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Abstract

In this paper, we will discuss the problem of optimal model order reduction of
bilinear control systems with respect to the generalization of the well-known H2-
norm for linear systems. We revisit existing first order necessary conditions for
H2-optimality based on the solutions of generalized Lyapunov equations arising in
bilinear system theory and present an iterative algorithm which, upon convergence,
will yield a reduced system fulfilling these conditions. While this approach relies on
the solution of certain generalized Sylvester equations, we will establish a connection
to another method based on generalized rational interpolation. This will lead to
another way of computing the H2-norm of a bilinear system and will extend the
pole-residue optimality conditions for linear systems, also allowing for an adaption
of the successful iterative rational Krylov algorithm (IRKA) to bilinear systems.
By means of several numerical examples, we will then demonstrate that the new
techniques outperform the method of balanced truncation for bilinear systems with
regard to the relative H2-error.
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1 Introduction

The need for efficient numerical treatment of complex dynamical processes often leads
to the problem of model order reduction, i.e. the approximation of large-scale systems
resulting from e.g., partial differential equations, by significantly smaller ones. Since
model reduction of linear systems has been studied for several years now, there exists
a well established theory including error bounds and structure-preserving properties
fulfilled by a reduced-order model. However, although there are still a lot of open
and worthwhile problems, recently more and more attention has been paid to nonlinear
systems which are inevitably more complicated. As a first step into this direction, the
class of bilinear systems has been pointed out to be an interesting interface between fully
nonlinear and linear control systems. More precisely, these special systems are of the
form

Σ :

 ẋ(t) = Ax(t) +
m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = x0,

(1)

with A,Nk ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, u(t) =
[
u1(t) . . . um(t)

]T ∈ Rm,
y(t) ∈ Rp. Due to their structure, which is obviously closely related to the state space
representation of linear systems, many concepts known from linear model order reduc-
tion have been shown to possess bilinear analogues. As was already discussed in [9, 22],
a variety of biological, physical and economical phenomena naturally result in bilinear
models. Here, models for nuclear fission, mechanical brakes or biological species can
be mentioned as typical examples. Interestingly enough, a completely similar structure
is obtained for a certain type of linear stochastic differential equations. Some interest-
ing applications like, e.g., the Fokker-Planck equation, are discussed in [19]. Coming
back to the actual reduction problem, let us recall that we are formally aiming at the
construction of another bilinear system

Σ̂ :


˙̂x(t) = Âx̂(t) +

m∑
k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = x̂0,

(2)

with Â, N̂k ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂. Since Σ̂ should approximate Σ in some sense,
we certainly expect ŷ ≈ y for all admissible inputs u ∈ L2[0,∞[. Moreover, in order to
ensure a significant speed-up in numerical simulations, we demand n̂� n. There are dif-
ferent ways of achieving this goal. Similar to linear system theory, there exist SVD-based
approaches leading to a reasonable generalization of the method of balanced truncation,
see [6, 32]. While these methods have been proven to perform very well, they require the
solution of two generalized Lyapunov equations which cause serious memory problems
already for medium-sized systems. On the other hand, several interpolation-based ideas
have evolved that try to approximate generalized transfer functions by projecting the



original model on appropriate Krylov subspaces, see [4, 5, 8, 12, 15, 25, 26]. Despite the
fact that a memory efficient implementation is possible, the worse approximation qual-
ity compared to the method of balanced truncation make these approaches unfavorable.
Moreover, while the choice of optimal interpolation points with respect to a certain norm
has been solved for the linear case, see [11, 18], this is still an open question for bilinear
system theory. The goal of this paper now is to reveal an appropriate generalized in-
terpolation framework for bilinear systems that allows to propose two different iterative
algorithms that aim at finding a local H2-minimum of the so-called error system. For
the first one, we will have to study certain generalized Sylvester equations. The second
approach extends the iterative rational Krylov algorithm (IRKA/MIRIAm), see [11, 18],
to the bilinear case. We will now proceed as follows. In the subsequent section, we will
give a brief review on optimal H2-model reduction for linear systems. This will include
a recapitulation of first order necessary conditions as well as a discussion on the solution
provided by IRKA. In Section 3, we will focus on the H2-norm for bilinear systems, ini-
tially introduced in [32]. Here, we present an alternative computation of the norm of the
error system which, in Section 4, will enable us to derive first order necessary conditions
that extend the ones known from the linear case. Finally, we will study several numerical
examples which will underline the superiority of the methods proposed in Section 5 and
conclude with a short summary.

2 H2-Optimal Model Reduction for Linear Systems

Since we will later on extend the concepts from linear H2-model reduction, we briefly
review the existing theory for linear continuous time-invariant systems, i.e.

Σ` :

{
ẋ(t) = A`x(t) +B`u(t),

y(t) = C`x(t), x(0) = x0,
(3)

with dimensions as defined in (1) and transfer function H`(s) = C` (sIn −A`)−1B`. So
far, we did not further specify criteria which allow to measure the quality of a reduced-
order system. Here, we want to deal with the problem of finding a reduced-order model
which approximates the original system as accurately as possible with respect to the
H2-norm. Recall that for linear systems, this norm is defined as

||Σ`||H2 :=

(
1

2π

∫ ∞
−∞

tr
(
H`(−iω)HT

` (iω)
)
dω

) 1
2

,

where tr denotes the trace of a matrix. As is well-known, there exist two alternative
computations for this norm. The first relies on the solution of the Lyapunov equations
corresponding to the system, i.e.

A`P` + P`A
T
` +B`B

T
` = 0, AT` Q` +Q`A` + CT` C` = 0.

It can be shown that it holds

||Σ`||2H2
= tr

(
C`P`C

T
`

)
= tr

(
BT
` Q`B`

)
.
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Rather recently, in [3], Antoulas provides a new derivation based on the poles and
residues of the transfer function:

||Σ`||2H2
=

n∑
k=1

tr
(
res
[
H`(−s)HT

` (s), λk
])
,

where λk denotes the eigenvalues of the system matrix A` and

res
[
H`(−s)HT

` (s), λk
]

= lim
s→λk

H`(−s)HT
` (s)(s− λk).

Based on these expressions, it is possible to derive first order necessary conditions for
H2-optimality, i.e. for locally minimizing the norm of the error system ||Σ`− Σ̂`||H2 , see
e.g. [18, 21, 31]. On the one hand, the Lyapunov-based norm computation leads to the
Wilson conditions

P T12Q12 + P22Q22 = 0, QT12B +Q22B̂ = 0, ĈP22 − CP12 = 0, (4)

where

P err =

[
P11 P12

P T12 P22

]
, Qerr =

[
Q11 Q12

QT12 Q22

]
,

are the solutions of the Lyapunov equations of the error system

Aerr =

[
A` 0

0 Â

]
, Berr =

[
B`
B̂

]
, Cerr =

[
C` −Ĉ

]
.

Equivalently, it is possible to characterize the optimality via interpolation-based condi-
tions. Initially derived in [21] and picked up again in [18, 10, 30], the reduced systems’
transfer function has to tangentially interpolate the transfer function of the original
system at the mirror images of its own poles, i.e. for 1 ≤ k ≤ n̂

C̃Tk Ĥ(−λ̂k) = C̃Tk H(−λ̂k), (5)

Ĥ(−λ̂k)B̃k = H(−λ̂k)B̃k, (6)

C̃Tk Ĥ
′(−λ̂k)B̃k = C̃Tk H

′(−λ̂k)B̃k, (7)

where RΛR−1 = Â is the spectral decomposition of Â with Λ = diag (() λ̂1, . . . , λ̂n̂),
B̃ = B̂TR−T , C̃ = ĈR and the subscript k denotes the k-th column of a matrix. For
later purposes, it is important to note that there is another way of writing down the
above conditions. For this, we will make use of the Kronecker product notation and
some simple properties of the vec operator:

tr
(
XTY

)
= vec(X)T vec(Y ), vec(XY Z) = (ZT ⊗X) vec(Y ). (8)
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Note that the right hand side of equation (5) consists of m columns. Considering now
the j-th of those, we obtain:

C̃Tk C`

(
−λ̂kIn −A`

)−1
Bj

=
(
C̃T1 C` . . . C̃Tn̂C`

)−λ̂1In −A` . . .

−λ̂n̂In −A`


−1

(ek ⊗Bj)

= vec(CT` C̃)T (−Λ⊗ In − In̂ ⊗A`)−1
(
eke

T
j ⊗B`

)
vec(Im)

= vec(Ip)
T
(
C̃ ⊗ C`

)
(−Λ⊗ In − In̂ ⊗A`)−1

(
eke

T
j ⊗B`

)
vec(Im).

Hence, condition (5) is the same as requiring

vec(Ip)
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
eke

T
j ⊗ B̂

)
vec(Im)

= vec(Ip)
T
(
C̃ ⊗ C`

)
(−Λ⊗ In − In̂ ⊗A`)−1

(
eke

T
j ⊗B`

)
vec(Im),

(9)

for k = 1, . . . , n̂ and j = 1, . . . ,m. Similarly, we can derive conditions equivalent to
equations (6) and (7):

vec(Ip)
T
(
eje

T
k ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
vec(Im)

= vec(Ip)
T
(
eje

T
k ⊗ C`

)
(−Λ⊗ In − In̂ ⊗A`)−1

(
B̃T ⊗B`

)
vec(Im),

(10)

vec(Ip)
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
eke

T
k ⊗ In̂

)
×(

−Λ⊗ In̂ − In̂ ⊗ Â
)−1 (

B̃T ⊗ B̂
)

vec(Im)

= vec(Ip)
T
(
C̃ ⊗ C`

)
(−Λ⊗ In − In̂ ⊗A`)−1

(
eke

T
k ⊗ In

)
×

(−Λ⊗ In − In̂ ⊗A`)−1
(
B̃T ⊗B`

)
vec(Im).

(11)

Based on these conditions, in [18, 10, 30], the authors have proposed iterative ratio-
nal Krylov algorithms (IRKA/MIRIAm) which, upon convergence, yield a locally H2-
optimal reduced system. Here, the crucial observation is that if we construct the reduced
system by the Petrov-Galerkin projection P = VW T , i.e.

Â = W TA`V, B̂ = W TB`, Ĉ = C`V,

with V =
[
V1 . . . Vn̂

]
and W =

[
W1 . . . Wn̂

]
given as

Vi = (σiIn −A`)−1B`B̃i, (12)

Wi =
(
σiIn −AT`

)−1
CT` C̃i, (13)
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we can guarantee that the transfer function of Σ̂` tangentially interpolates the values
and first derivatives of the original systems’ transfer function at the points σi. Again,
for later purposes it will be important to note that (12) and (13) can be rewritten by
using a vectorized notation:

vec(V ) = (diag (()σ1, . . . , σn̂)⊗ In − In̂ ⊗A`)−1 (B̃T ⊗B`) vec(Im), (14)

vec(W ) =
(
diag (()σ1, . . . , σn̂)⊗ In − In̂ ⊗AT`

)−1
(C̃T ⊗ CT` ) vec(Ip). (15)

3 H2-Norm for Bilinear Systems

In this section, we will review a possible generalization of the H2-norm for bilinear
systems introduced in [32].

Definition 3.1. We define the H2-norm for bilinear systems as

||Σ||2H2
= tr

 ∞∑
k=1

∫ ∞
0

. . .

∫ ∞
0

m∑
`1,...,`k=1

g
(`1,...,`k)
k (g

(`1,...,`k)
k )Tds1 . . . dsk

 ,

with g
(`1,...,`k)
k (s1, . . . , sk) = CeAskN`1e

Ask−1N`2 · · · eAs1b`k .

It has been shown that the above definition makes sense in case of the existence
of certain generalized observability and reachability Gramians associated with bilinear
systems. These, in turn, satisfy the generalized Lyapunov equations

AP + PAT +
m∑
k=1

NkPN
T
k +BBT = 0, (16)

ATQ+QAT +
m∑
k=1

NT
k QNk + CTC = 0, (17)

and can be computed via the limit of an infinite series of linear Lyapunov equations.
Basically, these assumptions are closely related to the notion of stability of Σ. For a more
detailed insight, we refer to [32]. Hence, in the following we will always assume that the
original system Σ is stable, meaning that the eigenvalues of the system matrix A lie in
the open left complex plane and, moreover, the matrices Nk are sufficiently bounded.
More precisely, we state the following result on bounded-input-bounded-output (BIBO)
stability of bilinear systems, initially obtained in [29].

Theorem 3.1. Let a bilinear system Σ be given and assume that A is asymptotically
stable, i.e. there exist real scalars β > 0 and 0 < α ≤ −maxi(Re (λi(A))), such that

||eAt|| ≤ βe−αt, t ≥ 0.

Further assume that ||u(t)|| =
√∑m

k=1 |uk(t)|2 ≤ M uniformly on [0,∞[ with M > 0,
and denote Γ =

∑m
k=1 ||Nk||. Then Σ is BIBO stable, i.e. the corresponding Volterra

series of the solution x(t) uniformly converges on the interval [0,∞[, if Γ < α
Mβ .
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Our stability assumption is motivated by the explicit solution formulas for equations
(16) and (17) and the demand of having positive semi-definite solutions P and Q, re-
spectively:

vec(P ) = −

(
A⊗ In + In ⊗A+

m∑
k=1

Nk ⊗Nk

)−1
vec(BBT ), (18)

vec(Q) = −

(
AT ⊗ In + In ⊗AT +

m∑
k=1

NT
k ⊗NT

k

)−1
vec(CTC). (19)

Similarly to the linear case, the H2-norm now can be computed with the help of the
solutions P and Q, see [32].

Proposition 3.1. Let Σ be a bilinear system. Assume that A is asymptotically stable
and the reachability Gramian P and the observability Gramian Q exist. Then it holds

||Σ||2H2
= tr

(
CPCT

)
= tr

(
BTQB

)
.

Since in the subsequent section, we want to derive first order necessary conditions
for H2-optimality that extend the interpolation conditions (5), (6) and (7) for linear
systems, we propose the following alternative derivation.

Theorem 3.2. Let Σ be a stable bilinear system. Then it holds

||Σ||2H2
= (vec(Ip))

T (C ⊗ C)

(
−A⊗ In − In ⊗A−

m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im).

Proof. For the proof, recall the properties from (8), together with the results from Propo-
sition 3.1 and the solution formulas (18) and (19), respectively.

||Σ||2H2
= tr

(
CPCT

)
= vec(CT )

T
vec(PCT ) = vec(CT )

T
(C ⊗ I) vec(P )

= vec(CT )
T

(C ⊗ I)

(
−A⊗ I − I ⊗A−

m∑
k=1

Nk ⊗Nk

)−1
vec(BBT )

=
((
CT ⊗ I

)
vec(CT )

)T (−A⊗ I − I ⊗A− m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im)

=
(
vec(CTC)

)T (−A⊗ I − I ⊗A− m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im)

=
(
vec(CT IpC)

)T (−A⊗ I − I ⊗A− m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im)

=
(
(CT ⊗ CT ) vec(Ip)

)T (−A⊗ I − I ⊗A− m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im)
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= (vec(Ip))
T (C ⊗ C)

(
−A⊗ I − I ⊗A−

m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im).

4 H2-Optimality Conditions for Bilinear Systems

Next, we want to discuss necessary conditions for H2-optimality. As in the linear case,
for this we have to consider the norm of the error system Σerr := Σ− Σ̂, which is defined
as follows:

Aerr =

[
A 0

0 Â

]
, N err

k =

[
Nk 0

0 N̂k

]
, Berr =

[
B

B̂

]
, Cerr =

[
C −Ĉ

]
.

Based on the assertions from Proposition 3.1, in [32], it is shown that the reduced system
matrices have to fulfill conditions that extend the Wilson conditions to the bilinear case:

QT12P12 +Q22P22 = 0, Q22N̂kP22 +QT12NkP12 = 0,

QT12B +Q22B̂ = 0, ĈP22 − CP12 = 0,
(20)

where

P err =

[
P11 P12

P T12 P22

]
, Qerr =

[
Q11 Q12

QT12 Q22

]
, (21)

are the solutions of the generalized Lyapunov equations

AerrP err + P err(Aerr)T +
m∑
k=1

N err
k P err(N err

k )T +Berr(Berr)T = 0, (22)

(Aerr)TQerr +QerrAerr +
m∑
k=1

(N err
k )TQerrN err

k + (Cerr)TCerr = 0. (23)

Since we are heading for a generalization of the iterative rational Krylov algorithm,
next we want to derive necessary conditions based on the computation formula from
Theorem 3.2. A simple analysis of the structure of the error system leads to the following
expression for the error functional E.

Corollary 4.1. Let Σ and Σ̂ be the original and reduced bilinear systems, respectively.
Then

E2 := ||Σerr||2H2
:= ||Σ− Σ̂||2H2

= (vec(I2p))
T
([
C −C̃

]
⊗
[
C −Ĉ

])
×(

−
[
A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
−
[
In 0
0 In̂

]
⊗
[
A 0

0 Â

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1
×([

B

B̃T

]
⊗
[
B

B̂

])
vec(I2m),
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= (vec(I2p))
T
([
C −C̃

]
⊗
[
C −C̃

])
×(

−
[
A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
−
[
In 0
0 In̂

]
⊗
[
A 0
0 Λ

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1
×([

B

B̃T

]
⊗
[
B

B̃T

])
vec(I2m),

where RΛR−1 = Â is the spectral decomposition of Â and B̃ = B̂TR−T , C̃ = ĈR, Ñk =
RT N̂T

k R
−T .

The above representation is motivated by the demand of having optimization parame-
ters Λ, Ñk, B̃, and C̃ that can be chosen to minimize ||Σ− Σ̂||2H2

, at least locally. Before
we proceed, let us introduce a specific permutation matrix

M =

[
In̂ ⊗

[
In
0

]
In̂ ⊗

[
0T

In̂

]]
,

which will simplify the computation of Kronecker products for certain block matrices.
For this, consider one of the block structures appearing in Corollary 4.1 for which we
can show:

MT

(
ÑT
k ⊗

[
Nk 0

0 N̂k

])
M

=
[
In̂ ⊗

[
In 0T

]
In̂ ⊗

[
0 In̂

]](
ÑT
k ⊗

[
Nk 0

0 N̂k

])[
In̂ ⊗

[
In
0

]
In̂ ⊗

[
0T

In̂

]]
=
[
In̂ ⊗

[
In 0T

]
In̂ ⊗

[
0 In̂

]] [
ÑT
k ⊗

[
Nk

0

]
ÑT
k ⊗

[
0T

N̂k

]]
=

[
ÑT
k ⊗Nk 0

0 ÑT
k ⊗ N̂k

]
.

For the differentiation with respect to the optimization parameters, we will need the
following lemma.

Lemma 4.1. Let C(x) ∈ Rp×n, A(y), Nk ∈ Rn×n and B ∈ Rn×m, with x, y ∈ R. Let

L(y) =

(
−A(y)⊗ I − I ⊗A(y)−

m∑
k=1

Nk ⊗Nk

)

and assume that C and A are differentiable with respect to x and y. Then,

∂

∂x

[
(vec(Ip))

T (C(x)⊗ C(x))L(y)−1(B ⊗B) vec(Im)
]

= 2 · (vec(Ip))
T (

∂

∂x
C(x)⊗ C(x))L(y)−1(B ⊗B) vec(Im)

7



and

∂

∂y

[
(vec(Ip))

T (C(x)⊗ C(x))L(y)−1(B ⊗B) vec(Im)
]

= 2 · (vec(Ip))
T (C(x)⊗ C(x))L(y)−1

(
∂

∂y
A(y)⊗ I

)
L(y)−1(B ⊗B) vec(Im).

Proof. For the first part, note that(
−A(y)⊗ I − I ⊗A(y)−

m∑
k=1

Nk ⊗Nk

)−1
(B ⊗B) vec(Im) := vec(P (y))

is the solution of the Lyapunov equation

A(y)P (y) + P (y)A(y)T +
m∑
k=1

NkP (y)NT
k +BBT = 0.

Hence, we can conclude that P (y) = P (y)T . Next, using (8), we observe that

(vec(Ip))
T

(
C(x)⊗ ∂

∂x
C(x)

)
vec(P (y)) = vec

(
∂

∂x
C(x)TC(x)

)T
vec(P (y))

= tr

(
C(x)T

∂

∂x
C(x)P (y)

)
= tr

(
∂

∂x
C(x)P (y)C(x)T

)
= tr

(
C(x)P (y)T

∂

∂x
C(x)T

)
= tr

(
C(x)P (y)

∂

∂x
C(x)T

)
= tr

((
∂

∂x
C(x)T

)
C(x)P (y)

)
= vec

(
C(x)T

∂

∂x
C(x)

)T
vec(P (y)) = (vec(Ip))

T

(
∂

∂x
C(x)⊗ C(x)

)
vec(P (y)).

The last equation implies that we can interchange the derivatives with respect to x.
However, the assertion now trivially follows. For the second part, recall that we have
∂
∂y

(
A(y)−1

)
= −A(y)−1 ∂A(y)∂y A(y)−1. Furthermore, with Q(x, y) we denote the solution

of the dual Lyapunov equation

A(y)TQ(x, y) +Q(x, y)A(y) +

m∑
k=1

NT
k Q(x, y)Nk + C(x)TC(x) = 0.

8



Hence, with 8, we end up with

(vec(Q(x, y))T
(
I ⊗ ∂

∂y
A(y)

)
vec(P (y)) = (vec(Q(x, y)))T vec

((
∂

∂y
A(y)

)
P (y)

)
= tr

(
Q(x, y)T

(
∂

∂y
A(y)

)
P (y)

)
= tr

(
P (y)T

(
∂

∂y
A(y)T

)
Q(x, y)

)
= tr

((
∂

∂y
A(y)T

)
Q(x, y)TP (y)

)
= tr

((
Q(x, y)

∂

∂y
A(y)

)T
P (y)

)

=

(
vec

(
Q(x, y)

∂

∂y
A(y)

))T
vec(P (y)) =

((
∂

∂y
A(y)T ⊗ I

)
vec(Q(x, y))

)T
vec(P (y))

= (vec(Q(x, y))T
(
∂

∂y
A(y)⊗ I

)
vec(P (y)).

Again, the last line proves the second statement.

Now, we are ready to differentiate with respect to the optimization parameters. For
this, we make use of the previous lemma and obtain:

∂E2

∂C̃ij
= 2 · (vec(I2p))

T
([

0 −eieTj
]
⊗
[
C −C̃

])
×(

−
[
A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
−
[
In 0
0 In̂

]
⊗
[
A 0
0 Λ

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1
×([

B

B̃T

]
⊗
[
B

B̃T

])
vec(I2m)

= 2 · (vec(I2p))
T
([

0 −eieTj
]
⊗
[
C −Ĉ

])
×(

−
[
A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
−
[
In 0
0 In̂

]
⊗
[
A 0

0 Â

]
−

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1
×([

B

B̃T

]
⊗
[
B

B̂

])
vec(I2m)

= 2 · (vec(Ip))
T
(
−eieTj ⊗

[
C −Ĉ

])
×(

−Λ⊗
[
In 0
0 In̂

]
− In̂ ⊗

[
A 0

0 Â

]
−

m∑
k=1

ÑT
k ⊗

[
Nk 0

0 N̂k

])−1(
B̃T ⊗

[
B

B̂

])
vec(Im)

= 2 · (vec(Ip))
T
(
−eieTj ⊗

[
C −Ĉ

])
×(

M

(
−
[
Λ⊗ In 0

0 Λ⊗ In̂

]
−
[
In̂ ⊗A 0

0 In̂ ⊗ Â

]
−

m∑
k=1

[
ÑT
k ⊗Nk 0

0 ÑT
k ⊗ N̂k

])
MT

)−1
×(

B̃T ⊗
[
B

B̂

])
vec(Im)
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= −2 · (vec(Ip))
T
(
eie

T
j ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

+ 2 · (vec(Ip))
T
(
eie

T
j ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
vec(Im).

Here, the last step is justified by the fact that M is a permutation matrix and, thus,
MTM = I and the identities:(
−eieTj ⊗

[
C −Ĉ

])
M =

[
−eieTj ⊗ C eie

T
j ⊗ Ĉ

]
, MT

(
B̃ ⊗

[
B

B̂

])
=

[
B̃ ⊗B
B̃ ⊗ B̂

]
.

Setting the gained expression equal to zero reveals that Σ̂ has to satisfy:

(vec(Ip))
T
(
eie

T
j ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

= (vec(Ip))
T
(
eie

T
j ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
vec(Im).

(24)
In view of equation (6) in the form of (10), we see that this demand naturally extends

the interpolation-based condition known from the linear case. For the differentiation
with respect to the poles of Â, we use the second part of the Lemma 4.1 in order to
obtain

∂E2

∂λi
= 2 · vec(I2p)

T
([
C − C̃

]
⊗
[
C −C̃

])
×([

A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
+

[
I 0
0 In̂

]
⊗
[
A 0
0 Λ

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1
×([

0 0
0 eie

T
i

]
⊗
[
In 0
0 In̂

])
×([

A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
+

[
I 0
0 In̂

]
⊗
[
A 0
0 Λ

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 ÑT
k

])−1
×([

B

B̃T

]
⊗
[
B

B̃T

])
vec(I2m)
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= 2 · vec(I2p)
T
([
C − C̃

]
⊗
[
C −Ĉ

])
×([

A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
+

[
I 0
0 In̂

]
⊗
[
A 0

0 Â

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1
×([

0 0
0 eie

T
i

]
⊗
[
In 0
0 In̂

])
×([

A 0
0 Λ

]
⊗
[
In 0
0 In̂

]
+

[
I 0
0 In̂

]
⊗
[
A 0

0 Â

]
+

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗
[
Nk 0

0 N̂k

])−1
×([

B

B̃T

]
⊗
[
B

B̂

])
vec(I2m)

= 2 · vec(Ip)
T
(
−C̃ ⊗

[
C −Ĉ

])(
Λ⊗

[
In 0
0 In̂

]
+ In̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

ÑT ⊗
[
Nk 0

0 N̂k

])−1
×

(
eie

T
i ⊗

[
In 0
0 In̂

])(
Λ⊗

[
In 0
0 In̂

]
+ In̂ ⊗

[
A 0

0 Â

]
+

m∑
k=1

ÑT
k ⊗

[
Nk 0

0 N̂k

])−1
×(

B̃T ⊗
[
B

B̂

])
vec(Im)

= −2 · vec(Ip)
T
(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1
×

(
eie

T
i ⊗ In

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

+ 2 · vec(Ip)
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1
×

(
eie

T
i ⊗ In̂

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
vec(Im).

Once more, we find an interpolation-based condition generalizing (7) in the form of (11)
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if we set the last expression equal to zero:

(vec(Ip))
T
(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1
×

(
eie

T
i ⊗ In

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

= (vec(Ip))
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1
×

(
eie

T
i ⊗ In̂

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
vec(Im).

(25)

Finally, as a matter of careful analysis, we obtain similar optimality conditions when
differentiating with respect to B̃ and Ñk, respectively:

vec(Ip)
T
(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
eje

T
i ⊗B

)
vec(Im)

= vec(Ip)
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
eje

T
i ⊗ B̂

)
vec(Im),

(26)

vec(Ip)
T
(
C̃ ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1
×

(
eje

T
i ⊗N

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

= vec(Ip)
T
(
C̃ ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1
×

(
eje

T
i ⊗ N̂

)(
−Λ⊗ In̂ − In̂ ⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
vec(Im).

(27)

Hence, the previous derivations can be summarized in the following theorem.

Theorem 4.1. Let Σ denote a BIBO stable bilinear system. Assume that Σ̂ is a reduced
bilinear system of dimension n̂, minimizing the H2-norm of the error system among all
bilinear systems of dimension n̂. Then Σ̂ fulfills equations (24) – (27).
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5 Generalized Sylvester Equations and Bilinear IRKA

Now that we have specified first order necessary conditions for H2-optimality, in this
section we will propose two algorithms that iteratively construct a reduced-order system
which locally minimizes the H2-error. We will start with a procedure based on certain
generalized Sylvester equations which in the linear case reduces to the concept discussed
in [30]. For this, let us consider the following two matrix equations:

AX +XÂT +
m∑
k=1

NkXN̂
T
k +BB̂T = 0, (28)

ATY + Y Â+
m∑
k=1

NT
k Y N̂k − CT Ĉ = 0. (29)

Obviously, the solutions X,Y ∈ Rn×n̂ can be explicitly computed by vectorizing both
sides and making use of the vec-operator. However, this requires solving two linear
systems of equations:(

−In̂ ⊗A− Â⊗ In −
m∑
k=1

N̂k ⊗Nk

)
vec(X) = vec(BB̂T ),(

In̂ ⊗AT + ÂT ⊗ In +
m∑
k=1

N̂T
k ⊗NT

k

)
vec(Y ) = vec(CT Ĉ).

Throughout the rest of the paper, we will assume that there exist unique solutions
satisfying these Sylvester equations. Due to the properties of the eigenvalue computation
of Kronecker products, this certainly is satisfied if the eigenvalues of Â are located in C−
and the norms of N̂k are sufficiently bounded. However, in view of Theorem 3.1 we have
already mentioned that this basically characterizes a stable bilinear system. Although in
general this cannot be ensured by our proposed algorithms, we did not observe unstable
reduced-order systems so far. For a similar discussion for the linear case we refer to [18].
For the sake of completeness, we want to mention that under appropriate assumptions
X and Y can be computed as the limit of an infinite series of linear Sylvester equations.

Lemma 5.1. Let L,Π : Rn×n̂ → Rn×n̂ denote two linear operators defined by the bilinear
systems Σ and Σ̂, with L(X) := AX +XÂT and Π(X) :=

∑m
k=1NkXN̂

T
k . If the spectral

radius ρ(L−1Π) < 1, then the solution X of the generalized Sylvester equation (28) is
given as X = lim

j→∞
Xj , with:

AX1 +X1Â
T +BB̂T = 0, AXj +XjÂ

T +

m∑
k=1

NkXj−1N̂
T
k +BB̂T = 0, j > 1.

A dual statement obviously is true for equation (29). Since the statement is a direct
consequence of the theory of convergent splittings, we dispense with the proof and instead
refer to [13] for an equivalent discussion on bilinear Lyapunov equations. Let us now focus
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on Algorithm 1 which in each step constructs a reduced system Σ̂ by a Petrov-Galerkin
type projection P = V (W TV )−1W T , determined by the solutions of the generalized
Sylvester equations associated with the preceding system matrices.

Algorithm 1 Generalized Sylvester iteration

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ
Output: Âopt, N̂opt

k , B̂opt, Ĉopt

1: while (change in σ(Â) > 0) do

2: Solve AX +XÂT +
m∑
k=1

NkXN̂
T
k +BB̂T = 0.

3: Solve ATY + Y Â+
m∑
k=1

NT
k Y N̂k − CT Ĉ = 0.

4: V = orth(X), W = orth(Y )

5: Â =
(
W TV

)−1
W TAV , N̂k =

(
W TV

)−1
W TNkV , B̂ =

(
W TV

)−1
W TB, Ĉ = CV

6: end while
7: Âopt = Â, N̂opt

k = N̂k, B̂
opt = B̂, Ĉopt = Ĉ

Finally, we are ready to prove one of our two main results.

Theorem 5.1. Assume Algorithm 1 converges. Then, Âopt, N̂opt
k , B̂opt, Ĉopt fulfill the

necessary H2-optimality conditions (20).

Proof. Let Ā, N̄k, B̄, C̄ denote the matrices corresponding to the next to last step in the
while loop. Due to convergence, Σ̂opt is a state space transformation of Σ̄, i.e. ∃T ∈ Rn̂×n̂
nonsingular, such that

Ā = T−1ÂoptT, N̄k = T−1N̂opt
k T, B̄ = T−1B̂opt, C̄ = ĈoptT.

Furthermore, according to step 4, we have

V opt = XoptF, W opt = Y optG,

with F,G ∈ Rn̂×n̂ nonsingular. Thus, it holds(
(W opt)TV opt

)−1
(W opt)T =

(
GT (Y opt)TXoptF

)−1
GT (Y opt)T = F−1

(
(Y opt)TXopt

)−1
(Y opt)T .

From step 2, it follows

AXopt +XoptĀT +
m∑
k=1

NkX
optN̄T

k +BB̄T = 0.
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Hence,

F−1
(
Y optTXopt

)−1
(Y opt)T︸ ︷︷ ︸

((W opt)TV opt)−1(W opt)T

AXoptF︸ ︷︷ ︸
V opt

+ F−1ĀTXoptF +

m∑
k=1

F−1
(
(Y opt)TXopt

)−1
(Y opt)TNkX

optN̄T
k X

optF

+ F−1
(
(Y opt)TXopt

)−1
(Y opt)TBB̄TXoptF = 0,

which implies

Âopt + F−1T T (Âopt)
T
T−TF +

m∑
k=1

N̂opt
k F−1T T (N̂opt

k )TT−TF + B̂opt(B̂opt)TT−TF = 0.

Finally, we end up with

ÂoptF−1T T + F−1T T (Âopt)T +
m∑
k=1

N̂opt
k F−1T T (N̂opt

k )T + B̂opt(B̂opt)T = 0.

From the last line and the fact that we assumed the reduced system to be stable, the
solution of the generalized Lyapunov equation is unique and we conclude that P22 =
F−1T T , were P22 is the lower right block from the partitioning in (21). Similarly, we
obtain

ATY opt + Y optĀ+
m∑
k=1

NT
k Y

optN̄k − CT C̄ = 0.

This leads to

F T (Xopt)TATY opt((Xopt)TY opt)−1F−T + F T (Xopt)TY optĀ((Xopt)TY opt)−1F−T

+

m∑
k=1

F T (Xopt)TNT
k Y

optN̄k((X
opt)TY opt)−1F−T − F T (Xopt)TCT C̄((Xopt)TY opt)−1F−T = 0,

which can be transformed into

(Âopt)T + F T (Xopt)TY optT−T ÂoptT ((Xopt)TY opt)−1F−T

+
m∑
k=1

F T (Xopt)TNTY opt((Xopt)TY opt)−1F−TF T (Xopt)TY optN̄k((X
opt)TY opt)−1F−T

− F T (Xopt)TCT ĈoptT ((Xopt)TY opt)−1F−T = 0.
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Thus it follows

(Âopt)T + F T (Xopt)TY optT−T ÂoptT ((Xopt)TY opt)−1F−T

+

m∑
k=1

(N̂opt
k )TF TXoptTY optT−1N̂opt

k T ((Xopt)TY opt)−1F−T

− (Ĉopt)T ĈoptT ((Xopt)TY opt)−1F−T = 0,

and, subsequently,

− (Âopt)TF T (Xopt)TY optT−1 − F T (Xopt)TY optT−1(Âopt)T

−
m∑
k=1

(N̂opt
k )TF T (Xopt)TY optT−1N̂opt

k + (Ĉopt)T Ĉopt = 0.

Again, the unique solution of the generalized Lyapunov equation of the reduced system
satisfies Q22 = −F T (Xopt)TY optT−1, with Q22 as defined in (20). Moreover, due to
symmetry of the solution, it follows Q22 = −T−T (Y opt)TXoptF. Finally, we will need the
solutions of the generalized Sylvester equations arising in (22). However, it holds that

AXopt +XoptĀT +
m∑
k=1

NkX
optN̄T

k +BB̄T = 0

is equivalent to

AXopt +XoptT T (Âopt)TT−T +
m∑
k=1

NkX
optT T (N̂opt

k )TT−T +B(B̂opt)TT−T = 0,

yielding

AXoptT T +XoptT T (Âopt)T +
m∑
k=1

NkX
optT T (N̂opt

k )T +B(B̂opt)T = 0.

Here, we make use of the unique solution of the generalized Sylvester equation. Thus, it
follows that P12 = XoptT T . Since the argumentation for the dual Sylvester equation is
completely analogous, we will skip the derivation that leads to Q12 = Y optT−1. Let us
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now show the optimality conditions (20):

QT12P12 +Q22P22 = T−T (Y opt)TXoptT T − T−T (Y opt)TXoptFF−1T T = 0,

Q22N̂
opt
k P22 +QT12NkP12 = −T−T (Y opt)TXoptFN̂opt

k F−1T T + T−T (Y opt)TNkX
optT T

= −T−T (Y opt)TXoptF
(
(W opt)TV opt

)−1
(W opt)TNkV

optF−1T T

+ T−1(Y opt)TNkX
optT T

= −T−T (Y opt)TXFF−1
(
(Y opt)TXopt

)−1
(Y opt)TNkV

optFF−1T T

+ T−T (Y opt)TNkX
optT T

= 0,

QT12B +Q22B̂
opt = T−T (Y opt)TB − T−T (Y opt)TXoptFB̂opt

= T−T (Y opt)TB − T−T (Y opt)TXoptF
(
(W opt)TV opt

)−1
(W opt)TB

= T−T (Y opt)TB − T−T (Y opt)TXoptFF−1
(
(Y opt)TXopt

)−1
(Y opt)TB = 0,

ĈoptP22 − CP12 = ĈoptF−1T T − CXoptT T = CV optF−1T T − CXoptT T

= CXoptFF−1T T − CXoptT T = 0.

Remark 5.1. It should be mentioned that the convergence criterion will only be achieved
in exact arithmetic. Nevertheless, in practice, stopping the algorithm whenever the rel-
ative change of the eigenvalues is less than a user specified tolerance ε will be sufficient
for numerical simulations.

Remark 5.2. Note that Algorithm 1 generalizes a Sylvester equation based algorithm
for H2-optimality (see [17]) and thus does not require diagonalizability of Â.

We will now turn our attention to an interpolation-based approach that can be directly
derived from Algorithm 1. For a similar derivation in the linear case, see e.g. [17]. Again,
let Â = RΛR−1 denote the eigenvalue decomposition of the reduced system. As already
mentioned before, the explicit solution for equation (28) in vectorized form reads:

vec(X) =

(
−In̂ ⊗A− Â⊗ In −

m∑
k=1

N̂k ⊗Nk

)−1
vec(BB̂T )

=

(
−In̂A− Â⊗ In −

m∑
k=1

N̂k ⊗Nk

)−1 (
B̂ ⊗B

)
vec(Im)
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=

[
(R⊗ In)

(
−In̂ ⊗A− Λ⊗ In −

m∑
k=1

R−1N̂kR⊗Nk

)(
R−1 ⊗ In

)]−1 (
B̂ ⊗B

)
vec(Im)

= (R⊗ In)

(
−In̂ ⊗A− Λ⊗ In −

m∑
k=1

R−1N̂kR⊗Nk

)−1 (
R−1B̂ ⊗B

)
vec(Im)︸ ︷︷ ︸

vec(V )

.

From the last line, we can now conclude that

(R⊗ In)−1 vec(X) = vec(V ) and hence XR−T = V.

Similarly, starting from equation (29), we obtain:

vec(Y ) =

(
In̂ ⊗AT + ÂT ⊗ In +

m∑
k=1

N̂T
k ⊗NT

k

)−1
vec(CT Ĉ)

=

(
In̂ ⊗AT + ÂT ⊗ In +

m∑
k=1

N̂T
k ⊗NT

k

)−1 (
ĈT ⊗ CT

)
vec(Ip)

=

[(
R−T ⊗ In

)(
−In̂ ⊗A− Λ⊗ In −

m∑
k=1

RT N̂T
k R
−T ⊗NT

k

)(
−RT ⊗ In

)]−1
×(

ĈT ⊗ CT
)

vec(Ip)

=
(
−R−T ⊗ In

)
vec(W ).

Once again, this leads to(
−R−T ⊗ In

)−1
vec(Y ) = vec(W ) and Y (−R) = W,

where

vec(W ) :=

(
−In̂ ⊗A− Λ⊗ In −

m∑
k=1

RT N̂T
k R
−T ⊗NT

k

)−1 (
RT ĈT ⊗ CT

)
vec(Ip).

According to the proof of Theorem 5.1, as long as span{X} ⊂ V and span{Y } ⊂ W,
we can ensure that the reduced system satisfies the necessary H2-optimality conditions.
Hence, we have found an equivalent method which obviously extends IRKA to the bi-
linear case, see Algorithm 2.
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Algorithm 2 Bilinear IRKA (BIRKA)

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ
Output: Âopt, N̂opt

k , B̂opt, Ĉopt

1: while (change in Λ > 0) do
2: RΛR−1 = Â, B̃ = B̂TR−T , C̃ = ĈR, Ñk = RT N̂kR

−T

3: vec(V ) =

(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
vec(Im)

4: vec(W ) =

(
−Λ⊗ In − In̂ ⊗AT −

m∑
k=1

Ñk ⊗NT
k

)−1 (
C̃T ⊗ CT

)
vec(Ip)

5: V = orth(V ), W = orth(W )

6: Â =
(
W TV

)−1
W TAV , N̂k =

(
W TV

)−1
W TNkV , B̂ =

(
W TV

)−1
W TB, Ĉ = CV

7: end while
8: Âopt = Â, N̂opt

k = N̂k, B̂
opt = B̂, Ĉopt = Ĉ

Finally, we want to point out the equivalence between the optimality conditions (20)
and (24). For this, we need the following projection-based identity.

Lemma 5.2. Let V,W ∈ Rn×n̂ be matrices of full rank n̂.
a) Let z ⊂ span{vec(V )}. Then

(
In̂ ⊗ V (W TV )−1W T

)
z = z.

b) Let z ⊂ span{vec(W )}. Then zT
(
In̂ ⊗ V (W TV )−1W T

)
= zT .

Proof. By assumption, there exists x ∈ Rn·n̂ s.t.(
In̂ ⊗ V (W TV )−1W T

)
z =

(
In̂ ⊗ V (W TV )−1W T

)
vec(V )x

= vec(V (W TV )−1W TV )x = vec(V )x = z.

The proof of the second statement is based on the exact same arguments.

Theorem 5.2. Assume Algorithm 2 converges. Then Âopt, N̂opt
k , B̂opt, Ĉopt fulfill the

necessary interpolation-based H2-optimality conditions.

Proof. Since the only difference in proving conditions (24) – (27) lies in using statement
b) of Lemma 5.2 and the combination of both a) and b), respectively, we will restrict
ourselves to showing optimality condition (24).

vec(Ip)
T
(
eie

T
j ⊗ Ĉopt

)(
−Λ⊗ In̂ − In̂ ⊗ Âopt −

m∑
k=1

ÑT
k ⊗ N̂

opt
k

)−1 (
B̃T ⊗ B̂opt

)
vec(Im)

= vec(Ip)
T
(
eie

T
j ⊗ CV

)
×[(

In̂ ⊗ (W TV )−1W T
)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)
(In̂ ⊗ V )

]−1
×(

B̃T ⊗ (W TV )−1W TB
)

vec(Im)
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= vec(Ip)
T
(
eie

T
j ⊗ CV

)
×[(

In̂ ⊗ (W TV )−1W T
)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)
(In̂ ⊗ V )

]−1
×(

In̂ ⊗ (W TV )−1W T
)
×(

−Λ⊗ In − In̂ ⊗A−
m∑
k=1

ÑT
k ⊗N

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)−1
×(

B̃T ⊗B
)

vec(Im)

(5.2a)
= vec(Ip)

T
(
eie

T
j ⊗ CV

)
×[(

In̂ ⊗ (W TV )−1W T
)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)
(In̂ ⊗ V )

]−1
×

(
In̂ ⊗ (W TV )−1W T

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)(
In ⊗ V (W TV )−1W T

)
×

(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)−1 (
B̃T ⊗B

)
vec(Im)

= vec(Ip)
T
(
eie

T
j ⊗ CV

) (
In ⊗ (W TV )−1W T

)
×(

−Λ⊗ In − In̂ ⊗A−
m∑
k=1

ÑT
k ⊗N

)−1 (
B̃T ⊗B

)
vec(Im)

= vec(Ip)
T
(
eie

T
j ⊗ C

)(
−Λ⊗ In − In̂ ⊗A−

m∑
k=1

ÑT
k ⊗N

)−1 (
B̃T ⊗B

)
vec(Im).

Remark 5.3. Note that analogously to the case of solving generalized Sylvester and
Lyapunov equations, respectively, it is also possible to construct the matrices appearing
in Algorithm 2 as the limit of an infinite series of linear IRKA type computations. For
this, in each iteration, one starts with

V 1
i = (−λiI −A)−1BB̃i,

and continues with

V j
i = (−λiI −A)−1

(
m∑
k=1

NkV
j−1
i (Ñk)i

)
.

The actual projection matrix V then is given as V =

∞∑
j=1

V j . A dual derivation obviously

yields the projection matrix W.
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6 Numerical Examples

In this section, we will now study several applications of bilinear control systems and
discuss the performance of the approaches proposed above. As we already mentioned,
the method of balanced truncation for bilinear systems is connected to generalized con-
trollability and reachability Gramians of the underlying system, respectively. Hence,
similar to the linear case, we expect this method to yield reduced models with small
relative H2-error as well and we will thus use it for a comparison with our algorithms.
However, due to the theoretical equivalence of Algorithm 1 and Algorithm 2, we will
only report the results for the latter case. Nevertheless, we want to remark that in nu-
merical simulations, there might occur differences with respect to robustness and speed
of convergence which might be subject to further studies. Furthermore, in Algorithm
2 we computed the projection matrices V and W by solving the large systems of lin-
ear equations explicitly instead of using more sophisticated iterative techniques which
might be further investigated as well. Finally, all Lyapunov equations were solved by the
method proposed in [13] which allows for solving medium-sized systems. All simulations
were generated on an Intel® Core�i7 CPU 920, 8 MB cache, 12 GB RAM, openSUSE
Linux 11.1 (x86 64), MATLAB® Version 7.11.0.584 (R2010b) 64-bit (glnxa64).

6.1 An interconnected power system

The first application is a model for two interconnected power systems which can be
described by a bilinear system of state dimension 17. The hydro unit as well as the
steam unit each can be controlled by two input variations resulting in a system with 4
inputs and 3 outputs. Since we are only interested in the reduction process, we refer to [2]
where a detailed derivation of the dynamics can be found. We have successively reduced
the original model to systems varying from n̂ = 1, . . . , 16 state variables. A comparison
of the associated relative H2-norm of the error system between our approach and the
method of balanced truncation is shown in Figure 1.

Except for the cases n̂ = 2 and n̂ = 12, we always obtain better results with the
new technique. The initialization of Algorithm 2 is done completely at random, using
arbitrary interpolations points and tangential directions, respectively. As indicated for
system dimensions n̂ = 5, 10, 14, the algorithm converges in a few steps, see Figure 2.
However, for n̂ = 2, 6, 12, the stopping criterion which is chosen to be that the relative
change of the norm of the eigenvalues of the reduced system becomes smaller than

√
ε,

where ε denotes machine precision, is not fulfilled. This might explain the mentioned
superiority of balanced truncation.

6.2 Fokker-Planck equation

The second example is an application from stochastic control and was already discussed
in [19]. Let us consider a dragged Brownian particle whose one-dimensional motion is
described by the stochastic differential equation

dXt = −∇V (Xt, t)dt+
√

2σdWt,
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Figure 1: Power System. Comparison of relativeH2-error between balanced truncation
and B-IRKA.

with σ = 2
3 and V (x, u) = W (x, t) + Φ(x, ut) = (x2− 1)2−xu−x. As mentioned in [19],

we might alternatively consider the underlying probability distribution function

ρ(x, t)dx = P [Xt ∈ [x, x+ dx)]

which is described by the Fokker-Planck equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ), (x, t) ∈ (a, b)× (0, T ],

0 = σ∇ρ+ ρ∇B, (x, t) ∈ {a, b} × [0, T ],

ρ0 = ρ, (x, t) ∈ (a, b)× 0.

After a semi-discretization resulting from a finite difference scheme consisting of 500
nodes in the interval [−2, 2], we obtain a single-input single-output bilinear control sys-
tem, where we choose the output matrix C to be the discrete characteristic function
of the interval [0.95, 1.05]. Since we only pointed out the most important parameters
of the model, we once more refer to [19] for gaining a more detailed insight into this
topic. In Figure 3, we again compare the relative H2-errors between balanced trunca-
tion and B-IRKA for varying system dimensions. Despite the fact that we do not observe
convergence for n̂ = 2, our new method clearly outperforms balanced truncation.
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Figure 2: Power System. Convergence history of the relative H2-error.

6.3 Viscous Burgers equation

Next, let us consider the viscous Burgers equation

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
, (x, t) ∈ (0, 1)× (0, T ),

subject to initial and boundary conditions

v(x, 0) = 0, x ∈ [0, 1], v(0, t) = u(t), v(1, t) = 0, t ≥ 0.

Introduced in [8], after a spatial semi-discretization of this nonlinear partial differential
equation using k nodes in a finite difference scheme, we end up with an ordinary dif-
ferential equation including a quadratic nonlinearity. As is well-known, the Carleman
linearization technique, see e.g. [27], allows to approximate this system by a bilinearized
system of dimension n = k+k2. The simulations are generated with ν = 0.1 and k = 30.
The measurement vector C is chosen to yield the spatial average value for the quantity
v. As shown in Figure 4, in all cases the relative H2-error for the systems constructed
by B-IRKA is smaller than that resulting from balanced truncation. Moreover, except
for n̂ = 11, there are no convergence problems at all although we again use random data
for the initialization.
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Figure 3: Fokker-Planck Equation. Comparison of relative H2-error between bal-
anced truncation and B-IRKA.

6.4 A heat transfer model

Finally, we want to study another standard bilinear test example resulting from a bound-
ary controlled heat transfer system. Formally, the dynamics are described by the heat
equation subject to Dirichlet and Robin boundary conditions, i.e.

xt = ∆x in (0, 1)× (0, 1),

n · ∇x = 0.75 · u1,2,3(x− 1) on Γ1,Γ2,Γ3,

x = 0.75 · u4 on Γ4,

where Γ1,Γ2,Γ3 and Γ4 denote the boundaries of Ω. Hence, a spatial discretization using
k2 grid points now yields a bilinear system of dimension n = k2, with 4 inputs and
1 output, chosen to be the average temperature on the grid. In order to show that
our algorithm also works in large-scale settings, we implement the above system with
10 000 grid points. The results for reduced system dimensions n̂ = 2, . . . , 30, are given in
Figure 5 and demonstrate that we can improve the approximation quality with regard
to the H2-norm with a numerically efficient interpolation-based framework. Moreover,
in order to show the superiority of the new approach we further plot the results for the
reduced systems obtained by IRKA as well as those generated by the new interpolation
framework together with some clever, but non-optimal interpolation points. This means,
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Figure 4: Burgers equation. Comparison of relative H2-error between balanced trun-
cation and B-IRKA.

we use real equi-distributed and Chebyshev interpolations points between the smallest
and largest real part of the mirror images of the eigenvalues of the system matrix A and
stop Algorithm 2 after the first iteration step. However, the relative H2-error is only
computed when the corresponding reduced systems are stable, leading to positive definite
solutions of the Gramians of the error systems. Moreover, as can be seen in Figure 5, the
linear iterative rational Krylov algorithm only converges for reduced system dimensions
up to n̂ = 18 at all.

Since so far most bilinear reduction methods have been evaluated by means of com-
paring the relative error for outputs corresponding to typical system inputs, we compute
the time response to an input of the form uk(t) = cos(kπt), k = 1, 2, 3, 4. The results
are plotted in Figure 6, where we test the performance for an original bilinear system
of order n = 2500 and different scaling values γ. This means, the matrices Nk and B,
respectively are multiplied with γ, while the input signal u(t) is replaced with 1

γu(t).
Similar experiments are studied in [6]. Interestingly enough, while the convergence re-
sults for B-IRKA do not change significantly, the relative error is smaller for smaller
values of γ. However, all tested values γ can certainly compete with the approximation
quality obtained from balanced truncation.
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Figure 5: Heat Transfer Model. Comparison of relative H2-error between balanced
truncation and B-IRKA.

7 Conclusions

In this paper, we have studied the problem of H2-model reduction for bilinear systems.
Based on an existing generalization of the linear H2-norm, we have derived first-order
necessary conditions for optimality. As has been shown, these can be interpreted as
an extension of those obtained for the linear case and lead to a generalization of the
iterative rational Krylov algorithm (IRKA). We have further proposed an equivalent
iterative procedure that requires solving certain generalized Sylvester equations. The
efficiency of our approaches has been evaluated by several bilinear test examples for
which they yield better results than the popular method of balanced truncation. Finally,
it was shown that the new method can additionally compete when the approximation
quality is measured in terms of the transient response in time domain. However, so far
we did not investigate the effect of choosing reasonable initial data in order to improve
convergence rates of the algorithms as well as efficient solution techniques for the special
generalized Sylvester equations one has to solve in each iteration step.
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Figure 6: Heat Transfer Model. Comparison of relative error to an input of the form
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truncation and B-IRKA for varying scaling factors γ.
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