The matrix L21 is low rank and L21 = Aj1BLj1
,

with BLj1
being the solution of L11D1BLj1

= Bj1 . So the update L21D1L
T
21 has the form Aj1X

T

and is of rank k. After the update, block j2 has the form [A′
j1
, Aj2 ][X

′, Bj2 ]
T , where A′

j(1) and X ′

are the suitable parts of Aj(1) and X. This means that the next update is of rank 2k and has the

form [A′
j1
, Aj2 ]Y

T . This second update increases the rank of block j3 only by k since the block
has the form [A′′

j1
, Aj3 ]Z before the update. Finally block i has rank k(u(i) + 1).

The maximum

max
i∈S

u(i) = ℓ

is attained only for odd i. The rank of the inadmissible diagonal blocks is not of interest, since
they are stored in dense matrix format. So the maximum rank of an admissible block is bounded
by kℓ.
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The H-LDLT factorisation does not change the hierarchical structure. So we have L ∈ Hℓ(kℓ).
With Lemma 1.2, Equation (4) and ℓ = O(log n) we conclude, that the complexity of Algorithm 2
is in

O(nk2 (log n)
4
).

�

The main difference between the LDLT factorisation for Hℓ-matrices and H-matrices is that
the factorisation for Hℓ-matrices can be done without truncation and so exact up to round off
respecting IEEE-double precision arithmetic.

If kℓ is too large, we can use truncation like in theH-LDLT factorisation of general symmetricH-
matrices. The computed LDLT factorisation is then only approximative, especially the computed
D̂ may differ from the exact D. So possibly for the computed ν̂(M−µI) 6= ν(M−µI). In this case
we will continue the search for λi in an interval [ai, bi], which does not contain λi. For example,

let λi > bi. If there is no other wrong decision, the algorithm will give us λ̂i = bi− ǫ̂, with ǫ̂ < ǫev.

The difference between λi and λ̂i is then bounded by the sum of ǫev and λi − bi.

Remark 2.5. If the matrix M ∈ Hℓ(k) fulfils the following conditions (here exemplary for H3(k)
with the same notation as in Figure 1):

range (A4) ⊂ span

([

F5

0

]

,

[

0
A6

])

,

range (A8) ⊂ span

















F9

0
0
0









,









0
A10

0
0









,









0
0

A12

















and

range (A12) ⊂ span

([

F13

0

]

,

[

0
A14

])

,

or an analogue generalisation, then L ∈ Hℓ(k). E.g., tridiagonal matrices, generator repre-
sentable semi-separable matrices, diagonal plus semi-separable matrices [VVM08] and hierarchi-
cally semiseparable matrices are of this structure.

2.3. Start-interval [a, b]. The interval [a, b] must contain the whole spectrum. This is the case
for a := −‖M‖2 and b := ‖M‖2. The spectral norm ‖M‖2 can be approximated using the power
iteration [Gra01]. We should test ν(a) = 0 and ν(b) = n. If [a, b] does not contain all eigenvalues,
we increase it until both test conditions are satisfied. The two tests cost only two additional
H-LDLT factorisations of linear-polylogarithmic complexity.

2.4. Complexity. For each eigenvalue λi we have to do several H-LDLT factorisations to reduce
the length of the interval [ai, bi]. Each factorisation halves the interval since we use a bisection
method. So we need O(log(‖M‖2/ǫev)) H-LDLT factorisations per eigenvalue. One H-LDLT

has a complexity of O(nk2(log n)4). Multiplying both complexities gives us the complexity per
eigenvalue O(nk2(log n)4 log(‖M‖2/ǫev)) and the total complexity for all n eigenvalues:

O(n2k2(log n)4 log(ǫev‖M‖2)).(6)

3. Numerical Results

We have implemented Algorithm 1 with the LDLT factorisation forH-matrices, see Algorithm 2,
using the Hlib [HLi09]. The Hlib can handle Hℓ-matrices, too, since Hℓ-matrices are a subset
of H-matrices. We use the fixed rank arithmetic of the Hlib, with the known maximal block-
wise rank kℓ for Hℓ(k)-matrices. Further we choose a minimum block-size of nmin = 32. The
computations were done on an Intel®Core�i7 CPU 920 with 12 GB RAM.

To test the algorithm we use five different example series. The matrices have block-wise rank
1 or 2 in the admissible submatrices. The size of the matrices is varied from 64 to 1, 048, 576.
The first two series are sets of randomly generated Hℓ-matrices of block-wise rank 1 resp. 2.
The next series are slightly different, since we use randomly generated HSS-matrices, fulfilling the
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for a 1024× 1024 matrix (H5 r1), ǫev = 10−8.

additional conditions from Definition 1.3. The last series is a set of tridiagonal matrices with 2 on
the diagonal and −1 on the subdiagonals, represent the discrete 1D Laplace operator. Except the
tridiagonal matrices we normalize the matrices to ‖M‖2 = 1, since ‖M‖2 is part of the complexity
estimate.

For the matrices up to dimension 32, 768 we compute their corresponding dense matrix and use
the LAPACK-function dsyev [ABB+99] to compute the eigenvalues. The difference between the
results of dsyev and the results from our new LDLT slicing algorithm are the errors in the tables
and figures. The time dsyev needs is given in the table, too. Note: there are faster algorithms for
tridiagonal matrices but not for Hℓ- and HSS-matrices in LAPACK.

Figure 2 shows the absolute errors of the computed eigenvalues of the matrix H5 r1 ∈ H5(1) of
size 1024. All the errors are below the expected bound.

Table 1 and Table 2 show the computation times and the errors for the five example series, if
we compute only the 10 eigenvalues λn/4+5, . . . , λn/4+14. (Similar results will be obtained when
choosing other subsets of the spectrum.) The growth in the expected costs

Ni

Ni−1
=

ni(log ni)
4

ni−1(log ni−1)4

is given in the last column, k and ‖M‖2 are constant here. The computation times growth slower
than expected until the fast storage is filled. This confirms the estimated computational complexity
from Equation (5) and shows, that there is probably a tighter bound. The absolute resp. relative
errors in the tables are computed by:

eabs =
∥

∥

∥λi − λ̂i

∥

∥

∥

2
resp. erel =

∥

∥

∥

∥

∥

λi − λ̂i

λi

∥

∥

∥

∥

∥

2

.

Tables 3 and 4 show the same as Tables 1 / 2 but for computing all eigenvalues, with Ni =
n2
i (log ni)

4. Table 3 shows that the computation of all eigenvalues with the LDLT slicing algo-
rithm is more expensive then using LAPACK. But since the transformation into a dense matrix
requires n2 storage, we are able to solve much larger problems by using the LDLT slicing algorithm
.

Figure 3 and 4 compare the computation times with O(n (log n)
β
), β = 0, 1, 2, 3, 4. There we

see that the β in the examples is rather 2 than 4.

1More than 12 GB RAM were required for the matrix H15 r2 and swapping parts of the RAM to disk slows
down the program significantly.
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Name n tLAPACK in s abs. Error rel. Error t in s ti/ti−1 Ni/Ni−1

H1 r1 64 <0.01 5.36E-009 8.53E-009 0.01
H2 r1 128 <0.01 5.91E-009 1.06E-008 0.03 3.00 3.71
H3 r1 256 0.14 6.52E-009 1.22E-008 0.08 2.67 3.41
H4 r1 512 0.10 5.32E-009 1.04E-008 0.18 2.25 3.20
H5 r1 1024 0.73 5.74E-009 1.14E-008 0.45 2.50 3.05
H6 r1 2048 5.87 5.79E-009 1.15E-008 1.08 2.40 2.93
H7 r1 4096 45.65 4.49E-009 8.95E-009 2.32 2.15 2.83
H8 r1 8192 371.48 3.92E-009 7.83E-009 5.54 2.39 2.75
H9 r1 16384 3180.03 5.72E-009 1.14E-008 12.40 2.24 2.69
H10 r1 32768 23849.26 4.88E-009 9.77E-009 23.22 1.87 2.64
H11 r1 65536 — — — 42.36 1.82 2.59
H12 r1 131072 — — — 96.52 2.28 2.55
H13 r1 262144 — — — 210.85 2.18 2.51
H14 r1 524288 — — — 427.05 2.03 2.48
H15 r1 1048576 — — — 1035.25 2.42 2.46

H1 r2 64 <0.01 5.35E-009 8.79E-009 0.01
H2 r2 128 <0.01 4.58E-009 8.41E-009 0.04 4.00 3.71
H3 r2 256 0.02 5.35E-009 1.04E-008 0.11 2.75 3.41
H4 r2 512 0.10 5.24E-009 1.03E-008 0.30 2.73 3.20
H5 r2 1024 0.81 5.06E-009 1.00E-008 0.85 2.83 3.05
H6 r2 2048 6.15 6.94E-009 1.38E-008 2.42 2.85 2.93
H7 r2 4096 55.22 4.96E-009 9.90E-009 5.49 2.27 2.83
H8 r2 8192 432.61 3.77E-009 7.50E-009 13.43 2.45 2.75
H9 r2 16384 3232.65 4.72E-009 9.42E-009 30.07 2.24 2.69
H10 r2 32768 24043.06 5.08E-009 1.02E-008 57.71 1.92 2.64
H11 r2 65536 — — — 112.63 1.95 2.59
H12 r2 131072 — — — 270.13 2.40 2.55
H13 r2 262144 — — — 558.07 2.07 2.51
H14 r2 524288 — — — 1660.12 2.97 2.48
H15 r2 1048576 — — — 46664.91 28.111 2.46

tri1 64 <0.01 5.26E-009 4.08E-009 <0.01
tri2 128 <0.01 2.40E-009 2.10E-009 <0.01 3.71
tri3 256 0.01 3.58E-009 5.19E-009 <0.01 3.41
tri4 512 0.05 1.34E-011 1.94E-011 0.02 3.20
tri5 1024 0.36 5.07E-011 7.35E-011 0.03 1.50 3.05
tri6 2048 2.94 1.23E-011 1.78E-011 0.07 2.33 2.93
tri7 4096 23.48 1.89E-011 2.74E-011 0.12 1.71 2.83
tri8 8192 187.89 5.83E-011 8.45E-011 0.26 2.17 2.75
tri9 16384 1572.58 4.06E-011 5.88E-011 0.55 2.12 2.69
tri10 32768 12903.42 5.21E-011 7.55E-011 1.22 2.22 2.64
tri11 65536 — — — 2.45 2.01 2.59
tri12 131072 — — — 5.41 2.21 2.55
tri13 262144 — — — 12.89 2.38 2.51
tri14 524288 — — — 24.06 1.87 2.48
tri15 1048576 — — — 46.51 1.93 2.46

Table 1. Comparison of errors and computation times for the Hℓ and the tridi-
agonal example series computing only 10 eigenvalues (n/4+5, . . . , n/4+14); italic
entries are larger than expected.
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Name n tLAPACK in s abs. Error rel. Error t in s ti/ti−1 Ni/Ni−1

HSS1 r1 64 <0.01 3.67E-009 5.89E-009 <0.01
HSS2 r1 128 <0.01 3.99E-009 5.95E-009 0.03 3.71
HSS3 r1 256 0.02 4.54E-009 7.65E-009 0.07 2.33 3.41
HSS4 r1 512 0.10 5.41E-009 1.12E-008 0.16 2.29 3.20
HSS5 r1 1024 0.76 6.20E-009 1.34E-008 0.34 2.13 3.05
HSS6 r1 2048 5.82 4.19E-009 7.65E-009 0.86 2.53 2.93
HSS7 r1 4096 45.78 4.16E-009 7.99E-009 2.01 2.34 2.83
HSS8 r1 8192 368.82 4.68E-009 8.50E-009 4.10 2.04 2.75
HSS9 r1 16384 3109.88 5.23E-009 9.88E-009 9.21 2.25 2.69
HSS10 r1 32768 23641.64 4.89E-009 9.61E-009 19.19 2.08 2.64
HSS11 r1 65536 — — — 36.81 1.92 2.59
HSS12 r1 131072 — — — 79.21 2.15 2.55
HSS13 r1 262144 — — — 185.65 2.34 2.51
HSS14 r1 524288 — — — 326.87 1.76 2.48
HSS15 r1 1048576 — — — 680.48 2.08 2.46

HSS1 r2 64 <0.01 5.48E-009 8.48E-009 0.01
HSS2 r2 128 <0.01 6.07E-009 1.18E-008 0.04 4.00 3.71
HSS3 r2 256 0.02 4.59E-009 7.98E-009 0.08 2.00 3.41
HSS4 r2 512 0.10 6.32E-009 1.40E-008 0.21 2.63 3.20
HSS5 r2 1024 0.74 5.42E-009 1.04E-008 0.48 2.29 3.05
HSS6 r2 2048 5.85 4.32E-009 7.28E-009 1.17 2.44 2.93
HSS7 r2 4096 45.78 2.58E-009 4.28E-009 2.39 2.04 2.83
HSS8 r2 8192 354.75 3.64E-009 8.84E-009 5.19 2.17 2.75
HSS9 r2 16384 3037.22 6.18E-009 1.12E-008 11.15 2.15 2.69
HSS10 r2 32768 24160.20 4.55E-009 8.63E-009 24.97 2.24 2.64
HSS11 r2 65536 — — — 46.23 1.85 2.59
HSS12 r2 131072 — — — 94.67 2.05 2.55
HSS13 r2 262144 — — — 194.95 2.06 2.51
HSS14 r2 524288 — — — 317.33 1.63 2.48
HSS15 r2 1048576 — — — 622.37 1.96 2.46

Table 2. Comparison of errors and computation times for the HSS example
series computing only 10 eigenvalues (n/4 + 5, . . . , n/4 + 14).

4. Possible Extensions

In the last two sections we have described an algorithm to compute the eigenvalues of Hℓ-
matrices. In this section we will discuss, what happens if we apply this algorithm to other, related
hierarchically structured matrices. Further we will describe, how one can improve the LDLT slicing
algorithm for Hℓ-matrices.

4.1. LDLT slicing algorithm for HSS-matrices. In [XCGL09], Xia and Chandrasekaran et
al. present an algorithm to compute the Cholesky factorisation of a symmetric, positive definite
hierarchical semi-separable matrix. Their ideas can be used to construct a similar LDLT factori-
sation for HSS-matrices. Such an algorithm would use the structure of HSS-matrices much better,
so that the complexity of the LDLT factorisation would be reduced to O(nk2).

In Algorithm 3 we take [XCGL09, Algorithm 2] and do some small changes, so that the al-
gorithm now computes the LDLT factorisation. The comments are the corresponding lines from

1More than 12 GB RAM were required for the matrix H15 r2 and swapping parts of the RAM to disk slows
down the program significantly.
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Name n tLAPACK in s abs. Error rel. Error t in s ti/ti−1 Ni/Ni−1

H1 r1 64 0.00 1.33E-008 2.29E-008 0.07
H2 r1 128 0.00 1.76E-008 3.18E-008 0.38 5.43 7.41
H3 r1 256 0.14 2.37E-008 4.60E-008 1.78 4.68 6.82
H4 r1 512 0.10 3.69E-008 8.83E-008 8.88 4.99 6.41
H5 r1 1024 0.73 5.22E-008 1.09E-007 42.68 4.81 6.10
H6 r1 2048 5.87 7.18E-008 2.73E-007 195.83 4.59 5.86
H7 r1 4096 45.65 9.86E-008 4.11E-007 889.63 4.54 5.67
H8 r1 8192 371.48 1.87E-007 6.13E-007 3436.77 3.86 5.51
H9 r1 16384 3180.03 2.48E-007 5.06E-007 14162.68 4.12 5.38
H10 r1 32768 23849.26 3.63E-007 4.20E-006 44102.81 3.11 5.27
H11 r1 65536 — — — 123026.60 2.79 5.18

H1 r2 64 0.01 1.18E-008 1.87E-008 0.07
H2 r2 128 0.01 1.71E-008 3.24E-008 0.46 6.57 7.41
H3 r2 256 0.02 2.43E-008 5.00E-008 2.68 5.83 6.82
H4 r2 512 0.10 3.50E-008 7.58E-008 15.29 5.71 6.41
H5 r2 1024 0.81 5.35E-008 1.12E-007 83.06 5.43 6.10
H6 r2 2048 6.15 6.86E-008 2.29E-007 440.86 5.31 5.86
H7 r2 4096 55.22 1.16E-007 3.66E-007 2072.20 4.70 5.67
H8 r2 8192 432.61 1.82E-007 8.67E-007 8542.46 4.12 5.51
H9 r2 16384 3232.65 2.41E-007 2.28E-006 36054.62 4.22 5.38
H10 r2 32768 24043.06 3.77E-007 2.46E-003 119185.40 3.31 5.27
H11 r2 65536 — — — 370772.30 3.11 5.18

tri1 64 0.00 1.11E-008 1.40E-007 0.04
tri2 128 0.00 1.16E-008 2.51E-007 0.11 2.75 7.41
tri3 256 0.01 1.21E-008 1.02E-006 0.18 1.64 6.82
tri4 512 0.05 4.03E-009 7.89E-008 0.36 2.00 6.41
tri5 1024 0.36 1.83E-008 1.92E-006 0.78 2.17 6.10
tri6 2048 2.94 2.29E-014 2.51E-013 3.18 4.08 5.86
tri7 4096 23.48 3.23E-014 3.57E-013 12.68 3.99 5.67
tri8 8192 187.89 4.58E-014 5.05E-013 53.34 4.21 5.51
tri9 16384 1572.58 6.41E-013 7.45E-013 232.55 4.36 5.38
tri10 32768 12903.42 9.76E-014 1.01E-012 1036.22 4.46 5.27
tri11 65536 — — — 4272.12 4.12 5.18
tri12 131072 — — — 17762.08 4.16 5.10
tri13 262144 — — — 73983.06 4.17 5.03

Table 3. Comparison of errors and computation times for the Hℓ and the tridi-
agonal example series computing all eigenvalues.

the originally algorithm. Only three small changes are needed. We are currently working on an
implementation in our numerical code. Numerical results will be reported in the future.

4.2. LDLT slicing algorithm for H-Matrices. Does Algorithm 1 works for H-matrices, too?
The answer is yes, if we have O(n2) storage and O(n3) time. The answer is no, if linear-polyloga-
rithmic complexity per eigenvalue has to be reached.

We have to use the H-LDLT factorisation for H-matrices. Two additional problems appear:
First, in general there is no exact H-LDLT factorisation like in the Hℓ case. So truncation is
required to keep the block-wise ranks at a reasonable size. But then the results are much less
accurate and so we encounter more wrong decisions, resulting in wrong ν(µ) leading to intervals
not containing the searched eigenvalue. Second, if we use fixed accuracy H-arithmetic we get
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Name n tLAPACK in s abs. Error rel. Error t in s ti/ti−1 Ni/Ni−1

HSS1 r1 64 0.01 1.39E-008 2.31E-008 0.09
HSS2 r1 128 0.00 1.74E-008 2.68E-008 0.38 4.22 7.41
HSS3 r1 256 0.02 2.51E-008 4.12E-008 1.63 4.29 6.82
HSS4 r1 512 0.10 3.74E-008 7.13E-008 7.63 4.68 6.41
HSS5 r1 1024 0.76 5.00E-008 1.03E-007 35.55 4.66 6.10
HSS6 r1 2048 5.82 9.24E-008 1.55E-007 164.99 4.64 5.86
HSS7 r1 4096 45.78 9.64E-008 1.74E-007 749.00 4.54 5.67
HSS8 r1 8192 368.82 1.66E-007 2.80E-007 3097.23 4.14 5.51
HSS9 r1 16384 3109.88 2.66E-007 4.75E-007 12930.91 4.17 5.38
HSS10 r1 32768 23641.63 3.85E-007 7.16E-007 52557.52 4.06 5.27
HSS11 r1 65536 — — — 209961.80 3.99 5.18

HSS1 r2 64 0.00 1.32E-008 2.09E-008 0.08
HSS2 r2 128 0.00 1.89E-008 3.60E-008 0.42 5.25 7.41
HSS3 r2 256 0.02 2.66E-008 4.73E-008 2.11 5.02 6.82
HSS4 r2 512 0.10 3.51E-008 8.51E-008 9.73 4.61 6.41
HSS5 r2 1024 0.74 5.26E-008 1.01E-007 47.53 4.88 6.10
HSS6 r2 2048 5.85 9.57E-008 1.60E-007 210.06 4.42 5.86
HSS7 r2 4096 45.78 1.35E-007 2.19E-007 941.32 4.48 5.67
HSS8 r2 8192 354.75 1.44E-007 3.55E-007 3814.07 4.05 5.51
HSS9 r2 16384 3037.22 2.80E-007 5.20E-007 15706.36 4.12 5.38
HSS10 r2 32768 24160.20 3.87E-007 7.39E-007 61013.11 3.88 5.27
HSS11 r2 65536 — — — 223563.10 3.66 5.18

Table 4. Comparison of errors and computation times for the HSS example
series computing all eigenvalues.
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Figure 3. Computation times for 10 eigenvalues of Hℓ r1 matrices (ℓ = 1, . . . , 15).
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Figure 4. Computation times for all eigenvalues of HSSℓ r1 matrices (ℓ = 1, . . . , 10).

admissible blocks of large rank for some shifts. This will increase the computational as well as the
storage complexity.

We have done some example computations to show the rank growth for different shifts. We
use FEM discretisations of the 2D-Laplacian as example matrices, called FEMX, where X is the
number of discretisation points in each direction. This matrices are generated using an example
of the Hlib [HLi09]. Table 5 shows the maximal block-wise rank of the factors after the LDLT

factorisation of FEMX matrices for different shifts. If the shifted matrix is positive definite, the
ranks will stay small. For shifts near, e.g., the eigenvalue 4 we get large ranks for large matrices.
We observe, that the maximal block-wise rank is doubled from one column to the next. This
contradicts the first statement from Lemma 2.4 since the rank grows faster than ℓk for large
matrices. It follows that the complexity is not in

O
(

nk2 (log n)
4
)

,

and so for large matrices the computation time grows faster than the expected costs Ni

Ni = |EV |CspCidni(log ni)
4,

like we see in Table 6. Still the computation time is much better than using LAPACK and we can
solve eigenvalue problems not solvable otherwise.

4.3. Parallelisation. If we search more than one eigenvalue, we can use some of the computed
ν(µ) again. For example, since ai and bi are the same for all i, at the beginning the first µi will
be the same, too. After the first LDLT factorisation and the computation of ν(M − µI) = ν, we
have two intervals. The interval [a, µ] contains ν eigenvalues and the interval [µ, b] contains n− ν
eigenvalues. The computations on the two intervals are independent. We can use two cores, one
for each interval and continue the computations independently. If we have more cores, we can
increase the number of working cores on the next level to four and so on.

Since there is nearly no communication this will lead to a very good parallelisation. All we
need is enough storage for the two Hℓ-matrices, M and L, for each core. Since only linear-poly-
logarithmic storage is required, that should be often the case.
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Algorithm 3: Generalised LDLT factorisation based on a generalised Cholesky factorisation
for HSS-matrices, see Algorithm 2 [XCGL09]

Input: HSS-matrix H with n nodes in the HSS tree, H = HT

Output: HSS-matrix containing L and D, with H = LDLT

Allocate space for a stack.1

for each node i = 1, . . . , n− 1 do2

if i is a non-leaf node then3

Pop four matrices Ẽc2 , Ũc2 , Ẽc1 , Ũc1 from the stack, where c1, c2 are the children of i.4

Obtain Ei and Ui by5

Ei =

[

Ẽc1 Ũc1Bc1Ũ
T
c2

Ũc2Bc1Ũ
T
c1 Ẽc2

]

, Ui =

[

Ũc1Rc1

Ũc2Rc2

]

.

end6

Compress Ui by the QL factorisation Ûi = QiUi =

[

0

Ũi

]

and push Ũi onto the stack
7

Update Ei with Ẽi = QT
i EiQi. Factorise Ẽi with8

Êi =

[

Li 0

Ei;2,1L
−T
i D−1

i I

] [

Di 0

0 Ẽi

] [

LT
i D−1

i L−1
i Ei;1,2

0 I

]

,

and obtain the Schur complement Ẽi as

Ẽi = Ei;2,2 − Ei;2,1L
−T
i D−1

i L−1
i Ei;1,2.

Push Ẽi onto the stack.
If Di is singular, stop the algorithm and return error message 0 ∈ Λ(H).

/* Update Ei with Ẽi = QT
i EiQi. Factorise Ẽi with

Êi =

[

Li 0

Ei;2,1L
−T
i I

] [

LT
i L−1

i Ei;1,2

0 Ẽi

]

,

and obtain the Schur complement Ẽi as

Ẽi = Ei;2,2 − Ei;2,1L
−T
i L−1

i Ei;1,2.

Push Ẽi onto the stack. */

If Di = 0, then stop and note that 0 is an eigenvalue of H.9

end10

For root n, compute the Cholesky factorisation En = LnDnL
T
n11

/* For root n, compute the Cholesky factorisation En = LnL
T
n */

Shift FEM8 FEM16 FEM32 FEM64 FEM128 FEM256 FEM512
0 8 10 11 11 11 11 11
2 8 11 13 21 37 69 101
4.1 8 11 16 32 61 126 173
4.01 8 11 16 32 64 127 180
4.001 8 11 16 32 64 128 190
4.0001 8 11 16 32 64 128 183

ℓ 1 3 5 7 9 11 13
n 64 256 1024 4096 16384 65536 262144

Table 5. Maximal block-wise rank after LDLT factorisation for different shifts
and different FEM matrices (ǫ = 10−5, block-wise rank 8 before LDLT factorisa-
tion).
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Name n tLAPACK in s abs. Error rel. Error t in s ti/ti−1 Ni/Ni−1

FEM8 64 <0.01 3.26E-005 9.54E-006 0.01
FEM16 256 0.02 5.72E-005 1.98E-005 0.12 12.00 189.63
FEM32 1024 0.64 5.84E-005 2.19E-005 1.29 10.75 42.32
FEM64 4096 47.88 3.65E-005 1.41E-005 10.06 7.80 11.61
FEM128 16384 4404.31 5.21E-005 2.03E-005 69.83 6.94 7.41
FEM256 65536 — — — 810.62 11.61 6.82
FEM512 262144 — — — 5558.06 6.86 8.24

Table 6. Example of finding the 10 eigenvalues n/4+5, . . . , n/4+14 of FEMX,
ǫ = 10−5, ǫev = 10−4; italic entries are larger than expected.

Name Dimension t1 core t2 cores t1/t2 t4 cores t1/t4
H2 r1 128 0.38 0.19 2.00 0.12 3.17
H4 r1 512 8.88 4.49 1.98 2.40 3.70
H6 r1 2048 195.83 100.70 1.94 54.85 3.57
H8 r1 8192 3436.77 1832.07 1.88 986.94 3.48
H10 r1 32768 44102.81 23120.85 1.91 13143.76 3.36

tri2 128 0.11 0.05 2.20 0.05 2.20
tri4 512 0.36 0.20 1.80 0.12 3.00
tri6 2048 3.18 1.62 1.96 0.81 3.93
tri8 8192 53.34 29.09 1.83 16.51 3.23
tri10 32768 1036.22 560.68 1.85 304.16 3.41
tri12 131072 17762.08 9738.99 1.82 5378.70 3.30

HSS2 r2 128 0.42 0.20 2.10 0.13 3.23
HSS4 r2 512 9.73 4.93 1.97 2.65 3.67
HSS6 r2 2048 210.06 105.75 1.99 57.64 3.64
HSS8 r2 8192 3814.07 1947.86 1.96 1053.48 3.62
HSS10 r2 32768 61013.11 32318.87 1.89 17542.21 3.48

Table 7. Parallelisation speedup for different matrices.

We have used OpenMP [Ope10] to parallelise the program code used for the numerical examples.
This leads to a simple parallelisation, that is probably improvable. Table 7 shows the timing
results again on Intel®Core�i7 CPU 920, but now we use all four cores. The speedup for the use
of four cores instead of one is about 3.3. This is a good value compared with the parallelisation
of other algorithms, e.g. the parallelisation of the LAPACK function dlahqr (QR algorithm for
unsymmetric eigenvalue problems) has a speedup of 2.5 [HV96].

4.4. Eigenvectors. Often, the eigenvectors of some eigenvalues are of interested, too. The LDLT

slicing algorithm does not compute the eigenvectors. The last LDLT factorisation can be used as
a preconditioner for a shifted preconditioned inverse iteration [BMGS06]. In this case the shift is
near the eigenvalue, maximal ǫev away, so the convergence properties should be well. Besides the
eigenvector this will give us an improved approximation to the eigenvalue.

If the eigenvectors are clustered, we can compute the corresponding invariant subspace by a
subspace version of preconditioned inverse iteration.

5. Conclusions

We have discussed the application of the old and nearly forgotten slicing-the-spectrum algorithm
for computing selected eigenvalues of symmetric matrices to the class of Hℓ-matrices. The LDLT

slicing algorithm uses the special structure of symmetric Hℓ-matrices which makes the repeated
computation of LDLT -factorizations (which is the obstacle to its use for general dense matrices)
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a computational feasible task. In particular, the LDLT slicing algorithm enables us to compute
an interior eigenvalue of a symmetric Hℓ-matrix in linear-polylogarithmic complexity. Numerical
results confirm this. For the computation of a single or a few interior eigenvalues the algorithm is
superior to existing ones. It is less efficient for computing all eigenvalues of symmetricHℓ-matrices,
but due to the efficient use of memory, it allows to solve much larger dense eigenproblems within
the considered class of matrices than simply applying the methods available in LAPACK.

We may also use the LDLT slicing algorithm for computing the eigenvalues of general, sym-
metric H-matrices. But then the algorithm is no longer of linear-polylogarithmic complexity.
Nevertheless, again the computation of a few interior eigenvalues is possible for problem sizes that
by far exceed the capabilities of standard Numerical Linear Algebra algorithms for symmetric
matrices.

For special classes within the set ofHℓ-matrices, like hierarchical semi-separable (HSS) matrices,
there might be even more efficient variants if the special structure is exploited in the LDLT -
factorization. For HSS matrices, this is work in progress at this writing.

Finally we have seen that multi-core architectures can be exploited easily and lead to fairly
good speed-up and parallel efficiency.
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