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Abstract In this paper we consider a PDE-constrained optimization problem
where an H1 regularization control term is introduced. We address both time-
independent and time-dependent versions. We introduce bound constraints on
the state, and show how these can be handled by a Moreau-Yosida penalty
function. We propose Krylov solvers and preconditioners for the different prob-
lems and illustrate their performance with numerical examples.

Keywords PDE-constrained optimization · Saddle point system · H1

regularization · Preconditioning

1 Introduction

In recent years the development of numerical methods for optimal control
problems with constraints given by partial differential equations (PDEs) has
seen many contributions: see [40,23,21] and the references mentioned therein.
At the heart of many techniques for solving the optimization problem, whether
it is a linear problem or the linearization of some non-linear problem, lies the
solution of a linear system. These systems are very often so-called saddle point
matrices [2,11], i.e., they have the form

A =

[

A BT

B 0

]

. (1)

The systems we consider in this paper have A which is symmetric positive
semi-definite. Such matrices are invertible if ker(A) ∩ ker(B) = {0}: we will
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assume this condition holds for the remainder of this paper. We are then left
with the challenge of efficiently solving systems of the form (1) in adequate
time.

Direct solvers based on factorizations [10] can be effective in some cases,
but for many large and, in particular, three-dimensional problems these are
no longer sufficient. In such cases we turn to iterative solvers, namely Krylov
subspace methods, which can deal with these large and sparse systems in an
efficient manner. In order to achieve rapid convergence it is imperative to derive
preconditioners that enhance the convergence behaviour, ideally independent
of problem-dependent parameters, such as the mesh-size or the regularization
parameter. For a general overview of preconditioners we refer to [35,13], and
in the particular case of saddle point problems see [2,11,43].

A number of preconditioners which are robust with respect to regulariza-
tion parameters and mesh-parameters have recently been developed [36,29,
28,39,25,9], although these methods are only applicable with an L2 Tikhonov
regularization term in the cost functional. A current challenge is to incorpo-
rate variations of the regularization term in these solution paradigms [16]. We
address this issue here by adding an H1 term for the control to the objective
function and we present preconditioners that are robust with respect to the
regularization parameter for this, more difficult, problem.

The paper is structured as follows. We start by stating the optimal control
problem for both the time-independent case with distributed and boundary
control as well as the time-dependent case with distributed control. We il-
lustrate how the discretized first order conditions can be obtained from a
so-called discretize-then-optimize approach. In Section 3 we show how the
state constraints can be handled using a Moreau-Yosida penalty approach
and show how handling the state constraints in this way can be incorporated
into possible preconditioning strategies. In Section 4 we discuss the choice of
possible Krylov solvers and introduce preconditioning strategies for both the
time-dependent and time-independent control problem. Our numerical results
shown in Section 5 illustrate the efficiency of our approach.

2 Problem setup and discretization

2.1 Time-independent control

First we consider the time-independent optimal control problem, where the
following objective function should be minimized:

J1(y, u) =
1

2
‖y − ȳ‖L2(Ω1)

+
β

2
‖u‖H1

(2)

=
1

2
‖y − ȳ‖L2(Ω1)

+
β

2
‖u‖L2(Ω2)

+
β

2
‖∇u‖L2(Ω2)

, (3)
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where both Ω1 and Ω2 are subdomains of Ω ∈ R
d with d = 2, 3. The constraint

is given by the following elliptic PDE

−△y = u (4)

together with Dirichlet boundary conditions, i.e. y = g on ∂Ω. We refer to y as
the state and u as the corresponding control, which is used to drive the state
variable as close as possible to the desired state (or observations) ȳ. The above
problem is the so-called distributed control problem, as u defines the forcing
of the PDE over the whole domain Ω. Another important case is given by the
boundary control problem, where Ω2 = ∂Ω together with the PDE constraint

−△y = f (5)

∂y

∂n
= u on ∂Ω (6)

where f represents a fixed forcing term.
Problems of this type frequently appear in practical situations [21,31,8,32].

Additionally, many practical applications require the introduction of so-called
box constraints on the control and/or the state, as it might be too expensive
(time-wise, energy-wise, etc.) to allow for unconstrained minimization of the
optimal control problem. The typical bounds for state and control would look
like the following

ua ≤ u ≤ ub

for the control and
ya ≤ y ≤ yb

for the state. The numerical treatment of these constraints is by now well
established [18,4] but nevertheless represents a challenge, in particular for the
state constraints [7].

There are two approaches that can be taken to solve such PDE-constrained
optimization problems numerically: discretize-then-optimize, where the infinite-
dimensional problem is discretized and then optimized; and optimize-then-
discretize, where we optimize first, and then discretize the first order optimal-
ity conditions accordingly (see [21]). Current research suggests we should use
discretization schemes for which both approaches coincide [20].

At this stage we will follow the discretize-then-optimize approach and dis-
cretize the PDE and the objective function using finite elements [11,38]. We
will discretize using Q1 finite elements, which are motivated by our choice of
employing the deal.II [1] finite element package for our numerical experiments.

We start by discretizing the objective function J1(y, u) to give

J1(y,u) =
1

2
(y − ȳ)

T
My (y − ȳ) +

β

2
uTMuu+

β

2
uTKuu (7)

with My the mass matrix over Ω1, Mu the mass matrix over Ω2, and Ku a
Neumann Laplacian over Ω2, i.e.,

(Ku)ij =

∫

Ω2,h

(∇u)2 =

∫

Ω2,h

(
∑

j

uj∇φj)·(
∑

i

ui∇φi) =
∑

j

∑

i

ujui

∫

Ωh

∇φj ·∇φj
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We then discretize the associated PDE to get

Ky = Mu+ d (8)

for the distributed control problem with d a vector representing the boundary
contributions. For the boundary control problem we get

J1(y,u) =
1

2
(y − ȳ)

T
My (y − ȳ) +

β

2
uTMu,bu+

β

2
uTKu,bu (9)

together with
Ky = Nu+ f . (10)

Here,Mu,b andKu,b are the boundary mass matrix and Laplacian, respectively.
The vector f represents the discretized forcing term, which for simplicity we
take to be zero for the remainder of the paper. Note that K is the stiffness
matrix over the domain Ω, M the mass matrix for that domain, and the matrix
N consists of evaluations of inner products from the term

∫

∂Ω
wtr(v) with w

a function on the boundary ∂Ω, v a test function for the domain Ω and tr the
trace operator.

We now want to clarify the matrix structure of the problem by considering
the continuous problem with homogeneous Dirichlet boundary conditions. We
consider objective function (2) subject to (4). We now formally consider the
Lagrangian

L = J1(y, u)−
∫

Ω

(−△y − u)p1 dx−
∫

∂Ω

yp2 ds (11)

and the Fréchet derivative with respect to y in the direction h:

DyL(y, u, p1, p2)h =

∫

Ω

(y − ȳ)h dx−
∫

Ω

−△h p1 dx−
∫

∂Ω

p2h ds

=

∫

Ω

(y − ȳ)h dx+

∫

Ω

h△p1 dx−
∫

∂Ω

∂h

∂n
p1 ds

+

∫

∂Ω

h
∂p1
∂n

ds−
∫

∂Ω

p2h ds.

For a minimum we must have that the optimal control and state, denoted by
u∗ and y∗ respectively, must satisfy

DyL(y∗, u∗, p1, p2)h = 0 ∀h ∈ H1(Ω). (12)

In particular, we must have DyL(y∗, u∗, p1, p2)h = 0 for all h ∈ C∞
0 (Ω). In

this case h|∂Ω = 0 = ∂h
∂n |∂Ω , and so the expression above reduces to

∫

Ω

(y∗ − ȳ +△p1)h dx ∀ h ∈ C∞
0 (Ω),

and so, applying the fundamental lemma of the Calculus of Variations, we get
that

−△p1 = y − ŷ in Ω.
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Now consider h ∈ H1
0 (Ω), so that h|∂Ω = 0. Then we get

∫

∂Ω

∂h

∂n
p1 ds = 0 ∀h ∈ H1

0 (Ω)

so we have
p1 = 0 on ∂Ω.

The remaining equations give us the link between p1 and p2, namely

p2 =
∂p1
∂n

on ∂Ω.

If we label p1 = p, then we can write the adjoint equation as

−△p = y − ŷ in Ω (13)

p = 0 on ∂Ω, (14)

which is the continuous adjoint equation. Now consider optimality with respect
to the control, u. The optimal control and state satisfy

DuL(y∗, u∗, p1, p2)h = 0 ∀h ∈ H1(Ω).

This gives us that
∫

Ω

β

(

u∗h+
∂u∗

∂x

∂h

∂x
+

∂u∗

∂y

∂h

∂y
+

∂u∗

∂z

∂h

∂z

)

+ ph dx = 0 ∀h ∈ H1(Ω),

∫

Ω

βu∗hdx−
∫

Ω

β△uh+

∫

∂Ω

(

∂u

∂x
+

∂u

∂y
+

∂u

∂z

)

hdz +

∫

Ω

phdx = 0 ∀h ∈ H1(Ω).

In particular, this holds for h ∈ C∞
0 (Ω), so as above we must have almost

everywhere
β(u∗ −△u∗) + p = 0. (15)

Note that this is different to the case when the control appears in the objective
function in the L2 norm. In particular, if p = 0 on the boundary, we do not
necessarily have that u∗ = 0 on the boundary, which was shown to be the case
for the L2 case (see [40,34]).

We consider the discretize-then-optimize approach: suppose we want to
find yh ∈ Y h

0 ⊂ H1
0 (Ω) and uh ∈ Uh ⊂ H1(Ω) which satisfy

min
yh,uh

1

2
||yh − Ihȳ||2L2(Ω) +

β

2
||uh||2H1(Ω),

s.t.

∫

Ω

∇yh · ∇vh + uh =

∫

Ω

vh, ∀vh ∈ Y h
0 .

Then if Y h
0 = 〈φ1 . . . φn〉, and we use the same basis for Uh = 〈φ1 . . . φn, φn+1, φn+∂n〉,

which is extended as we don’t know u = 0 on the boundary, then we can write
the optimization problem in terms of matrices as

min
y,u

1

2
yTMyy − yTb+

β

2
uTMuu+

β

2
uTKuu (16)

s.t. Ky = Mu, (17)
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where

My =

[

MI 0
0 0

]

, Mu =

[

MI XT

X MB

]

, Ku =

[

KI Y T

Y KB

]

M =

[

MI 0
0 0

]

, and K =

[

KI 0
0 I

]

.

Note that here the subscript I indicates interior nodes and the subscript B
the boundary contributions; X and Y represent the contributions from both
interior and boundary nodes. The first order conditions lead to the following
saddle point system





My 0 −K
0 βMu + βKu M

−K M 0



 .

If we have non-homogeneous boundary conditions, then all that changes is
that the Discretized PDE becomes

Ku = My + d.

We argued in [34] that it is not convenient to work with matrices on the interior
as most finite element packages will assemble the matrices on the whole of the
domain and then apply Dirichlet boundary conditions by making the matrix
diagonal on the part corresponding to the boundary degrees of freedom. It can
also be seen – assuming all matrices are in this form – that, if the variables
y, u, and p contain zeros in the boundary parts, these zeros are maintained
throughout any Krylov solver. This means that My, Mu, and M could simply
be the mass matrices assembled on the boundary and interior of the domain
with diagonal components corresponding to Dirichlet nodes. In our case, the
matrix βMu + βKu is not diagonal, which would not guarantee that the zero
Dirichlet conditions for the state and adjoint state are maintained. This leads
us to the following matrix structure





My 0 −KT

0 βMu + βKu M
−K M 0









y

u

p



 =





Myȳ

0
d



 (18)

with

My =

[

MI 0
0 MB

]

, Mu =

[

MI XT

X MB

]

, Ku =

[

KI Y T

Y KB

]

M =

[

MI 0
0 0

]

, and K =

[

KI 0
0 I

]

,

with all mass matrices being lumped. Note that all these matrices are readily
available from common finite element packages and the zero block in M can
implicitly be created as part of the matrix vector multiplication involving M .
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In case of the boundary control problem we obtain the following first order
system





My 0 −KT

0 βMu,b + βKu,b NT

−K N 0









y

u

p



 =





Myȳ

0
0



 . (19)

2.2 Time-dependent problem

We now present a time-dependent version, which is of wide practical interest.
The objective function is now given by

J2(y, u) =
1

2

∫ T

0

∫

Ω1

(y − ȳ)2dxdt+
β

2

∫ T

0

∫

Ω2

u2dxdt+
β

2

∫ T

0

∫

Ω2

(∇u)
2
dxdt,

(20)
where all functions are simply time-dependent versions of their steady counter-
parts presented above. The constraint is given by the following time-dependent
parabolic PDE

yt −△y = u

for the distributed control problem with Dirichlet boundary conditions, i.e.
y(x, t) = g(x, t) on ∂Ω for some prescribed function g. In case of a boundary
control problem, we consider the following PDE constraint

yt −△y = f (21)

∂y

∂n
= u on ∂Ω. (22)

For the discretization of the time-dependent objective function we use the
trapezoidal rule for the time integral and finite elements in space to give

J2(y,u) =
1

2
(y − ȳ)

T My (y − ȳ) +
β

2
uTMuu+

β

2
uTKuu (23)

where
My = blkdiag(1/2My,My, . . . ,My, 1/2My),

Mu = blkdiag(1/2Mu,Mu, . . . ,Mu, 1/2Mu)

and
Ku = blkdiag(1/2Ku,Ku, . . . ,Ku, 1/2Ku),

which are simply block-variants of the previously defined matrices over the
domains Ω1 and Ω2. Note that in the time-dependent case we abuse the nota-

tion y previously used, i.e., y =
[

yT
1 ,y

T
2 , . . . ,y

T
NT

]T
. Using this notation and

a backward Euler scheme, we can write down a one-shot discretization of the
time-dependent PDE as follows











L
−M L

. . .
. . .

−M L











y − τMu = c (24)
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with L = M + τK and c representing the boundary conditions for the heat
equation.

Again, we form the Lagrangian and write down the first order conditions
in a linear system,





τMy 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0









y

u

p



 =





τMyȳ

0
c



 , (25)

in the case of the distributed control problem, and




τMy 0 −KT

0 τβ(Mu,b +Ku,b) τN T

−K τN 0









y

u

p



 =





Myȳ

0
0



 (26)

for boundary control. Note that we have a slight abuse of notation here as we
use y and also u and p for both the time-independent problem as well as the
time-dependent problem, but we believe that it will be clear from the context
which of the two we are currently considering.

3 Handling the state constraints

Box constraints both for the control u and the state y can be dealt with effi-
ciently using a penalty term. For the case of constraints on both the control
and the state of an optimal control problem the Moreau-Yosida penalty func-
tion has proven to be a viable tool: see [22,16,28] and the references mentioned
therein. The modified objective function becomes

JMY (y, u) = J (y, u) +
1

2ε
‖max {0, y − yb}‖2 +

1

2ε
‖min {0, y − ya}‖2 (27)

for the state constrained case and similarly for control constraints. In accor-
dance with [16] this approach we can employ a semi-smooth Newton scheme
that leads to the following linear system





My + ε−1GAMyGA 0 −KT

0 βMu + βKu M
−K M 0









y

u

p



 =





Myȳ + ε−1
(

GA+MyGA+yb +GA
−

MyGA
−

ya
)

0
c





(28)

where we define the active sets asA+ = {i : yi > (yb)i} , andA− {i : yi < (ya)i} ,
and A = A+ ∪ A−; the matrices G are diagonal matrix variants of the char-
acteristic function for the corresponding sets, i.e.,

(GA)ii =

{

1 for i ∈ A
0 otherwise.
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Our focus is on the efficient solution of the linear systems (28), which are of
saddle point type. Note that the active sets defined above within an iterative
process such as the semi-smooth Newton scheme are computed based on the
state computed at the previous time-step, but for simplicity we neglect any
indices. For more details of semi-smooth Newton methods we refer to [23,41,
21]; there is also recent theory introducing path following approaches for the
penalty parameter ε [19].

4 Preconditioning

4.1 Choice of Krylov solver and handling the (1, 1)-block

As mentioned in the introduction, the use of iterative schemes is imperative for
the solution of the linear systems arising from PDE-constrained optimization.
The combination of a state-of-the-art solver with an efficient preconditioning
technique is crucial. In this section we derive preconditioners for each of the
problems presented earlier, but first focus on the introduction of the iterative
scheme. Krylov solvers are for most applications the method of choice, as
they are cheap to apply — at each step they only require a matrix vector
product, the evaluation of the preconditioners, and the evaluation of inner
products. These methods build up a low-dimensional subspace that can be
used to approximate the solution to the linear system.

There are a variety of Krylov subspace methods, and the most effective to
use depends on the properties of the linear system. For symmetric and positive
definite matrices the conjugate gradient (cg) method of Hestenes and Stiefel
[17] – in combination with a symmetric and positive definite preconditioner –
is typically the method of choice. For symmetric and indefinite problems, such
as the ones we are dealing with here, the minimal residual method (minres)
introduced by Paige and Saunders [27], as well as modified variations of the
cg method [6], lend themselves to the task of approximating the solution to
the linear system effectively. We will apply minres for the remainder of this
paper, as its only requirements are that A is symmetric and the preconditioner
is positive definite.

We now want to describe preconditioners which have proven to be efficient
for solving systems of the form (1) in combination withminres. As the system
matrix is indefinite it is not immediately obvious that a good preconditioner
can be found that is symmetric and positive definite. Murphy et al. [26] show
that the preconditioned matrix P−1A with P = blkdiag(A,S), where S :=
BA−1BT is the Schur-complement of A, has three eigenvalues. This results
in the termination of minres after at most three steps. Note that, for the
types of problems we consider here, the (1, 1)-block is a block-diagonal matrix,
e.g. for the time-dependent case given by A = blkdiag(τM, τβ(Mu + Ku)).
The constraint B is, for the time-dependent case, given by B = [−K, τN ] .
Naturally, this P is too expensive for any realistic problem but it illustrates
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that if we can find good approximations to both the (1, 1)-block and the Schur-
complement of A, then the method will converge in a small number of steps.

We have now reduced the issue of approximating the solution of the lin-
ear system to finding good approximations to the (1, 1)-block and the Schur-
complement of A. The (1, 1)-block in most of the cases presented here consists
of lumped mass matrices and can simply be inverted. If the mass matrices are
consistent we can use the Chebyshev semi-iteration [42] and if the (1, 1)-block
is only semi-definite we can add a small perturbation to make it positive defi-
nite so the above applies, i.e., we replace the zero blocks in A by blocks of the
form ηI with η a small parameter greater than zero. Note that this technique
can also be used for an approximation of the Schur-complement in case the
(1, 1)-block is semi-definite [3,37]. For the rest of the paper we assume that
our preconditioner is given by P = blkdiag(Â, Ŝ) where Â approximates the
(1, 1)-block and Ŝ the Schur-complement. We discuss appropriate approaches
for the approximation of the Schur-complement next.

4.2 Time-independent problem

No state constraints

We are interested in finding a good preconditioner for the matrix





My 0 −KT

0 βMu + βKu M
−K M 0



 .

We assume that we can deal with the blocks My and βMu + βKu efficiently.
In more detail, the mass matrix My can be approximated by the Chebyshev
semi-iteration in the consistent case and simply inverted whenever it is lumped.
The inverse of βMu + βKu can efficiently be approximated using (algebraic)
multigrid.

The performance of our preconditioner therefore depends on having a good
approximation of the Schur-complement

S = KM−1
y KT +M(βMu + βKu)

−1M.

One possible approximation would be

Ŝ1 = KM−1
y KT

(see [33]), which neglects the second term in the Schur-complement. This typ-
ically results in good convergence properties for relatively large β, but per-
formance deteriorates as β approaches zero. Another approach [30], that for
certain setups can overcome or weaken this dependence on the regularization
parameter, is given by

Ŝ2 = (K + M̂)M−1
y (KT + M̂T ),
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where the matrix M̂ is chosen to approximate the second term in the Schur-
complement well. In more detail, we construct M̂ such that

M̂M−1
y M̂T = M(βMu + βKu)

−1M,

which is the case for M̂ = M(βMu+βKu)
−1/2M

1/2
y . Note that with this choice

we cannot easily form and invert (K + M̂). We instead choose the diagonal
diag(Ku) as an approximation for Ku. Note that the approximation of Ku by
its diagonal is, in the case of a forward Poisson problem, not ideal as no mesh-
independence can be expected. Nevertheless, the inverse of (K + M̂) needs to
be approximated cheaply and, as we are using lumped mass matrices, we now
get

M̂ = M(βMu + βDK)−1/2M1/2
y ,

where DK = diag(Ku). This allows us to form K + M̂, whose inverse in turn
can be approximated using an algebraic or geometric multigrid preconditioner.

State constraints

We are now interested in finding a good preconditioner for the matrix coming
from the state constrained problem treated with a Moreau-Yosida penalty
term,





L 0 −KT

0 βMu + βKu M
−K M 0



 ,

where L = My+ε−1GAMyGA.Due to the diagonal nature of the mass matrices
the matrix L is simply a diagonal matrix and can be treated trivially in the
preconditioner. For the block βMu+βKu we can again use a multigrid process
to approximate the inverse within the preconditioner. This leaves us again with
finding an efficient way to approximate the Schur-complement

S = KL−1K +M(βMu + βKu)
−1M. (29)

We want to employ the technique used for the case without state constraints.
We start by looking for an approximation of the form

Ŝ = (K + M̂)L−1(K + M̂)T , (30)

where we have to determine the matrix M̂ in such a way that the second term
in S is accounted for. For this we want

M̂L−1M̂T ≈ M(βMu + βKu)
−1M.

In order to simplify this process we make the following approximation

βMu + βKu ≈ βMu + βDK := Du,

where DK = diag(Ku) and hence Du is a diagonal matrix. We now proceed to

M̂L−1M̂T = MD−1
u M ⇒ M̂ = MD−1/2

u L1/2

as all matrices involved are diagonal matrices and hence commute, i.e., M̂ =

MD
−1/2
u L1/2 = L1/2D

−1/2
u M .
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Boundary control

In the boundary control problem the saddle point matrix is given by





My 0 −KT

0 βMu,b + βKu,b NT

−K N 0



 (31)

with a (1, 1)-block that can be handled by the previous techniques. The Schur-
complement here is

S = KM−1
y KT +N(βMu,b + βKu,b)

−1NT .

We again approximate the Laplacian by its diagonal to get

S ≈ KM−1
y KT +N(βMu,b + βDK,b)

−1NT = KM−1
y KT +ND−1

u NT .

Once again we proceed by assuming that an approximation of the form

Ŝ = (K + M̂)M−1
y (K + M̂)T

will give a good approximation to the Schur-complement, with

M̂M−1
y M̂T = ND−1

u NT . (32)

Since the mass matrices are lumped, we can assume that all the matrices are
diagonal, and we get an expression for the diagonal elements of (32) corre-
sponding to boundary degrees of freedom. Note that ND−1

u NT is a diagonal
matrix with non-zero entries only for boundary nodes. We also do not account
for the difference in scalings with respect to the mesh parameter h between a
boundary mass matrix and a mass matrix on the whole domain. The diagonal
elements of M̂ can be obtained from

miim̂
2
ii =

m2
ii

du,ii

or equivalently

m̂2
ii =

m3
ii

du,ii
⇒ m̂ii =

m
3/2
ii

√

du,ii
. (33)

We already mentioned that the boundary mass matrix scales differently com-
pared to the mass matrix on the whole domain by on order of h. We first
consider the case when we only have an L2−term for the control, i.e. Ku = 0,
and want to compute M̂ such that

M̂M−1
y M̂ = β−1NM−1

u NT

and using the approximations My ≈ h2I and Mu ≈ hI we get

h−2M̂2 ≈ M̂M−1
y M̂ = β−1NM−1

u NT ≈ β−1h−1NNT .
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Since all matrices in the last expression are diagonal (remember N is a rect-
angular matrix with entries only when boundary degree of freedom is paired
with boundary degree of freedom) we get

m̂2
ii = hβ−1m2

ii ⇒ m̂ii =
√

hβ−1mii.

Based on this analysis we proceed by multiplying m̂ii in (33) with
√
h to

account for the different orders of the boundary matrices and the matrices
over the whole domain to finally get

m̂ii =

√
hm

3/2
ii

√

du,ii
.

4.3 Time-dependent problem

We now extend the previous techniques to the time-dependent case.

No state constraints

Recall that the first order conditions of the time-dependent problem are rep-
resented by the following saddle point system





τMy 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0









y

u

p



 =





τMyȳ

0
d



 (34)

and assume that My and τβ(Mu + Ku) are invertible so we can form the
Schur-complement

S = τ−1KM−1
y KT + τM(βMu + βKu)

−1M.

For strategies to handle a semi-definite My we refer to [37]. Again we approx-
imate S via

Ŝ = τ−1(K + M̂)M−1
y (K + M̂)T ,

with a not yet specified but symmetric matrix M̂. As we want M̂M−1
y M̂ to

resemble the second block in the Schur-complement S we obtain

M̂M−1
y M̂T ≈ M(βMu + βKu)

−1M.

As all matrices are block-diagonal, we want that

τ−1M̂M−1
y M̂T ≈ τM(βMu + βKu)

−1M.

Using again the approximation

βM + βKu ≈ βM + βDK := Du,

we get
τ−1M̂M−1M̂T = τMD−1

u M ⇒ M̂ = τMD−1/2
u M1/2

y .
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State constraints

The system obtained from the state constrained case has a change in the
(1, 1)-block, i.e.,





τL 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0









y

u

p



 =





τMyȳ

0
d



 (35)

where L = blkdiag(Li) with the Li = My + ε−1GA(i)MyGA(i) and A(i) the
active sets for a grid point in time. Assuming invertibility of L, the Schur-
complement now becomes

S = τ−1KL−1KT + τM(βMu + βKu)
−1M.

We again want to derive an approximation of the form

Ŝ = τ−1(K + M̂)L−1(KT + M̂T )

that resembles the Schur-complement as closely as possible. As we again want
τ−1M̂L−1M̂ to resemble the second block in the Schur-complement S we
obtain

τ−1M̂L−1M̂T ≈ τM(βMu + βKu)
−1M.

As all matrices are block-diagonal we want that for all blocks (i = 1, . . . , n)

τ−1M̂L−1
i M̂T ≈ τM(βMu + βKu)

−1M.

and with the approximation

βM + βKu ≈ βM + βDK := Du,

we get

τ−1M̂L−1
i M̂T = τMD−1

u M ⇒ M̂ = τMD−1/2
u L

1/2
i .

Note that now the blocks of L are different for each grid point in time as the
active sets will be different for each i. In an efficient implementation this issue
has to be addressed as recomputing the preconditioner with each application
is not feasible. We have not done this for the results presented in Section 5.

5 Numerical Results

We now want to illustrate how the preconditioners presented above perform
when applied to a variety of problem setups. As mentioned earlier we em-
ploy a finite element discretization, here done with the finite element package
deal.II [1]. We discretize the state, control and adjoint state variables using
Q1 elements. We stop all computations when the pseudo-residual minimized
in minres falls below a certain tolerance, typically 10−4 or 10−6. For the
algebraic multigrid preconditioner we use the Trilinos ML package [12] that



A fast solver for an H1 regularized PDE-constrained optimization problem 15

(a) Control (b) Desired state (c) Computed state

Fig. 1: Control, desired state, and state for time-independent distributed con-
trol with β = 10−6.

implements a smoothed aggregation AMG. Within the algebraic multigrid we
typically used 10 steps of a Chebyshev smoother in combination with the ap-
plication of two V-cycles. Note that, especially in the time-dependent case with
state constraints, our implementation at this point is only a proof-of-concept
as we are simply recomputing the preconditioner for every active set. Future
research should address the issue of efficiently updating the AMG precondi-
tioner or employing a geometric multigrid method that takes the changes of
the active set into account.

For time-dependent problems we show the degrees of freedom only for one
grid point in time (i.e. for a single time-step) and we are implicitly solving
a linear system of dimension 3 times the number of time-steps (Nt) times
the degrees of freedom of the spatial discretization (n). For example, a spa-
tial discretization with 274625 unknowns and 20 time-steps corresponds to an
overall linear system of dimension 16477500. All results are performed on a
Centos Linux machine with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs
and 48GB of RAM.

5.1 The time-independent case

No state constraints

In this section we show numerical results for the time-independent control
problem. The desired state is given by

ȳ =

{

sin(2πx0x1x2) if x0, x1 ∈ [0.2, 0.7]
0.5 otherwise.

with the Dirichlet condition that y = 0 on ∂Ω. The desired state, computed
control and computed state for β = 10−6 are shown in Figure 1. We show the
results for a variety of β parameters in Table 1 and the tolerance 10−4 for the
pseudo-residual.
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(a) Control (b) Computed state

Fig. 2: Control and computed state for time-independent distributed control
with β = 10−6 and no H1-term.

DoF minres(T) minres(T) minres(T)

β = 10−2 β = 10−4 β = 10−6

729 5(0.23) 10(0.99) 17(0.82)
4913 6(2.07) 10(2.51) 22(5.37)
35937 8(9.16) 10(7.76) 24(18.14)
274625 8(60.89) 10(74.38) 24(161.36)
2146689 8(547.15) 10(660.26) 26(1853.41)

Table 1: Results obtained with Schur complement approximation Ŝ and β.

We see from the results in Table 1 that there is some benign growth in
the iteration numbers with respect to the regularization parameter and no
dependence with respect to the mesh-parameter h.

State constraints

In the next example we consider the introduction of state constraints for the
time-independent control problem. As was shown in [24] the quality of the
preconditioner can have a significant influence on the convergence of the New-
ton scheme. In our experience for smaller values of β and ε the tolerance of
10−4 was not always sufficient for the Newton method to reach convergence
and the results shown in Table 2 are computed for the tolerance 10−6. We
also employed a nested-iteration technique [16], which starts by solving the
optimal control problem on a coarse mesh and then transferring the solution
to the next finer mesh as an initial guess for the Newton method. As can be
seen from Table 2 this leads to a small number of Newton steps on the fine
meshes. We here consider

ȳ = − sin(2πx0x1x2) exp
(

−
(

(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2
))

and the Dirichlet condition is defined as y = P[ya,yb](ȳ) on ∂Ω as the projec-
tion of the desired state onto the feasible region. Here we only consider the
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lower bound given by ya = −0.7. We show the results for two different values
of ε using β = 10−6 in Table 2 and it can be seen that the number of Newton
iterations is very similar and the minres iterations grow slightly with the
reduction of ε.

DoF AS minres (tl/av) T AS minres (tl/av) T
ε = 10−2 ε = 10−4

729 5 145/29 11.38 5 156/31 12.23
4913 4 137/34 78.21 5 280/56 158.79
35937 4 154/39 285.59 5 351/70 689.61
274625 4 164/41 3589.12 6 448/74 10795.51

Table 2: Results obtained for state-constrained problem for different values of
the penalty parameter. Total and average number of minres iterations for all
Newton steps are shown as well as the timings for β = 10−6.

Boundary control

The control of the PDE via the boundary of the domain represents a rele-
vant and interesting scenario. We will now illustrate how our preconditioner
performs for this case. The desired state is given by

ȳ =

{

sin(x1) + x2x0 if x0 > 0.5 and x1 < 0.5
1 otherwise.

Table 3 shows the minres iteration numbers and timings for different meshes
and values of β. It can be seen that there is a slight mesh-dependence and also a
slight dependence on β. As the PDE-constraint involves a Neumann Laplacian
for which already the forward problems is expected to show mesh-dependence
[5] it is not surprising this continues into the inverse problem. We have so far
not considered state-constraints using this boundary control approach but we
believe that the techniques presented here carry over to this case as well.

DoF minres(T) minres(T) minres(T)

β = 10−2 β = 10−4 β = 10−6

729 22(0.1) 20(0.1) 16(0.2)
4913 26(1) 28(1) 22(1)
35937 30(7) 38(9) 30(6)
274625 34(99) 48(176) 48(133)
2146689 38(1212) 60(1789) 64(1863)

Table 3: minres timings and iteration numbers for the boundary control
case and varying mesh sizes as well as different values of the regularization
parameter β.
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(a) Control (b) Computed state (c) Desired state

Fig. 3: Desired state, computed state and control for a boundary control prob-
lem with β = 10−6.

(a) Control (b) Computed state

Fig. 4: Same setup as in Figure 3 only with L2 instead of H1 term.

5.2 The time-dependent case

No state constraints

In this Section we show results for the time-dependent case. First, we consider
the case when no state constraints are present. Here, we work with a fixed
time-step τ = 0.05, which results in 20 time-steps. In all tables we only show
the degrees of freedom associated with the discretization of the spatial domain.
The overall system that we are implicitly solving is then of dimension Nt∗n∗3,
e.g. 20 ∗ 274625 ∗ 3 = 16477500 degrees of freedom. The desired state is now
given by

ȳ = − exp(t) sin(2πx0x1x2) exp
(

−
(

(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2
))

and y = ȳ on ∂Ω. The results for this setup are shown in Table 4 for various
mesh-parameters and values of the regularization parameter β. We can see
that the results now depend on the regularization parameter but that the
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growth seen is rather benign as we are able to solve for relatively small values
of β and a large number of unknowns in a reasonable number of iterations.

DoF minres(T) minres(T) minres(T)

β = 10−2 β = 10−4 β = 10−6

729 4(2) 19(8) 55(21)
4913 5(15) 19(46) 70(158)
35937 7(146) 20(359) 79(1324)
274625 7(1167) 21(3007) 85(11326)

Table 4:minres iteration numbers and timings for various meshes and varying
regularization parameter β.

State constraints

We now present results for the time-dependent case in the presence of state-
constraints. We again consider the unit square with the desired state defined
by

ȳ = − exp(t) sin(2.0πx1x2x3) exp
(

−
(

(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2
))

.

The iteration numbers for the outer active set method and minres are shown
in Table 5. We only show results for two small mesh-sizes as our implementa-
tion is currently only a proof-of-concept implementation that does not update
the preconditioner for each active set but rather recompute it during each
iteration, which in practice will be too expensive. As a comparison we show

DoF AS minres (tl/av) AS minres (tl/av)
ε = 10−2 ε = 10−4

729 7 500/71 10 2221/222
4913 5 395/79 6 1561/260

Table 5: Results obtained for state-constrained problem for different values of
the penalty parameter. Total and average number of minres iterations for all
Newton steps are shown as well as the timings for β = 10−4.

the iteration numbers for the same problem with an L2-term instead of the
H1-term for the control in Table 6. It can be seen that both problems need an
increasing number of iterations to reach the desired tolerance for decreasing
values of the penalty parameter. Nevertheless, the number of iterations for the
case without H1-term shows only moderate growth in the iteration numbers
and the iteration numbers for the H1 are still feasible, as the values for β and
ε are both chosen rather small.
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DoF AS minres (tl/av) AS minres (tl/av)
ε = 10−2 ε = 10−4

729 5 156/31 6 427/71
4913 4 137/36 5 558/112

Table 6: Results obtained for state-constrained L2-problem for different values
of the penalty parameter. Total and average number of minres iterations for
all Newton steps are shown as well as the timings for β = 10−4.

Boundary control

We now show results for the boundary control case when we are dealing with
a time-dependent problem. The desired state is given by

ȳ = − exp(t) sin(2πx0x1x2) exp
(

−
(

(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2
))

.

The results for this setup with varying mesh-size and regularization parameter
β are shown in Table 7. These results show that there exists a β-dependence
but also that for relatively small regularization parameters the iteration num-
bers are bounded and rather small. In addition, the iteration numbers do not
increase with refining the mesh.

DoF minres(T) minres(T) minres(T) minres(T)

β = 10−2 β = 10−4 β = 10−6 β = 10−6

NT = 20 NT = 20 NT = 20 NT = 100
729 16(5) 28(8) 50(11) 48(61)
4913 12(17) 24(32) 44(54) 44(230)
35937 10(70) 20(124) 46(310) 42(1270)

Table 7:minres iteration numbers and timings for various meshes and varying
regularization parameter β.

6 Conclusions and Outlook

In this paper we presented optimal control problems subject to Poisson prob-
lem or the heat equation in a distributed or boundary control setup. The
control was added to the objective function as a regularization term in the
H1 norm. We introduced the corresponding discrete optimality system and
introduced preconditioners for both the steady as well as the transient prob-
lem. Due to the Laplacian term coming from the H1 norm we were not able
to introduce preconditioners that are fully independent of the regularization
parameter but for the simple preconditioners we introduced the dependence
on the regularization parameter seemed rather weak. We also showed that our
approach works for state-constrained problems, which were treated using a
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(a) Desired state ȳ12 (b) Computed state y12

(c) Control y12 with H1-term. (d) Control y12 with L2-term.

Fig. 5: Control with and without H1 term as well as desired state and state
for time-dependent boundary control with β = 10−6.

Moreau-Yosida penalty approach. Numerical results showed that our precon-
ditioners provided satisfactory results when applied to three-dimensional test
problems.

The method presented here has not focused on the storage efficiency of our
all-at-once approach. One might employ checkpointing [14] techniques when
alternatingly solving forward and adjoint PDEs. Multiple shooting approaches
are one way of splitting up the time-interval [15] and can lead to the same type
of system. A possible way forward is to compute suboptimal solutions on a
sequential splitting of the time-interval [15] or to use a parallel implementation
of our approach. It is also possible to reduce the storage requirements by
performing block-eliminations of some form, usually via a Schur-complement
approach.
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