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Abstract

We have presented a projection-based approach for model reduction of linear
time-varying descriptor systems in [9] which was based on earlier ideas in the work
of J. Philips [12] and others. This contribution continues that work by present-
ing more details of linear time-varying descriptor systems and new results coming
from real fields of application. The idea behind the proposed procedure is based on
a multipoint rational approximation of the monodromy matrix of the correspond-
ing differential-algebraic equation. This is realized by orthogonal projection onto a
rational Krylov subspace. The algorithmic realization of the method employs recy-
cling techniques for shifted Krylov subspaces and their invariance properties. The
proposed method works efficiently for macro-models, such as time varying circuit
systems and models arising in network interconnection. Bode plots and step re-
sponse are used to illustrate both the stability and accuracy of the reduced order
models.
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1 Introduction

In recent years, scientists and engineers have put a lot of attention on the analysis and
control of linear periodic time-varying (LPTV) systems as they explain several man
made and natural phenomena [5, 12, 22]. A continuous-time LPTV descriptor system
in general has the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = C(t)x(t) +D(t)u(t),

(1)

where x(t) ∈ Rn is called the descriptor vector, u(t) is the system input, y(t) is the
system output, and n is the system order at any given time t. All the system matri-
ces are time-varying, periodic with period K ≥ 1 and the matrices E(t) and A(t) can
be singular at any given time t. The matrix D(t) does not have any effect on the dy-
namics of the corresponding system. Hence it is considered zero in most references and
we will omit it in the description of LPTV descriptor systems in the consequent sections.

Formally speaking, a reduced-order system of order r for system (1) (omitting D(t))
would be a system of the form

Ê(t) ˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t),

ŷ(t) = Ĉ(t)x̂(t).
(2)

The system is of potentially smaller dimension, i.e., x̂ ∈ Rr with r << n, and thus lower
computational cost, than the original system (1), and suitable for use in higher level
simulation. Apart from having much smaller state-space dimension, the reduced-order
system should preserve some essential and important characteristics of the original sys-
tem.

Model reduction using projection formulation has become a popular and well accepted
technique in the field of signal analysis and electrical interconnections. Today, the best
choices for these projection subspaces, in model reduction of linear time-invariant (LTI)
systems, are Krylov subspaces. In this approach, the lower order model is obtained such
that some of the first moments (and/or markov parameters) [3, 1, 8, 16] of the original
and reduced systems are matched where the moments are the coefficients of the Taylor
series expansion of the transfer function at a suitable point. Methods based on multi-
point rational approximations [2, 1] are also efficient for particular cases.

However, model reduction for time-varying systems is much more complex in that
projection approach. Balanced truncation methods [19] have been applied, but there
are still issues with the efficient implementation of these techniques. Therefore, huge
talents have been worked on developing the techniques of model reduction using rational
approximations and the projection formulations.



In this paper, we discuss efficient implementations of Krylov subspace based projec-
tion methods for model order reduction. The paper outline is as follows. In Section 2, we
discuss the basic essentials of LTI systems regarding the projection based model reduc-
tion approach. Also we discuss some definitions and theorems related to our projection
approach. In Section 3, we represent the linear time-varying (LTV) signal analysis and
discuss the frequency-domain matrix formulation of LTV systems which gives the con-
cept for the model reduction procedure. We choice a projection framework using a finite
discretization method and approximate the appropriate subspaces and discuss how to
compute them more efficiently. Section 4 contains the outline of the model reduction
procedure with more details. The efficiency and accuracy of the developed algorithm is
illustrated by numerical examples which are given in Section 5. Some conclusions are
given in 6. This paper is an extension and continuation of the previous work [9] with
more details and new results coming from real fields of application.

2 Background

Before proceeding with projection methods, the generalized state space form will be
briefly described. This will help to create a more general framework for the projection
techniques.

2.1 LTI Systems

Let us consider the linear time-invariant multi-input and multi-output (MIMO) system
in differential-algebraic form

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(3)

where x(t) ∈ Rn, u(t) ∈ Rp(p ≤ n), y(t) ∈ Rq, n is the system order, and p and q are
the numbers of system inputs and outputs, respectively. The matrices E,A ∈ Rn×n,
B ∈ Rn×p, C ∈ Rq×n are time-invariant. For single-input single-output (SISO) systems,
p, q=1, the matrices B and C changes to vectors b and cT , respectively.

Now performing the Laplace transformations on the system, we obtain

sEx̃(s) = Ax̃(s) +Bũ(s),
ỹ(s) = Cx̃(s),

(4)

where x̃(s), etc. represents the Laplace transform of x(t), etc. It can easily be shown
that the output function of the above system is now

ỹ(s) = C(sE −A)−1Bũ(s), (5)

where
H(s) = C(sE −A)−1B (6)
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is called the transfer function of the system.

A projection method reduces (3) by choosing two r-dimensional projection spaces,
S1, S2 ⊆ Rn, so that the solution space is projected onto S2, i.e. x̂ ∈ S2, and the residual
of (3) is orthogonal to S1. The projection can be considered as follows:

x = Ux̂,
U ∈ Rn×r, x ∈ Rn, x̂ ∈ Rr.

(7)

By applying this projection to system (3), and then pre-multiplying by V T , a realization
of the reduced-order system of order r satisfies the projection equations

Ê = V TEU, Â = V TAU, B̂ = V TB, Ĉ = C U, (8)

where the columns of V and U form bases for S1 and S2, respectively,

colspan(V ) = S1, V ∈ Rn×r, colspan(U) = S2, U ∈ Rn×r.

If S1 = S2, the projection is orthogonal, otherwise oblique. The matrices V and U are
refered to as the left truncation matrix and the right truncation matrix, respectively.
The corresponding transfer function of the reduced-order system is given by

Ĥ(s) = Ĉ(sÊ − Â)−1B̂. (9)

2.2 Transfer Function Moments

Let us assume that system (3) is a MIMO system with the transfer function as in (6).
By assuming that A is nonsingular, the Taylor series expansion of the transfer matrix
(6) about zero is,

H(s) = −CA−1B − C(A−1E)A−1B s− · · · − C(A−1E)iA−1B si − · · · (10)

The coefficients of s in this series, without negative sign, are called moments.

Definition 2.1 In system (3), suppose that A is nonsingular, then the i-th moment
(about zero) of this system is given by

mi = C(A−1E)iA−1B, i = 0, 1, . . . , (11)

where mi is a q × p matrix in the MIMO case and a scalar mi, in the SISO case.

We observe that the transfer function H(s) is a rational function in s, so it is logical
that it should be approximated through a rational approach, such as Padé approxima-
tion [3, 1, 6]. In case of Padé approximation, the reduced-order model is obtained such
that 2r+ 1 moments (SISO) of the original and reduced system are matched, where r is
the order of the reduced system. In MIMO case the number of moment matching may
vary. It is shown in [8] that in a time domain, a reduced r-th order p-input q-output
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model can match (r/p) + (r/q) moments with these of the original system. For p = q,
the number of moment matrices matching will be (2r/p).

The k-th moment of the transfer function is given by CA−k−1B. Clearly our desired
approximations are connected with powers of the matrix A−1 acting on B, or powers of
A−T acting on CT . Hence the main work of our reduction technique is to connect the
moments with the projection matrices V and U . More of these ideas will be discussed
in the next section.

2.3 The Krylov-Subspace Projection

The reduced-order model is computed applying suitable projections to system (3). We
will calculate these projections via Krylov subspaces, defined in the following:

Definition 2.2 The order m Krylov subspace is the space defined as

Km(A, b) = span{b, Ab,A2b, ......, Am−1b}, (12)

where A ∈ Rn×n and b ∈ Rn is called the starting vector. The vectors b, Ab,A2b, ......,
Am−1b that construct the subspace, are called basic vectors.

If the ith basic vector in the Krylov subspace (4) is a linear combination of the previous
vectors, then the next basic vectors can be written as a linear combination of the first
i-1 vectors. Therefore the first independent basic vectors can be considered as a basis of
the Krylov subspace.

Definition 2.3 The block Krylov subspace of order m is the space defined as

κm(A,B) = span{B,AB,A2B, ......, Am−1B}, (13)

where A ∈ Rn×n and B ∈ Rn×p contains the starting vectors. Note that rank(Km(A,B)) ≤
p ·m

The block Krylov subspace with p starting vectors can be considered as a union of p
Krylov subspaces defined for each starting vector. The following theorems demonstrate
how to choose the projection matrices to find the reduced-order system and explain
details of matching the moments of the original and reduced-order systems.

Theorem 1 If the columns of the matrix U used in (8) form a basis for the order ra
Krylov subspace Kra(A−1E,A−1b) and the matrix V is chosen such that Â is nonsingular,
then the first ra moments (about zero) of the original and reduced-order systems match.

Proof. see [18, 8].

Theorem 2 If the columns of the matrix V form a basis for the order rb Krylov subspace
Krb(A

−TET , A−T c) and the matrix U is chosen such that Â is nonsingular, then the first
rb moments (about zero) of the original and reduced-order order systems match.
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Proof. see [18, 8].

Theorem 3 Assume that A and Â are invertible. If the columns of the matrices U
and V form bases for the Krylov subspaces κra(A−1E,A−1b) and κrb(A

−TET , A−T c),
respectively, then the first ra + rb moments of the original and reduced-order systems
match.

Proof. see [18, 8].

The projection matrices play an important role in the formulation of a reduced model.
In case of Padé approximation [8, 6] and Lanczos approximation technique [1, 18], the
choice of V and U is V T = V T

l A
−1, U = Ul, where Vl and Ul contain the biorthogo-

nal Lanzcos vectors, and in case of Arnoldi method [1, 18], Ua = Va where Ua is the
orthonormal matrix generated by Arnoldi process. In our projection technique, we will
take V = U , because in this case the reduced model will inherit the structural properties,
such as stability and passivity, from the original model. We will extend this approach
to our multipoint approximations where the moments match at several points in the
complex plane [8, 17]. In that case V and U will contain the basis for the union of the
Krylov subspaces constructed at different frequency points.

3 LTV Systems

Let us consider the time-varying system (1) (omitting D(t)), where E(t), A(t), B(t),
C(t) are matrices of order compatible with x(t), u(t), and y(t) and are assumed to be
continuous functions of time. In integrated circuit applications, the most common origin
of LTV systems is by linearization of the nonlinear system of equations around a time-
varying operating point. We will discuss details of this linearization scheme in the next
subsection.

3.1 Analysis of LTV Signals

We consider the nonlinear system driven by a large signal bl and a small signal u(t), to
produce an output zt. For simplicity we assume that both u(t) and z(t) are scalars. Now
we model the nonlinear system using differential-algebraic equations, that describes the
circuit equations [15, 21, 4, 10, 11] and many other applications:

dq(v(t))
dt + f(v(t)) = bl(t) +Bu(t),

z(t) = cT v(t),
(14)

where v(t) represents the nodal voltages and branch currents, u(t) represents the input
source, q(.) and f(.) are nonlinear functions describing the charge/flux and resistive
terms, respectively, in the circuit. B(t) and C(t) contain vectors that link the input and
output to the rest of the system. In (14), voltage v(t) and input variable u(t) represent
the total quantities. Now we split them into two parts, a large signal part and a small
signal part [15, 14, 20], in order to obtain a LTV model,
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u = u(L) + u(s), v = v(L) + v(s). (15)

Now linearizing around the large signal part v(L) [15, 20, 21], we obtain a linear time-
varying system of the form

Ḡ(t)v(s) +
d

dt
(C̄(t)v(s)) = Bu(s)(t), (16)

where Ḡ(t) = ∂f(v(L))(t)/∂v(L) and C̄(t) = ∂q(v(L))(t)/∂v(L) are the time-varying con-
ductance and capacitance matrices, for the small response v(s). We can write (16) in a
more general form

Ḡ(t)v +
d

dt
(C̄(t)v) = Bu(t) (17)

for a small signal v. To relate to the standard notation, we may make the identification

E(t) = C̄(t), A(t) = −(Ḡ(t) + ˙̄C(t)).

3.2 Frequency-Domain Matrix of LTV System

Most of the work in model reduction for LTI systems has been done on the basis of
rational approximations of the frequency-domain transfer function. Thus motivated, we
adopt the formalism of L. Zadeh’s variable transfer functions [24] that were developed to
describe time-varying systems. In this formalism the response v(t) can be written as an
inverse Fourier transform of the product of a time-varying transfer function and Fourier
transform of u(t), u(ώ). That is,

v(t) =

∫ −∞
∞

h(iώ, t)u(ώ)eiώtdώ, (18)

where h(iώ, t) is the time-varying transfer function. To obtain the frequency-by-frequency
response, we assume u as a single-frequency input. For this reason we will express u in
terms of Delta function, u(ώ) = u(ω)δ(ω − ώ). Equation (18) then transforms to the
form

v(t) = h(iω, t)u(ω)eiωt. (19)

Writing s = iω and substituting into (10), we get an equation for h(s, t) as

Ḡ(t)h(s, t) +
d

dt
(C̄(t)h(s, t)) + sC̄(t)h(s, t) = B(t). (20)

Hence, the transfer path of the system from the input u(t) to the output y(t) can be
represented by the time-varying transfer function Φ(s, t) where,

Φ(s, t) = C(t)h(s, t). (21)

We consider here that the time-varying transfer functions are rational functions. Hence
it is reasonable that the reduced order model will be obtained from the same sorts
of rational approximations that have been suitable for the reduction of LTI systems.
Therefore, we first seek a representation of the transfer functions in terms of finite-
dimensional matrices.
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3.3 Discretization of Transfer Function

The rational matrix function can be obtained by discretizing (20). Since we focus our
work on LPTV systems, we need to specify C(t) and B(t) over a fundamental period
T . We construct a time-domain version of (20) by collocating h(s, t) over time samples
t ∈ [0, T ] at M sample time points t1, . . . , tM , with periodicity tM = T .

Using the linear multistep formula (e.g., backward Euler [21, 20]) and considering the
periodicity of h(s, t), i.e., h(s, t) = h(s, tM ), we get the representation of (20) in terms
of finite-dimensional matrices

(sETD −ATD)H(s) = BTD, (22)

with

ATD = −(GTD + ∆ETD), (23)

GTD =


Ḡ1

Ḡ2

. . .

ḠM

 , ETD =


C̄1

C̄2

. . .

C̄M

 , (24)

∆ =


1
41
I − 1

41
I

− 1
42
I 1
42
I

. . .
. . .

− 1
4M

I 1
4M

I

 , (25)

H(s) =
[
hT1 (s), hT2 (s), . . . , hTM (s)

]T
, (26)

BTD = [BT
1 , B

T
2 , . . . , B

T
M ]T , (27)

where Ḡj = Ḡ(tj), C̄j = C̄(tj), Bj = B(tj), hj(s) = h(s, tj), and 4j is the jth time
step.

Setting additionally
CTD = [C1C2 . . . CM ]T , (28)

where Cj = C(tj), the matrix of the baseband-referred transfer functions HTD(s) is
given by [14]

HTD(s) = CTDH(s) = CTD(sETD −ATD)−1BTD. (29)

Equation (29) is called the time-domain matrix form of of the LTV transfer functions.
The discretization procedure has converted the n dimensional time-varying system of
(20) to an equivalent LTI system of dimension N = nM , which is larger by a factor
equal to the number of time steps M in the discretization. Equation (29) can be used
directly for reduced-order modeling. At that point algorithmic approaches that can be
used for the model reduction of LTI systems, can be applied to matrices defined in
(23)-(29).
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3.4 Approximation by Krylov Subspace Methods

Following the work in [21], the transfer function for a small-signal steady-state response
of the periodic time-varying system is obtained by solving the finite-difference equations

C̄1
41

+ Ḡ1 − C̄M
41
· α(s)

− C̄1
42

C̄2
42

+ Ḡ2

. . .
. . .

− C̄M−1

4M

C̄M
4M

+ ḠM



ṽ(t1)
ṽ(t2)

...
ṽ(tM )

 =


B̃(s, t1)

B̃(s, t2)
...

B̃(s, tM )

 , (30)

where α(s) ≡ e−sT , T is the fundamental period, and B̃(s, tk) = estkB. The transfer
function h(s, t) is then given by h(s, t) = e−stṽ(t).

Although (30) can be solved using sparse matrix techniques, but we look for a more
efficient approach which exploits the fact that the matrix is mostly block lower triangular
and is typically solved for the shift of frequencies. To describe this approach, we first
find a suitable representation of (30) in the time-domain matrix form.

For this purpose, we decompose the coefficient matrix of (23) into two triangular parts,
ATD = L + U, where L be the nonsingular lower triangular portion and U is the upper
triangular portion of ATD in (23), i.e.,

L =


C̄1
41

+ Ḡ1

− C̄1
42

C̄2
42

+ Ḡ2

. . .
. . .

− C̄M−1

4M

C̄M
4M

+ ḠM

 , (31)

and

U =


0 . . . 0 − C̄M

41

0
. . . 0 0

...
. . .

...
0 . . . 0 0

 . (32)

Using the expressions for L and U, we can represent (30) in the time-domain matrix
form

(L + α(s)U)ṽ = B̃(s). (33)

If we define a small-signal modulation operator ψ(s),

ψ(s) =


Iest1

0 Iest2

. . .
. . .

0 IestM

 (34)
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then we obtain an expression of the transfer function as follows,

H(s) = ψH(s)ṽ(s) (35)

and also
B̃(s) = ψ(s)BTD.

Now we can obtain an approximation from the finite-difference discretization as

(sETD −ATD) ≈ ψH(s)[L + α(s)U]ψ(s). (36)

The difference between the two sides of (36) depends on the treatment of the small signal
that has been applied to the test. The left hand side represents a spectral discretization,
and the right hand side represents a finite-difference discretization.

It is briefly discussed in [13, 12] that the spectral form (22) that is amenable to model
reduction is less convenient to work with. If we use the Krylov subspace scheme and use
a lower-triangular preconditioner, at each different frequency point the preconditioner
must be reconstructed. That means we must re-factor the diagonal blocks, and the com-
putational cost as well as the problem size increases [21].

To resolve this dilemma assume the projection matrix V is not a basis for the Krylov
subspace generated by (sETD −ATD)−1, but instead for a nearby matrix. In that case,
the reduced-order model would still be a projection of the original, having some small
error in it. As long as the model is not evaluated in the neighborhood of a pole, it can be
expected that the additional errors introduced into the model are small enough. Hence,
instead of choosing the spectral form, the basis for the projector in the model reduction
procedure can be obtained from the finite-difference equations.

3.5 Preconditioning and Recycling of Krylov Subspaces

Our interest is to see how the finite difference method approximates the appropriate
basis V for the reduced-order system. Suppose we need to solve (33) for some differ-
ent B̃. Again following [21], consider preconditioning with the matrix L. Then the
preconditioned system can be written as

(I + α(s)L−1U)ṽ = L−1B̃(s) (37)

As L is lower triangular, its inverse is easily applied by factoring the diagonal blocks and
then back-solving. The structure of (37) suggests to explore the shift-invariance property
of Krylov subspaces [8]. It states the Krylov subspace of a matrix A is invariant with
respect to shifts of the form A→ A+ αI, for α being any nonzero scaler. This recycled
Krylov subspace method also enables us to use the same Krylov subspace to solve (37)
at multiple frequency points. In that context we would like to introduce the following
corollary to clarify the fact.
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Corollary 3.1 [21]
The Krylov subspace spanned by the vectors

{p0, (I + α(s)L−1U) p0, (I + α(s)L−1U)2 p0, . . . , (I + α(s)L−1U)m−1 p0} (38)

is identical to the Krylov subspace spanned by the vectors

{p0, (L−1U) p0, (L−1U)2 p0, . . . , (L−1U)m−1 p0} (39)

independent of α, where p0 is a vector.

Proof. The proof follows from the shift-invariance property of Krylov subspaces and
can be found in [8].

Hence, the subspace spanned by L−1U is invariant to shifts of the form
L−1U → I + α(s)L−1U, for α(s) being any nonzero scaler. The question now arises
as to how we make use of the result in Corollary 3.1 to solve (37), where the matrix and
the right hand side are functions of a variable (=swept) parameter. If we look inside
the problem (37), we see the matrix-vector products for different frequency changes in
this problem are constrained, and so previous iterative solutions can be exploited. To
see this, we look at the following representation for two different frequencies s and s̄ :

β(I + α(s) L−1U) p0 + γp0 = (I + α(s̄) L−1U) p0, (40)

where β = α(s̄)/α(s) and γ = 1−β. This implies that a matrix-vector product computed
using the matrix associated with frequency s can be converted into a matrix-vector
product using the matrix associated with frequency s̄ by a simple scalar multiplication.
Therefore, we have no extra cost to obtain the projectors from the expansions about
multiple frequency-points (due to the reason of the recycling scheme) compare to single
frequency-point expansions [9].
All these lead us to the proposed model reduction algorithm, Algorithm 1.

4 Outline of the Proposed Algorithm

In order to simplify the presentation, only real-valued expansion points are used in Al-
gorithm 1, and B(tj) is considered as a time-varying column vector for each time step.
The overall algorithm can be described in two stages. In the first stage, the algorithm
produces a matrix approximating the Krylov subspace for several si. Note that at each
iteration i ∈ [1, ns], Algorithm 1 generates m columns of the projection matrix V , where
m is the approximation-order of the Krylov subspace. Once the projection matrix V is
computed for several sk, it is used to construct the reduced-order model via the projec-
tion equations.

Suppose we start with a particular frequency s1 from a set of different frequencies. At
the beginning, Step 9 takes BTD as its right side vector and generates the first column
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of V . For the second column, it takes now ETD · v as its right side vector, where v
is the previous orthonormal column generated for V . The process continues until m is
reached for s1. For the next frequency s2, Step 9 computes the first column and then
orthonormalizes it with respect to all the previously computed orthonormalized columns
of V generated for s1 (such an orthonormalization is efficient and fruitful because of the
recycled Krylov scheme used for multiple expansion points). The total number of such
orthonormalized columns is counted by k and it is initialized at the beginning of the
algorithm.

As soon as the projection columns of V for a particular si are computed, the algorithm
run for the next frequency point. The projection matrix V is the union of all these
projections obtained for all si, where i runs form 1 to ns. Therefore, the number of
columns of the projection matrix V is m · ns. This can be expressed as

range(V ) =

ns⋃
i=1

K (L−1U, B̃(si)) (41)

Algorithm 1: Approximate Multipoint Krylov-Subspace Model Reduction
Input: ATD, ETD, BTD, CTD, ns,m.
Output: V, ÃTD, ẼTD, B̃TD, C̃TD.

1: Set k = 1
2: for i = 1 to ns do
3: for j = 1 to m do
4: if j=1 then
5: w = BTD

6: else
7: w = ETD vk−1

8: end if
9: u = ψH(si)[L+ α(si)U ]−1ψ(si)w

10: for l = 1 to k − 1 do
11: u = u− vTl u
12: end for
13: vk = u/‖u‖
14: k = k + 1
15: end for
16: end for
17: [V, R] = RRQR(V, τ)

18: ÂTD = −V TATD V , ÊTD = V TETD V ,

B̂TD = V TBTD, ĈTD = CTD V .

11



Remark 1 In Algorithm 1, Step 9 uses recycling technique to produce the projection
columns of V . It is clear from the context that if a preconditioner L is not used to solve
Step 9, each new vector in the model reduction is obtained by an inner Krylov iteration
with the matrix ATD . Also, each new right-hand-sides ui is generated for each sweep
of frequency si. Due to the shift-invariance property, since each new right-hand-side ui
in the model reduction procedure is drawn from a Krylov subspace of Km(ATD, BTD) for
some m, it is reasonable that the next term in the space of Ki(ATD, BTD) is related to
the Km(ATD, BTD), where i slightly exceeds m [12].

The net result of the algorithm is an N ×mns projection matrix V with orthonormal
columns. We use the rank revealing QR factorization (RRQR) [7] with prescribed tol-
erance τ for the formulation of the projected matrix V , because the matrix V , we have
obtained from the direct use of the proposed algorithm, has linear dependent columns.
The rank revealing QR factorization truncates those redundant constraints and produces
an orthonormal basis of the projected matrix for the reduced-order system. Last of all
the reduced-order system is generated through the projection with V .

5 Numerical Results

To test the time-varying model reduction procedure, the proposed algorithm has been
implemented in a time-domain RF circuit simulator. The large-signal periodic steady
state is calculated using a shooting method [20]. The LTV system is discretized using
second-order backward-difference formulas. The data files for both the following model
problems have been provided by Michael Striebel 1, former postdoctoral researcher, NXP
Semiconductors, High Tech Campus 37, NL-5656 AE Eindhoven, The Netherlands.

5.1 Simple RF Circuit

We consider here a simple example where the data is obtained from a small RF circuit
simulator. The circuit system consists of 5 nodes, and is excited by a local oscillator
(LO) at 2 KHz driving the mixer, while the RF input is fed into the I-channel buffer. The
time-varying system is obtained around a steady state of the circuit at the oscillatory
frequency; a total of M = 129 timesteps are used to describe the steady-state waveform.
For the model reduction procedure, the input function B(t) is a constant column vector,
corresponding to the continuous small-signal input. To analyze the circuit, we consider
a period of T = 1ms for the steady state analysis. The final discretized model is a real
LTI system of order N = 645.

The assigned algorithm produces a very good approximation of the original model for
multiple frequency points. Three different expansion points on the positive real axis at
s = 2kHz, 4kHz, 6kHz are considered. The reduced-order model is generated by match-
ing four moments of the Krylov subspace generated for every expansion point. We use

1Current address: Bergische Universität Wuppertal, Fachbereich C, Gaußstraße 20, 42119 Wupper-
tal (michael.striebel@math.uni-wuppertal.de)
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Figure 1: Frequency response of transfer function: exact system versus reduced-order
system of order r = 3 (RF circuit).

the rank revealing QR factorization for the formulation of the projected matrix with
tolerance, tol = 10−5.

We obtain a reduced-order model of order r = 3 . The computing time for the reduced
model is very small and efficient compared to the original model. We plot the frequency
response of the transfer functions for both the original and reduced-order systems and
compare the relative error. Fig. 1 shows a very nice matching of the baseband transfer
functions HTD(s) and ĤTD(s), and the relative error in Fig. 2 is very small. The Bode
diagram and the step response in Fig. 3 and Fig. 4 show the better efficiency of the
reduced-order model.

5.2 Mixer Circuit

In this example, we apply the proposed algorithm on a multi-tone mixer circuit, consist-
ing of several functional component blocks. The circuit generates 43 equations in the
circuit simulator. 201 timesteps are needed for time-domain analysis, so that the matrix
ATD has rank N = 8643.

The mixing elements shift the input from the RF frequency to the mixer LO frequency.
For the model reduction procedure, the input function B(t) is chosen to be a constant
column vector, corresponding to the continuous small-signal input. To analyze the cir-
cuit, a periodic steady state analysis is run with a T = 1ns period.

13



Figure 2: Error in the frequency response of transfer function of reduced-order sys-
tem (RF circuit).

Figure 3: Bode plots for the exact system and the reduced-order system of order
r = 3 (RF circuit).
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Figure 4: Step response for exact system and the reduced-order system of order
r = 3 (RF circuit).

Figure 5: Transfer function: exact system versus reduced-order system of order
r = 4 (Mixer circuit).
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Figure 6: Error in the frequency response of transfer function of reduced-order sys-
tem (Mixer circuit).

The proposed algorithm produces a very good approximation of the original model
for multiple frequency points. Five different expansion points on the positive real axis
in the range from s=2MHz to 6MHz are used. The reduced-order model is generated by
matching six moments of the Krylov subspace generated for every expansion point. We
use the RRQR factorization for the formulation of the projected matrix with tolerance
tol = 10−6.

We obtain a reduced-order model of order r = 4. The computing time for the reduced-
order model is only 0.0037 CPU seconds, while the original model took almost 8 × 103

CPU seconds. We plot the transfer functions for both the original and reduced-order
systems in Fig. 5 and depict their relative error in Fig. 6. Both the transfer functions
match and the relative error is very small. In addition, the plotted Bode diagram and
the step response in Fig. 7 and Fig. 8 show the better efficiency of the reduced-order
model.

6 Discussion

The system model-design applied here is efficient for small-signal analysis and time
parameters. Therefore the model is capable of representing very complicated physical
dynamics in circuit problems. We observe that the proposed algorithm produces a very
good approximation of the original model and the reduced-order model is very small and
efficient compared to the original model.

There are several scopes for the future extensions of the ideas of this section. The
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Figure 7: Bode plots for the exact system and the reduced-order system of order
r = 4 (Mixer circuit).

Figure 8: Step responses for the exact system and the reduced-order system of order
r = 4 (Mixer circuit).
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formalism and algorithms can be trivially extended to the case of quasi-periodic small
signal analysis [23].
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