
Peter Benner Thomas Mach

The LR Cholesky Algorithm for Symmetric

Hierarchical Matrices

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Max Planck Institute Magdeburg

Preprints

MPIMD/12-05 February 28, 2012

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for Dynamics of Complex
Technical Systems

Address:
Max Planck Institute for Dynamics of
Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC HIERARCHICAL

MATRICES

PETER BENNER AND THOMAS MACH

Abstract. We investigate the application of the LR Cholesky algorithm to symmetric hierar-

chical matrices, symmetric simple structured hierarchical matrices and symmetric hierarchically

semiseparable (HSS) matrices. The data-sparsity of these matrices make the otherwise expen-
sive LR Cholesky algorithm applicable, as long as the data-sparsity is preserved. We will see in

an example that the data-sparsity of hierarchical matrices is not well preserved.

We will explain this behavior by applying a theorem on the structure preservation of diagonal
plus semiseparable matrices under LR Cholesky transformations. Therefore we have to give a

new more constructive proof for the theorem. We will show that the structure of H`-matrices
is almost preserved and so the LR Cholesky algorithm is of almost quadratic complexity for

H`-matrices.

1. Introduction

The LR algorithm and its symmetric version, the LR Cholesky algorithm, were invented by
Rutishauser in the 1950s [Rut55, Rut58, RS63]. They are the predecessors of the QR algorithm,
one of the most often used algorithms for the computation of the eigenvalues of a matrixM , see, e.g.
[GV96, BDD+00, Wat07]. In the last years, QR-like algorithms have been developed for computing
the eigenvalues of semiseparable matrices [Fas05, DV05, DV06, VVM05a, VVM05b, BBD11]. All
these algorithms are used to solve the eigenvalue problem, the computation of eigenpairs (λ, v)
solving

Mv = λv.

We focus on the symmetric eigenvalue problem, there M is symmetric, M = MT . Further we
assume M ∈ Rn×n. These assumptions ensure that all eigenpairs are real, (λ, v) ∈ R × Rn, see,
e.g., [Par80].

Here we will investigate the application of the LR Cholesky algorithm to symmetric hierarchical
matrices. Hierarchical matrices are an important class of data-sparse matrices. Data-sparse means
that a dense matrix is represented with an almost linear amount of data. The semiseparable
matrices are data-sparse, too. The further relationship between semiseparable and hierarchical
matrices will be explained in Subsection 3.3.

As the operations required by an LR transformation can be performed efficiently in the arith-
metic for hierarchical matrices, this gives rise to the hope of the existence of an LR algorithm for
computing all eingevalues of hierarchical matrices with almost quadratic complexity. This would
require that the block-ranks in in the hierarchical data format remain bounded. The aim of this
paper is to investigate this hypothesis and to show eventually that it is not true.

Hierarchical matrices are an efficient way to handle a large class of dense matrices, e.g discretiza-
tions of partial differential operators and their inverses. Recently different eigenvalue algorithms
for symmetric hierarchical matrices have been investigated, see [BM12a, BM12b]. In the next

Date: March 2, 2012.
Peter Benner, Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in

Systems and Control Theory, Sandtorstr. 1, 39106 Magdeburg, Germany, and Technische Universität Chemnitz,

Fakultät für Mathematik, Reichenhainer Str. 41, 09126 Chemnitz, Germany, benner@mpi-magdeburg.mpg.de.
Thomas Mach (corresponding author), Max Planck Institute for Dynamics of Complex Technical Systems,

Computational Methods in Systems and Control Theory, Sandtorstr. 1, 39106 Magdeburg, Germany, thomas.

mach@googlemail.com.

1

benner@mpi-magdeburg.mpg.de
thomas.mach@googlemail.com
thomas.mach@googlemail.com

2 PETER BENNER AND THOMAS MACH

subsections we will briefly introduce the LR Cholesky algorithm and the concept of hierarchical
matrices.

1.1. LR Cholesky Algorithm. The QR algorithm consists of QR iterations basically of the
form

Qi+1Ri+1 = fi(Mi),

Mi+1 = Q−1
i+1MiQi+1.

The iteration converges towards a (block-) diagonal matrix with the eigenvalues on the (block-)
diagonal. This works for many other decompositions M = GR, too [WE95, BFW97]. The matrix
G has to be non-singular and R upper-triangular. The algorithm of the form

Gi+1Ri+1 = fi(Mi),

Mi+1 = G−1
i+1MiGi+1,

is called GR algorithm driven by f [Wat00]. The functions fi are used to accelerate the con-
vergence. For instance fi(M) = M − µiI is used in the single shift iteration and fi(M) =
(M − µi,1I)(M − µi,2I) · · · (M − µi,dI) yields a multiple-shift strategy.

We will assume that M is positive definite, so that the Cholesky decomposition can be used.
The LR Cholesky algorithm consists of LR Cholesky transformations:

Li+1L
T
i+1 = Mi − µiI

Mi+1 = L−1
i+1MiLi+1 = L−1

i+1

(
Li+1L

T
i+1 + µiI

)
Li+1 = LT

i+1Li+1 + µi.
(1)

The LR (Cholesky) algorithm is the historically first invented GR algorithm. In order to shorten
the notation, we will call the operator, which gives us the next iterate LRCH,

Mi+1 =: LRCH(Mi).

In the next subsection we will briefly explain the structure of hierarchical matrices.

1.2. Hierarchical Matrices. The concept of hierarchical, short H-, matrices was introduced
by Hackbusch in 1998 [Hac99]. Hierarchical matrices enable us to compute data-sparse approxi-
mations of linear-polylogarithmic storage complexity to a wide range of dense matrices, see e.g.
[Hac09] for examples. We give here only a really brief review of the properties of hierarchical
matrices, for more details, exact definitions and theorems see e.g. [GH03, BGH03].

The basic idea of the H-matrix format is to use a hierarchical structure to find and access sub-
matrices with good low-rank approximations and to use them to reduce their storage amount and
the computation time involving these submatrices. These low-rank approximations make the H-
matrix format data-sparse. The need for truncation in order to close the class of H-matrices under
addition, multiplication and inversion renders formal H-arithmetic an approximative arithmetic.

The blocks of low rank are called admissible and the smaller, dense ones, inadmissible. There
is an admissibility condition telling us which blocks are admissible, and which blocks need further
subdivision. Blocks which are in one dimension smaller than nmin will be stored as dense matrices,
since a further subdivision would not increase the computational efficiency.

The basic assumption is that there is a hierarchical structure in the background, which enables
us to find and access the submatrices. This hierarchical structure is important for the storage
efficiency, a hierarchical matrix M typically requires a storage of O(kn log n), where n is the size
of the matrix and k the maximal block-wise rank. Further there is a lot of formatted arithmetic
requiring only linear-polylogarithmic complexity (M1,M2 are H-matrices, v ∈ Rn):

M1 ∗H v : NH∗v(TI×I , k) ∈ O(kn log n),

M1 +HM2,M1 −HM2 : NH+H(TI×I , k) ∈ O(k2n log n),

M1 ∗HM2, (M1)
−1
H ,HLU(M1) : NH∗H/NH−1/NLU(H) ∈ O(k2n log2 n).

These arithmetic operations (and a lot more) are implemented in the Hlib [HLi09], which we use
for the numerical examples.

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 3

A8B
T
8

B8A
T
8

A4B
T
4

B4A
T
4

A12B
T
12

B12A
T
12

A2BT
2

A6BT
6

A10BT
10

A14BT
14

B2AT
2

B6AT
6

B10AT
10

B14AT
14

F1

F3

F5

F7

F9

F11

F13

F15

Figure 1. Structure of an H3(k)-matrix.

We will use fixed accuracy H-arithmetic, so we choose the block-wise rank in each truncation
with respect to the given accuracy ε. The costs of the H-arithmetic depends on the maximal
block-wise rank k. Thus in fixed accuracy H-arithmetic the costs depend on log ε.

The H-matrices with a simple structure analogous to Figure 1 are called H`-matrices, with `
the depth of the hierarchical structure.

Here we will use the Cholesky decomposition [Gra01, Beb08], the QR decomposition [BM10]
and the matrix-matrix product for H-matrices. Since the arithmetic operations for hierarchical
matrices are of almost linear complexity and in general O(n) iterations are required to find all n
eigenvalues, we expect to get an algorithm of almost quadratic complexity.

Like in the dense case, where one uses matrices of Hessenberg form, we require that the structure
of M is preserved under LR Cholesky transformations. We will see that this is not the case for
H-matrices. So we will not present an algorithm of almost quadratic complexity, but an argument
why such an algorithm does not exist for general H-matrices. In the case of H`-matrices we will
show that the structure is almost preserved, so that we finally get an eigenvalue algorithm of
almost quadratic complexity for a subset of H-matrices

In Section 2 we describe a numerical experiment, demonstrating the performance of the LR
Cholesky algorithm for H-matrices. We will see that the ranks of the admissible blocks are not
preserved under LR Cholesky transformation. Afterwards, we give a new proof for the fact that
diagonal plus semiseparable matrices are invariant under LR Cholesky transformation and use
this proof to explain why the algorithm works for tridiagonal, band and H`-matrices, but not
for general H-matrices. The result for H`-matrices is substantiated in Section 4 by numerical
experiments. In Section 5 we extend our new proof to the unsymmetric case.

2. LR Algorithms for Symmetric H-Matrices

2.1. LR Cholesky Transformations. We will use the LR Cholesky transformation [Rut58],
since M is symmetric, see Equation (1). The matrix fi(Mi) has to be symmetric positive definite,
since otherwise the Cholesky factorization does not exist. Special shift strategies ensure this, see
[Rut60, Wil65]. But it is not necessary to be too rigorous, because the Cholesky factorization will
detect negative eigenvalues and this will give a new upper bound for the shifts and maybe a new

4 PETER BENNER AND THOMAS MACH

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 16
11 8

9 16 11

11 16

61

9 7
3 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

11
6 5

15 6
13

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 6
13

13

7

13 8

8 11

5 8
11

11

6 15

5 6

61
10 10
3

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 11
10

10 16

15 9

8 11
10

10 16

51
10 10

7 9 7
3 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 8
11 8

8 15 9

8 15
12 13

13

10 7

13 8

8 11 9

9 15 11
19

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 11
11

10

11 8

8 15 8

9 15

7 12 13

13
10

13 8

8 11 8

9 15

7 11
20

19

9

13 9

8

11 8

8 15

7 11 12

12
9

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 6
3 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 8
12

13

6 5

13 6 11

11 23

6 13

5 6 12

11
8

11 8

8 15

5 8
13

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 10
61

15 10

10
15 9

9 11

15 10

10
15 9

8 11

20 9

9 34

9 7

10 13

9 10

7 13
51

22

3 3

7 10

3 7

3 10

19 10

10 31

14 8

11 11

14 11

8 11

19 10

10 31 11

11 31

11 9

9 16 12

11 16
11 8

9 16 11

11 16

61

9 7
3 3

8

11 11

9 3

7 3

11

8 11

25 10

10 19 11

11 31

8 5

11 8

8 15 8 12

11
6 5

15 6
13

13

7 5

13 8

8 11 8 11

11

6 5

15 6

8

11 8

8 15

5 8 11

12

6 15

5 6
13

13

7

13 8

8 11

5 8
11

11

6 15

5 6

61
10 10
3

6 14

10 3 6

10 14

25 10 6

10

6

19 10

10 31

15 9

9 11
10

10 16

15 9

8 11
10

10 16

51
10 10

7 9 7
3 3

10 7

10

9 3

7 3

25 11

11

25 10

10 19

11 8
11 8

8 15 9

8 15
12 13

13

10 7

13 8

8 11 9

9 15 11
19

20

10 7

13 8

9

11 8

8 15 11 12

13

9 7

13 8

9

13 8

8 11
11

10

11 8

8 15 8

9 15

7 12 13

13
10

13 8

8 11 8

9 15

7 11
20

19

9

13 9

8

11 8

8 15

7 11 12

12
9

13 9

8

13 8

8 11

7 11

39 10

10 25

3 7

3 10 10

7 10 6
3 3

7 10 7

10

10

6

22

3 3

7 10

3 7

3 10

19 10

10 31

15 10

11

11 9

9 16

15 11

10

11 8

9 16

34 10

10 25

13 10

7 11

13 7

10 11 61

6 5

13 6 11

12

8 5

11 8

8 15 8
12

13

6 5

13 6 11

11 23

6 13

5 6 12

11
8

11 8

8 15

5 8
13

12

6 13

5 6 10

11 23

20 9

9 39

9 7

10

3 7

3 10

9 10

7

3 3

7 10
61

15 10

10
15 9

9 11

15 10

10
15 9

8 11

20 9

9 34

9 7

10 13

9 10

7 13
51

Figure 2. Examples for deflation.

lower bound, see [Rut60]. We prefer the computation of the shift by five steps of inverse iteration

yi+1 := L−TL−1µiyi, µi+1 =
1

‖yi+1‖2
, i = 1, . . . , 5,

and since this would lead to an approximation of the smallest eigenvalue from above we subtract
a multiple of the error estimation ∥∥∥∥M−1y5 −

1

µ5
y5

∥∥∥∥
2

.

If the smallest eigenvalue is found, we have to deflate in order to continue with a matrix, whose
smallest eigenvalue is larger. We will deflate if the norm of the last line except the diagonal element
is lower a given εdeflation. A second type of deflation is detected if all H-matrix blocks in Mi:n,1:i−1

have block-rank 0. For example, the matrix will be deflated if the gray marked blocks in Figure 2
are of block-wise rank 0 (w.r.t. a prescribed deflation tolerance). If there is only one inadmissible
block left after deflation, then we use the LAPACK [ABB+99] dense eigenproblem solvers for the
remaining matrix.

We implement all these steps using the Hlib1.3 [HLi09]. We test our code with an example
series out of the Hlib1.3, the finite element discretization matrices of the 2D Laplacian on the
unit square. We will call these matrices FEMX, where X is the number of discretization points in
each direction. Since the eigenvalues of these matrices are known, we can compare the computed
eigenvalues with the exact ones. The algorithm computes approximations to the eigenvalues within
the expected error tolerance of H-arithmetic accuracy ε = 10−5 times the number of steps, see
Table 1.

But our matrix has too many dense blocks after 10 steps, see Figure 3. Each square represents
a leave of the hierarchical product tree resp. a submatrix. Inadmissible leaves are red (dark gray).
Admissible leaves are green (light gray). The dark green (dark gray) leaves are of full rank but
stored in the rank-k format since the block was admissible in the original matrix. The number
inside the square is the rank of the submatrix. The vertical bars inside the square show the
singular values of the submatrix on a logarithmic scale, where the lower edge is 10−5, the chosen
H-arithmetic accuracy.

The arithmetic for the dense blocks has cubic complexity. The dense blocks have together a
size of O(n) × O(n), so that the complexity of the whole algorithm is not almost quadratic but
cubic, see again Table 1.

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 5

32 8

8 32

4

4

4

4

32 8

8 32

8

8

8

8

32 8

8 32

4

4

4

4

32 8

8 32

4

4

4

4

4

4

4

4

32 8

8 32

4

4

4

4

32 8

8 32

8

8

8

8

32 8

8 32

4

4

4

4

32 8

8 32

8

8

8

8

8

8

8

8

32 8

8 32

4

4

4

4

32 8

8 32

8

8

8

8

32 8

8 32

4

4

4

4

32 8

8 32

4

4

4

4

4

4

4

4

32 8

8 32

4

4

4

4

32 8

8 32

8

8

8

8

32 8

8 32

4

4

4

4

32 8

8 32

32 11

11 32

4

12 9

4 12

9

32 15

15 32

8

17
4 4

25 6

8

17

4 25

4 6

32 31

31 32

32 3

32 32

32 32

3 32

32 32

32 32

4

8 4

27
7 6

23 19

32 32 12

4 8

4

27

7
23 32

19 32

6 12

32 32

32 32

25 29

32 32

25 32

29 32

32 28

28 32

32 32

32 32 7

19
28 30

31 31

32 32

32 32 19

7
28 31

30 31

32 32

32 32

32 32

32 32

32 32

32 32

32 32

32 32

8

15 8

33 8

16 8

8

15

8

33
8

16

8

32 32

32 32

32 7

32 32

32 32

7 32

32 32

32 32

17 16

25 14 6

24
32 32

32 32

17 25

16 14 24

6
32 32

32 32

32 32

32 32

32 32

32 32

32 32

32 32

32 32

32 32

9 4

17 7

32 11 5

31 4

10 4

9
17 32

7 11

4 5 31
4 10

4

32 32

32 32

32 32

32 32

32 32

32 32

32 32

32 32

10 4

18 4

26 8

10 18

4 4 26

8

32 32

32 32

10

17 4

10 17

4

32 11

11 29

Figure 3. Structure of FEM32 (left) and FEM32 after 10 steps of LR Cholesky
transformation (right).

Name n ti in s ti/ti−1 rel. Err. Iterations
FEM8 64 0.05 1.5534 e−08 101
FEM16 256 4.09 82 5.2130 e−07 556
FEM32 1 024 393.73 96 5.2716 e−06 2 333
FEM64 4 096 45 757.18 116 1.6598 e−03 10 320

Table 1. Numerical results for the LR Cholesky algorithm applied to FEM-series.

2.2. QR Algorithm. The QR algorithm has some advantages compared with the LR Cholesky
transformation. The QR algorithm can be used for non-symmetric and indefinite matrices, too.
This allows the usage of any shift. Further one can show that one QR iteration is equivalent to
two LR Cholesky iterations [Xu98].

Since both algorithms are equivalent in a sense it is not surprising that the QR algorithm also
leads to too many blocks of full rank. For the FEM32 example, this state lasts a few hundred
iterations before the convergence towards a diagonal matrix starts to reduce the ranks of most
off-diagonal blocks, like in the LR Cholesky transformation. This effect of the convergence is too
late, since the decomposition of an H-matrix with submatrices of full rank covering n/4 × n/4
leads to a complexity of O(n3).

Obviously the algorithm does not have an almost quadratic complexity. In the next section we
will explain this behavior.

3. Structure Preservation under LR Cholesky Transformation

In this section we will prove that the structure of symmetric diagonal plus semiseparable ma-
trices of rank r is preserved under LR Cholesky transformations.

Definition 3.1. (diagonal plus semiseparable matrix)
Let M = MT ∈ Rn×n. If M can be written (using MATLAB® notation) in the form

M = diag (d) +

r∑
i=1

(
tril
(
uiviT

)
+ triu

(
viuiT

))
,(2)

with d, ui, vi ∈ Rn, then M is a symmetric (generator representable) diagonal plus semiseparable
matrix of rank r. We say M is a dpss matrix for short.

6 PETER BENNER AND THOMAS MACH

Obviously this representation of M is storage efficient only for r < n. We will also use this
notation if r is larger than n, so that H-matrices fit in this definition, too, see Section 3.3.

The following theorem will be applied to matrices of various structure. We will give an expla-
nation why the LR Cholesky algorithm is efficient for tridiagonal and band matrices as well as for
rank structured matrices and is inefficient for general hierarchical matrices. Further we will show
that a small increase in the block-wise rank is sufficient to use the LR Cholesky transformation
for H`-matrices.

A similar theorem on the structure preservation of dpss matrices under QR transformation is
proven in [Fas05], but we need a more constructive proof here. Also Theorem 3.1 in [PVV08] is
not suitable for our argumentation, since the theorem deals with dpss matrices in Givens-vector
representation, but we will use ideas of their proof here.

Theorem 3.2. Let M be a symmetric positive definite diagonal plus semiseparable matrix, with
a decomposition like in Equation (2). The Cholesky factor L of M = LLT can be written in the
form

L = diag
(
d̃
)

+

r∑
i=1

tril
(
uiṽiT

)
.(3)

Multiplying the Cholesky factors in reverse order gives the next iterate, N = LTL, of the Cholesky
LR algorithm. The matrix N has the same form as M ,

N = diag
(
d̂
)

+

r∑
i=1

(
tril
(
ûiṽiT

)
+ triu

(
ṽiûiT

))
.(4)

Proof. The diagonal entries of L fulfill:

Lpp =
√
Mpp − Lp,1:p−1LT

p,1:p−1,

d̃p +
∑
i

uipṽ
i
p =

√
dp +

∑
i

2uipv
i
p − Lp,1:p−1LT

p,1:p−1.(5)

This condition can easily be fulfilled when p = 1. Furthermore there is still some freedom for
choosing ṽi1 if we choose d̃p adequately.

The entries below the diagonal fulfill:

L1:p−1,1:p−1L
T
p,1:p−1 = M1:p−1,p

L1:p−1,1:p−1L
T
p,1:p−1 =

∑
i

vi1:p−1u
iT
p .

If we define ṽi1:p−1 by

L1:p−1,1:p−1ṽ
i
1:p−1 = vi1:p−1,(6)

then Lp,1:p−1 =
∑

i u
i
pṽ

iT
1:p−1 and the above condition is fulfilled. The diagonal diag

(
d̃
)

result

from (5). So the Cholesky factor has the form as in Equation (3).
The idea of first choosing ṽip by computing the next row of the Cholesky decomposition before

we compute the diagonal entry of the last row, is borrowed from [PVV08, Proof of Theorem 3.1].
The next iterate N is the product LTL. We have

N = LTL

=

(
diag

(
d̃
)

+
∑
i

tril
(
uiṽiT

))T (
diag

(
d̃
)

+
∑
i

tril
(
uiṽiT

))
= diag

(
d̃
)

diag
(
d̃
)

+
∑
i

diag
(
d̃
)

tril
(
uiṽiT

)
+
∑
i

tril
(
uiṽiT

)T
diag

(
d̃
)

+

+
∑
i

∑
j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 7

ui =



0
...
0
?
...
?
0
...
0


 ũi =



0
...
0
?
...
?
0
...
0


 ûi =



?
...
?
?
...
?
0
...
0


vi =



0
...
0
?
...
?
0
...
0


 ṽi =



0
...
0
?
...
?
?
...
?


Figure 4. Sparsity pattern of ûi and ṽi.

We will now show that tril (N,−1) =
∑

i tril
(
ûiṽiT ,−1

)
:

tril (N,−1) =
∑
i

diag
(
d̃
)

tril
(
uiṽiT ,−1

)
+ tril

∑
i

∑
j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)
,−1

 .

The other summands are zero in the lower triangular part. Define ũip := d̃pu
i
p, ∀p = 1, . . . , n. So

we get

tril (N,−1) =
∑
i

tril
(
ũiṽiT ,−1

)
+ tril

∑
i

∑
j

tril
(
uj ṽjT

)T
tril
(
uiṽiT

)︸ ︷︷ ︸
:=T ji

,−1

 .

We have T ji
pq = ṽjpu

jT
p:nu

i
p:nṽ

iT
q , if p > q. It holds that

ujTp:nu
i
p:n =

[
0 · · · 0 ujp ujp+1 · · · ujn

]
ui.

We define a matrix Z by

Zg,h :=

{∑
j ṽ

j
gu

j
h, g ≤ h,

0, g > h.

Thus,

Zp,: =
∑
j

ṽjp

[
0 · · · 0 ujp ujp+1 · · · ujn

]
.

Finally we get

tril (N,−1) =
∑
i

tril
((
ũi + Zui

)
ṽiT ,−1

)
=
∑
i

tril
(
ûiṽiT ,−1

)
.(7)

Since N is symmetric, the analogue is true for the upper triangle. �

Remark 3.3. An analog proof, see Section 5, exists for the unsymmetric case, where the semisep-
arable structure is preserved under LU transformations.

Theorem 3.2 tells us that N = LRCH(M) is the sum:

N = diag
(
d̂
)

+

r∑
i=1

(
tril
(
ûiṽiT

)
+ triu

(
ṽiûiT

))
,

with ṽi being the solution of

Lṽi = vi,

8 PETER BENNER AND THOMAS MACH

where L is a lower triangular matrix and

ûi :=
(
Z + diag

(
d̂
))

ui,

and Z is an upper triangular matrix. We define the set of non-zero indices of a vector x ∈ Rn by

SP (x) = {i ∈ {1, . . . , n}|xi 6= 0}

Let iv be the smallest index in SP (vi). Then in general SP (ṽi) = {iv, . . . , n}. The sparsity
pattern of ṽi is

SP (ṽi) =
{
p ∈ {1, . . . , n}

∣∣∃q ∈ SP (vi) : q ≤ p
}
.

Since ũip = d̃pu
i
p, we have SP (ũi) = SP (ui). It holds that ûi 6= 0 if either ũi 6= 0 or there is a

j such that βji
p ṽ

j
p 6= 0. The second condition is in general (if r is large enough) fulfilled for all

p ≤ maxq∈SP (ui) q. The sparsity patterns of the vector ûi is

SP (ûi) =
{
p ∈ {1, . . . , n}

∣∣∃q ∈ SP (ui) : p ≤ q
}
.

The sparsity pattern of ûi and ṽi are visualized in Figure 4.
Theorem 3.2 shows that the structure of diagonal plus semiseparable matrices is preserved under

LR Cholesky transformations. In the following subsections we will use the theorem to investigate
the behavior of tridiagonal matrices, matrices with rank structures, H-matrices and H`-matrices
under LR Cholesky transformations.

We assume in the following subsections that M is symmetric positive definite, so that the
Cholesky decomposition of M is unique.

3.1. Tridiagonal Matrices. Let M now be a symmetric tridiagonal matrix. This means Mij =
Mji and Mji = 0 if |i− j| > 1. The matrix M can be written in the form of Equation (2). We
have d = diag (M) and

ui = Mi+1,iei+1,

vi = ei,

where ei is the ith column of the identity matrix.
The matrix N = LRCH(M) is again tridiagonal, since tril

(
ûiṽiT

)
has only non-zero entries for

the indices (i, i), (i+ 1, i) and (i+ 1, i+ 1).
An analog argumentation for band matrices with bandwidth 2b exists, if

ui =
[
0 · · · 0 MT

i+1:i+b,i 0 · · · 0
]T
.

3.2. Matrices with Rank Structure. Following [DV05] we define a rank structure by a quadru-
ple (i, j, r, λ). A matrix M satisfies this rank structure if

rank
(

(M − λI)i:n,1:j

)
≤ r.

In [DV05] it is proven that the rank structures of M are preserved under QR transformation. This
rank structure is also preserved under LR Cholesky transformations, since M can be written as
diagonal-plus-semiseparable matrix. Therefore we use

tril (M − λI) = tril

([
M̃11 M̃12

ABT M̃22

])
with the low-rank factorization ABT = (M − λI)i:n,1:j . This leads to

tril (M − λI) = tril

([
0
A

] [
BT 0

])
+ tril

([
I
0

] [
M̃11 M̃12

])
+ tril

([
0
I

] [
0 M̃22

])
.

After the LR Cholesky transformation we get:

tril (N) = tril

([
?
?

] [
? ?

])
+ tril

([
?
0

] [
? ?

])
+ tril

([
?
?

] [
0 ?

])
+ diag (d) .

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 9

In the first summand, we have still a low-rank factorization with rank r. The other summands
are zero in the lower left block, so that the rank structure is preserved.

3.3. H-Matrices. Let M = MT now be a symmetric H-matrix, with a symmetric hierarchical
structure. Under a symmetric hierarchical structure, we will understand that the blocks M |b,
where b = s× t, and M |bT , where bT = t× s, are symmetric, so that bT is admissible if and only

if b is admissible. Further, we assume M |b = ABT =
(
BAT

)T
= (M |bT)

T
, so that the ranks are

equal, kb = kbT . Since the Cholesky decomposition of M leads to a matrix with invertible diagonal
blocks of full rank, we assume that the diagonal blocks of M are inadmissible. Further, all other
blocks should be admissible. Inadmissible non-diagonal blocks will be treated as admissible blocks
with full rank.

The matrix M can now be written in the form of Equation (2). First we rewrite the inadmissible
blocks. We choose block b = s× s and the diagonal of M |b forms d|s. For the off-diagonal entries
Mpq and Mqp, we have |p− q| ≤ nmin. We need at most nmin − 1 pairs (ui, vi) to represent the
inadmissible block by the sum

diag (d) +
∑
i

tril
(
uiviT

)
+ triu

(
viuiT

)
.

We choose the first pair, so that the first columns of u1v1T and M |b are equal. The next pair
u2v2T has to be chosen so that it is equal to M |b − u1v1T in the second column, and so on.
Like for block/band matrices, these pairs from inadmissible blocks do not cause problems to the
H-structure, since tril

(
ûiṽiT

)
has non-zero entries only in the s× s = b block and this block is an

inadmissible block anyway.
Further we have admissible blocks. Each admissible block in the lower triangular is a sum of

products:

M |b = ABT =

kb∑
j=1

Aj,· (Bj,·)
T
.

For each pair (Aj,·, Bj,·) we introduce a pair (ui, vi) with uiT =
[
0 · · · 0 AT

j,· 0 · · · 0
]

and

viT =
[
0 · · · 0 BT

j,· 0 · · · 0
]
, so that M |b =

∑
uiviT

∣∣
b
.

After this has been done for all blocks, we are left with M in the form of Equation (2) with, what
is most likely to be, an upper summation index r � n. under LR Cholesky transformation is not
sufficient for the preservation of theH-matrix structure. Further, we require the preservation of the
sparsity pattern of ui and vi, since otherwise the ranks of other blocks are increased. Exactly this
is not the case for general H-matrices, since these pairs have a more general structure and cause
larger non-zero blocks in N , as shown in Figure 4. The matrix M has a good H-approximation,
since for all i: tril

(
uiviT

)
has non-zeros only in one block of the H-product tree. In the matrix N ,

the summand tril
(
ûiṽiT

)
has non-zeros in many blocks of the H-product tree and we would need

a rank-1 summand in each of these blocks to represent the summand tril
(
ûiṽiT

)
correctly. This

means that the blocks on the upper right hand side of the original blocks have ranks increased by
1. Since this happens for many indices i, recall r � n, many blocks in N have full or almost full
rank. In short N is not representable by an H-matrix of small block-wise rank resp. the H-matrix
approximation property of M is not preserved under LR Cholesky transformations.

3.4. H`-Matrices. H`-matrices are H-matrices with a simple structure. Let M be an H`-matrix
of rank k, so that on the highest level we have the following recursive structure:

M =

[
M11 ∈ H`−1 BAT

ABT M22 ∈ H`−1

]
Like in the previous subsection we introduce k pairs (ui, vi) for each rank-k-submatrix ABT . These
pairs have the following structure:

uiT =

[
0 · · · 0

(
A|i,·

)T]
and viT =

[(
B|i,·

)T
0 · · · 0

]
,

10 PETER BENNER AND THOMAS MACH

tril
(
uiviT

)
=



0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 ? ? 0 0 0
0 0 ? ? 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


 tril

(
ûiṽiT

)
=



0
0 0
0 0 ?
0 0 ? ?
0 0 ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ? ?
0 0 ? ? ? ? ? ?
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Figure 5. Example for sparsity patterns of tril

(
uiviT

)
and tril

(
ûiṽiT

)
.

k

k

2k

2k

2k

2k

3k

3k

3k

3k

3k

3k

3k

3k

F1

F3

F5

F7

F9

F11

F13

F15

Figure 6. Ranks of an H3(k)-matrix after LR Cholesky transformation.

and so the sparsity patterns are

ûiT =
[
? · · · ? ? · · · ?

]
and ṽiT =

[
? · · · ? ? · · · ?

]
,

after the LR Cholesky transformation. Like for matrices with rank structure, the non-zeros from
the diagonal blocks do not spread into the off-diagonal block of ABT . The rank of the off-diagonal
block on the highest level will be k, as shown in Figure 6.

The rank of the blocks on the next lower level will be increased by k due to the pairs from the
highest level. By a recursion we get the rank structure from Figure 6, where the blocks Fi are
dense matrices of full rank.

So the structure of H`(k)-matrices is not preserved under LR Cholesky transformations, but
the maximal block-wise rank is bounded by `k. Since the smallest blocks have the largest ranks,
the storage required by the low-rank parts of the lower triangular part of M is increased from

nk` to nk `(`+1)
2 , meaning that the matrix has a storage complexity of O(kn (log2 n)

2
) instead of

O (kn log2 n). This is still small enough to perform an LR Cholesky algorithm in almost quadratic
complexity.

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 11

If M has additionally an HSS structure [XCGL10], M ∈ HSS(k), this structure will be destroyed
in the first step and Mi will have only the structure of an H`(k`)-matrix.

4. Numerical Examples

In the last subsection it was shown that the algorithm described in Section 2 can be used to
compute the eigenvalues of H` matrices. In this section we will test the algorithm. Therefor we
use randomly generated H`(1)- and H`(2)-matrices of dimension n = 64 to n = 262 144, with
a minimum block-size of nmin = 32. Since the structure of H`-matrices is almost preserved, we
expect that the required CPU time for the algorithm to grow like

O
(
k2n2 (log2 n)

2
)
,

since we expect O(n) iterations, each computing a Cholesky decomposition of an H`(k`)-matrix,

which costs O
(
k2n (log2 n)

2
)

, see [HKK04]. In Figure 7 one can see that for the H`(1)-matrices,

the CPU time grows even slower than our expectation. That is probably an effect of the block
diagonal structure of the matrix, which is only perturbed by rank-1 matrices in the off-diagonal
blocks. Such a structure supports deflation like in the left hand part of Figure 2 after only a few
iterations.

For the H`(2)-matrices, we see the k2 in the complexity estimate.
The graph for the CPU time of the LAPACK [ABB+99] function dsyev is only for comparison,

as we use LAPACK 3.1.1. We expect that for matrices larger than 106×106 our algorithm is faster
than the current LAPACK implementation of the dense QR algorithm. The expected CPU time
for such a matrix is approx. 20 years. So the main advantage of the H-LR Cholesky algorithm is
the reduced storage consumption.

It is obvious that the computing time for dsyev is lower than for the H` LR Cholesky algorithm.
Nevertheless, as the latter algorithm’s complexity follows the O(n2(log2(n))2) curve while dsyev

has complexity O(n3), the LR Cholesky algorithm will become more efficient for large enough n.
Given a sophisticated implementation of the new algorithm on a level as available in LAPACK, it
can be expected that the difference in computing times becomes smaller, and the break-even point
is reached at a much earlier stage than with the current trial implementation.

5. The General Case

If M is not symmetric, then we must use the LU decomposition, which was called LR decom-
position by Rutishauser, instead of the Cholesky decomposition. The following lemma and proof
are analog to Theorem 3.2.

Lemma 5.1. Let M ∈ Rn×n be a diagonal plus semiseparable matrix of rank (r, s) in generator
representable form:

M = diag (d) +

r∑
j=1

tril
(
ujvjT

)
+

s∑
i=1

triu
(
wixiT

)
.

Then the LU decomposition of M leads to

L = diag
(
d̃
)

+

r∑
j=1

tril
(
uj ṽjT

)
,

U = diag (ẽ) +

s∑
i=1

triu
(
w̃ixiT

)
.

The multiplication in reverse order gives the next iterate N = UL of the form

N = diag
(
d̂
)

+

r∑
j=1

tril
(
ûj ṽjT

)
+

s∑
i=1

triu
(
w̃ix̂iT

)
,

where r and s are unchanged.

12 PETER BENNER AND THOMAS MACH

102 103 104

10−1

101

103

105

107
C

P
U

ti
m

e
in

s
H-LR Chol. algo. H`(1)

H-LR Chol. algo. H`(2)
LAPACK dsyev

O(n2(log2 n)2)

O(n3)

O(n2)

102 103 104
102

103

104

105

Dimension

N
u

m
b

er
of

It
er

at
io

n
s

Iterations H`(1)

Iterations H`(2)

O(n)

Figure 7. CPU time LR Cholesky algorithm for H`(1), nmin = 32.

Proof. From M = LU we know that

Lp,1:p−1U1:p−1,1:p−1 = Mp,1:p−1, Lp,p = 1,(8)

L1:p−1,1:p−1Up,1:p−1 = M1:p−1,p, Up,p = Mp,p − Lp,1:p−1U1:p−1,p.(9)

The argumentation is now analog to the one in the proof of Theorem 3.2. For each p we first
compute the new column of U , then the diagonal entry of the last column of U , and finally the
new row of L. We assume U has the form

U = diag (ẽ) +

s∑
i=1

triu
(
w̃ix̃iT

)
,

then Equation (9) becomes

L1:p−1,1:p−1w̃
i
1:p−1x̃

i
p = wi

1:p−1x
i
p ∀i ∈ {1, . . . , s}.

This equation holds for x̃i = xi and Lw̃i = wi and can be solved up to row p−1, since Lp−1,p−1 = 1
by definition. The equation for the diagonal entry Up−1,p−1 is fulfilled by choosing a suitable ẽp−1.
Further, we assume L to be of the form

L = diag
(
d̃
)

+

r∑
j=1

triu
(
ũj ṽjT

)
,

meaning that we must choose d̃p so that Lpp = 1. Further, we have to fulfill Equation (8),

ũjpṽ
j
1:p−1U1:p−1,1:p−1 = ujpv

jT
1:p−1.

THE LR CHOLESKY ALGORITHM FOR SYMMETRIC H-MATRICES 13

This can be achieved by setting ũ = u and

UT
1:p−1,1:p−1ṽ

j
1:p−1 = vj1:p−1.

So both factors have the desired form.
The next iterate is computed by

N = UL =

(
diag (ẽ) +

s∑
i=1

triu
(
w̃ixiT

))diag
(
d̃
)

+

r∑
j=1

tril
(
uj ṽj

)
= diag (ẽ) diag

(
d̃
)

+

r∑
j=1

diag (ẽ) tril
(
uj ṽj

)
+

s∑
i=1

triu
(
w̃ixiT

)
diag

(
d̃
)

+

s∑
i=1

r∑
j=1

triu
(
w̃ixiT

)
tril
(
uj ṽj

)
.

We will now show that tril (N,−1) =
∑r

j=1 tril
(
ûj ṽjT ,−1

)
:

tril (N,−1) =

r∑
j=1

diag (ẽ) tril
(
uj ṽj ,−1

)
+ +tril

 s∑
i=1

r∑
j=1

triu
(
w̃ixiT

)
tril
(
uj ṽj

)︸ ︷︷ ︸
:=T ij

,−1

 .

The other summands are zero in the lower triangular. We have T ij
pq = w̃i

px
iT
p:nu

j
p:nṽ

jT
q , if p > q. We

define a matrix Z by

Zp,: =

s∑
i=1

w̃i
p

[
0 · · · 0 xip xip+1 · · · xin

]
.

Finally we get

tril (N,−1) =

r∑
j=1

tril
((

diag (ẽ)uj + Zuj
)
ṽjT ,−1

)
=

r∑
j=1

tril
(
ûj ṽjT ,−1

)
.

The analog argumentation for the upper triangular of N completes the proof. �

The result of the proof is similar to the symmetric case in the lower triangular we get sparsity
patterns like in Figure 5. Analog in the upper triangular but for the transpose version of Figure 5.
This mean for hierarchical matrices that also the unsymmetric LR transformations destroys the
structure.

6. Conclusions

We have presented a new more constructive proof for the fact that the structure of diagonal plus
semiseparable matrices is invariant under LR Cholesky transformations. We used the knowledge
about the structure of N = LRCH(M) that we acquired by the proof, to show once again that
rank structured matrices and especially the subsets of tridiagonal and band matrices are invariant
under LR Cholesky transformations. Besides this, we showed that a small increase of the block-
wise ranks of H`-matrices is sufficient to compute the eigenvalues with an LR Cholesky algorithm
within the structure of H`(k`)-matrices. The same is true for the subset of HSS matrices.

Further, we used the theorem to show that the structure of hierarchical matrices is not preserved
under LR Cholesky transformations in general. There are subsets of H-matrices, where the LR
Cholesky algorithm works well, like the H`-matrices. If one finds a way to transform an H-matrix
into an H`-matrix or any other LR Cholesky transformations invariant structure, then one would
be able to compute the eigenvalues using the LR Cholesky transformation. So we are missing
a generalization of the Hessenberg transformation for hierarchical matrices. In [DFV09] such a
transformation is given for H2-matrices with a special block-structure. This path to an eigenvalue
algorithm for H2-matrices deserves further investigation.

14 PETER BENNER AND THOMAS MACH

References

[ABB+99] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999.
[BBD11] R. Bevilacqua, E. Bozzo, and G. M. Del Corso. qd-type methods for quasiseparable matrices. SIAM J.

Matrix Anal. Appl., 32(3):722–747, 2011.
[BDD+00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the Solution of

Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, 2000.

[Beb08] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems,
volume 63 of Lecture Notes in Computational Science and Engineering (LNCSE). Springer Verlag,

Berlin Heidelberg, 2008.

[BFW97] P. Benner, H. Faßbender, and D. S. Watkins. Two connections between the SR and HR eigenvalue
algorithms. Linear Algebra Appl., 272:17–32, 1997.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with applications.

Eng. Anal. Boundary Elements, 27:405–422, 2003.
[BM10] P. Benner and T. Mach. On the QR decomposition of H-matrices. Computing, 88(3–4):111–129, 2010.

[BM12a] P. Benner and T. Mach. Computing all or some eigenvalues of symmetric H`-matrices. SIAM J. Sci.

Comput., 34(1):A485–A496, 2012.
[BM12b] P. Benner and T. Mach. The preconditioned inverse iteration for hierarchical matrices. Numer. Lin.

Alg. Appl., 2012. published online. 17 pages.

[DFV09] S. Delvaux, K. Frederix, and M. Van Barel. Transforming a hierarchical into a unitary-weight represen-
tation. Electr. Trans. Num. Anal., 33:163–188, 2009.

[DV05] S. Delvaux and M. Van Barel. Structures preserved by the QR-algorithm. J. Comput. Appl. Math.,
187(1):29–40, 2005.

[DV06] S. Delvaux and M. Van Barel. Rank structures preserved by the QR-algorithm: the singular case. J.

Comput. Appl. Math., 189:157–178, 2006.
[Fas05] D. Fasino. Rational Krylow matrices and QR steps on Hermitian diagonal-plus-semiseparable matrices.

Numer. Lin. Alg. Appl., 12:743–754, 2005.

[GH03] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing, 70(4):295–
334, 2003.

[Gra01] L. Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, University of Kiel,

Kiel, Germany, 2001. In German, available at http://e-diss.uni-kiel.de/diss 454.

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,

third edition, 1996.
[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.

Computing, 62(2):89–108, 1999.

[Hac09] W. Hackbusch. Hierarchische Matrizen. Algorithmen und Analysis. Springer-Verlag, Berlin, 2009.
[HKK04] W. Hackbusch, B. N. Khoromskij, and R. Kriemann. Hierarchical matrices based on a weak admissibility

criterion. Computing, 73:207–243, 2004.

[HLi09] Hlib 1.3. http://www.hlib.org, 1999–2009.
[Par80] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, first edition, 1980.

[PVV08] B. Plestenjak, M. Van Barel, and E. Van Camp. A Cholesky LR algorithm for the positive definite

symmetric diagonal-plus-semiseparable eigenproblem. Linear Algebra Appl., 428:586–599, 2008.
[RS63] H. Rutishauser and H. R. Schwarz. The LR transformation method for symmetric matrices. Numer.

Math., 5(1):273–289, 1963.
[Rut55] H. Rutishauser. Une méthode pour la détermination des valeurs propres d’une matrice. C. R. Math.

Acad. Sci. Paris, 240:34–36, 1955.

[Rut58] H. Rutishauser. Solution of eigenvalue problems with the LR-transformation. Nat. Bur. Standards Appl.
Math. Ser., 49:47–81, 1958.

[Rut60] H. Rutishauser. Über eine kubisch konvergente Variante der LR-Transformation. Z. Angew. Math.

Mech., 40(1-3):49–54, 1960.
[VVM05a] R. Vandebril, M. Van Barel, and N. Mastronardi. An implicit Q theorem for Hessenberg-like matrices.

Mediterranean J. Math., 2:259–275, 2005.
[VVM05b] R. Vandebril, M. Van Barel, and N. Mastronardi. An implicit QR algorithm for symmetric semiseparable

matrices. Numer. Lin. Alg. Appl., 12(7):625–658, 2005.

[Wat00] D. S. Watkins. QR-like algorithms for eigenvalue problems. J. Comput. Appl. Math., 123:67–83, 2000.

[Wat07] D. S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia,
PA, USA, 1 edition, 2007.

[WE95] D. S. Watkins and L. Elsner. Convergence of algorithms of decomposition type for the eigenvalue prob-
lem. Linear Algebra Appl., 143, 1995.

[Wil65] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

[XCGL10] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li. Fast algorithms for hierachically semiseparable matrices.
Numer. Lin. Alg. Appl., 17(6):953–976, 2010.

[Xu98] H. Xu. The relation between the QR and LR algorithms. SIAM J. Matrix Anal. Appl., 19(2):551–555,

1998.

http://www.hlib.org

