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A STRUCTURED PSEUDOSPECTRAL METHOD FOR H∞-NORM

COMPUTATION OF LARGE-SCALE DESCRIPTOR SYSTEMS

PETER BENNER∗ AND MATTHIAS VOIGT∗

Abstract. In this paper we discuss the problem of computing the H∞-norms of transfer func-
tions associated to large-scale descriptor systems. We exploit the relationship between the H∞-norm
and the structured complex stability radius of the corresponding system pencil. To compute the
structured stability radius we consider so-called structured pseudospectra. Namely, we have to find
the pseudospectrum touching the imaginary axis. Therefore, we set up an iteration over the real
part of the rightmost pseudoeigenvalue. For that we use a new fast iterative scheme which is based
on certain rank-1 perturbations of the system pencil. Finally, we analyze the performance of our
algorithm by using real-world examples.

Key words. Descriptor systems, H∞ control, iterative methods, pseudospectra, sparse matrices,
stability of linear systems.

1. Introduction and Preliminaries. In this paper we consider linear time-
invariant descriptor systems of the form

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1.1)

where E, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, x(t) ∈ R

n is the descriptor vector,
u(t) ∈ R

m is the input vector, and y(t) ∈ R
p is the output vector. Sometimes we will

denote such a system by Σ = (λE − A, B, C). Throughout this paper we assume that
λE −A is a regular matrix pencil, i.e., det(λE −A) 6≡ 0. Furthermore we assume that
all involved matrices are large and sparse with m, p ≪ n. We will call a descriptor
system stable if Λf(E, A) ⊂ C

− := {s ∈ C : Re (s) < 0}, where Λf(E, A) is the set of
all finite eigenvalues of λE − A.

Instead of working in the time domain we often turn to the Laplace domain. By
taking the Laplace transforms of both equations in (1.1) and assuming Ex(0) = 0 we
obtain the transfer function [10]

G(s) = C(sE − A)−1B. (1.2)

We call G(s) asymptotically stable if all its finite poles are located in the open left
half-plane, i.e., Πf(E, A, B, C) ⊂ C

−, where Πf(E, A, B, C) denotes the set of all
finite poles of G(s). For brevity we will just call such a transfer function stable
since we exclude poles on the imaginary axis. Furthermore, we call G(s) proper
if limω→∞ ‖G(iω)‖2 < ∞, otherwise we call it improper. By RHp×m

∞ we denote
the rational Banach space of all stable and proper functions of the form (1.2), see,
e.g., [26]. For this space we define the H∞-norm, given by

‖G‖H∞
:= sup

s∈C+

σmax(G(s)) = sup
ω∈R

σmax(G(iω)),

with C
+ := {s ∈ C : Re (s) > 0} and the maximum singular value σmax(·). Our aim

is to compute this norm value under the given assumptions.
Numerical methods for computing the H∞-norm have been known for a long time.

Most of them are based on relations between the H∞-norm and the spectrum of certain

∗Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magde-
burg, Germany (benner@mpi-magdeburg.mpg.de, voigtm@mpi-magdeburg.mpg.de).
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Hamiltonian matrices or pencils. For an overview, we refer to the works [2–6]. We
briefly summarize the most general result presented in [2]. Under some assumptions
it holds that ‖G‖H∞

< γ if and only if the skew-Hamiltonian/Hamiltonian matrix
pencil [1]

λS − Hγ = λ

[

E 0
0 ET

]

−

[

A 1
γ

BBT

− 1
γ

CT C −AT

]

has no finite, purely imaginary eigenvalues. Based on that, the algorithm chooses
an initial guess γ < ‖G‖H∞

and iterates over γ in a suitable way until λS − Hγ

has no finite, purely imaginary eigenvalues. This iteration can be implemented in a
globally quadratically converging way. The drawback of the algorithm is the decision
in each step whether there are purely imaginary eigenvalues. It is important to find
all of them since otherwise the algorithm could fail. In [2] this issue was addressed
by using a structure-preserving method for λS −Hγ , which prevents the finite, purely
imaginary eigenvalues to move off the imaginary axis as long as their pairwise distance
is sufficiently large [1]. However, this method computes a full structured factorization
of the pencil in each step. Due to its cubic complexity it is infeasible for large-
scale problems. We could consider a closely related extended even matrix pencil and
try to compute the desired eigenvalues close to a specified shift with the method
presented in [17]. However, the question remains how to reliably compute all finite,
purely imaginary eigenvalues. Another approach presented in [7,8] uses the so-called
bounded real lemma to estimate the H∞-norm of a discrete-time state-space system
which is required to be given in a minimal realization [10]. This algorithm checks
a sequence of linear matrix inequalities for feasibility. This is done by deciding if a
so-called Chandrasekhar iteration converges. However, this test lacks of reliability, in
particular if the iterates are approaching the H∞-norm. Hence, only an estimation
of the norm value can be given by this algorithm. Therefore, in this paper we use
another approach based on pseudospectra.

Our paper is structured as follows. In Section 2 we introduce the basic terminol-
ogy and concepts that we will make use of in this work. In Section 3 we derive the
mathematical basis of our algorithm. In particular, we describe how to compute the
so-called structured pseudospectral abscissa of a transfer function which is the key in-
gredient of this paper. Finally, in Section 4 we present a study of numerical examples.
We analyse the behavior of our method and state drawbacks and limitations.

2. Mathematical Preliminaries and Applications. In the following we need
the following concepts and terminology. A regular matrix pencil λE−A can be reduced
to Weierstraß canonical form [15]

E = W

[

Inf
0

0 N

]

T, A = W

[

J 0
0 In∞

]

T, (2.1)

where W and T are nonsingular, Ik is an identity matrix of order k, J and N are in
Jordan canonical form and N is nilpotent with index of nilpotency ν. The number
ν is also called the algebraic index of the descriptor system (1.1) and nf and n∞ are
the dimensions of the deflating subspaces of λE − A corresponding to the finite and
infinite eigenvalues, respectively. We say that a finite or infinite eigenvalue is defective,
if one of the corresponding Jordan blocks in J or N is larger than one. By using the
transformation matrices W and T we can also write B and C as

B = W −1

[

B1

B2

]

, C =
[

C1 C2

]

T −1,
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to obtain an equivalent descriptor system.
Furthermore we need some controllability and observability concepts [10]. The

descriptor system (1.1) is called
• completely controllable, if rank

[

λE − A B
]

= n for all λ ∈ C and further-

more rank
[

E B
]

= n;

• completely observable, if rank
[

λET − AT CT
]

= n for all λ ∈ C and fur-

thermore rank
[

ET CT
]

= n.
We can also define these concepts for single eigenvalues of λE − A. A descriptor
system (1.1) is called

• controllable at λ ∈ C if rank
[

λE − A B
]

= n;

• controllable at λ = ∞ if rank
[

E B
]

= n;

• observable at λ ∈ C if rank
[

λET − AT CT
]

= n;

• observable at λ = ∞ if rank
[

λET CT
]

= n;
otherwise it is called uncontrollable or unobservable at λ, respectively. Note, that in
the above definition one can also consider each individual Jordan block of the Weier-
straß canonical form separately in case of multiple eigenvalues. This is possible by
considering the corresponding eigenvectors. Let x and y be right and left eigenvectors
corresponding to a Jordan block in J or N of (2.1). Then

yH
[

λE − A B
]

=
[

0 yHB
]

, xH
[

λET − AT CT
]

=
[

0 xHCT
]

.

We say that such a Jordan block is controllable if BHy 6= 0, and observable if Cx 6= 0,
otherwise we call it uncontrollable or unobservable. We use this definition when
talking about controllability and observability of eigenvalues.

A descriptor system Σ = (λE − A, B, C) which induces the transfer function
G(s) = C(sE − A)−1B is called a realization of G(s). Every rational function G(s)
admits such a descriptor system realization. A realization of G(s) of the form (1.1)
is called minimal if its order n is the smallest among all possible realizations. This is
the case if and only if it is completely controllable and completely observable.

The H∞-norm has several applications, for instance it is used in model order
reduction as an error measure. Assume that

Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t),
(2.2)

with Ẽ, Ã ∈ R
r×r, B̃ ∈ R

r×m, C̃ ∈ R
p×r, reduced descriptor vector x̃(t) ∈ R

r and
output vector ỹ(t) ∈ R

p is a stable reduced-order model of (1.1). Then the transfer
function of the error system is given by

Gerr(s) =
[

C −C̃
]

(

s

[

E 0
0 Ẽ

]

−

[

A 0
0 Ã

])−1 [

B
B̃

]

.

The value of ‖Gerr‖H∞
can be interpreted as the worst-case error when evaluating

Gerr in the frequency domain.
Another field of application can be found in robust control where the H∞-norm

takes the role of a robustness measure. Consider an output feedback controller K ∈
R

m×p that stabilizes the system (1.1). This leads to the closed-loop dynamics

Eẋ(t) = AKx(t) := (A + BKC) x(t).

In robust control we are interested in the robustness of the closed-loop systems with
respect to perturbations in the controller K. In other words we want to know how
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much we can maximally perturb K such that the perturbed closed-loop system is
guaranteed to be stable. The perturbed closed-loop system is given by

Eẋ(t) = AK+∆x(t) = (AK + B∆C) x(t).

For stable systems (1.1) we define the numbers (we replace AK by A for simplicity)

qf
C(E, A, B, C) : = inf

{

‖∆‖2 : Λf(E, A + B∆C) ∩ iR 6= ∅ with ∆ ∈ C
m×p

}

,

q∞
C (E, A, B, C) : = inf

{

‖∆‖2 : Λ∞(E, A + B∆C) with ∆ ∈ C
m×p

has controllable and observable defective eigenvalues } ,

where Λ∞(E, A) is the set of infinite eigenvalues of λE − A (counting multiplicity).
Then we define the structured complex stability radius of a matrix pencil λE−A [13,14]
by

qC(E, A, B, C) := min
{

qf
C(E, A, B, C), q∞

C (E, A, B, C)
}

.

The value of qf
C
(E, A, B, C) is the size of the smallest structured perturbation that

makes the system unstable. The interpretation of q∞
C

(E, A, B, C) is more involved.
Defective infinite eigenvalues do not make the system unstable. However, if there
are controllable and observable ones we can construct an arbitrarily small structured
perturbation such that the system will be unstable. This means that systems with
controllable and observable infinite eigenvalues are on the “boundary to instability”.

It is desirable to make qC(E, A, B, C) as large as possible in order to guarantee a
very high robustness against perturbations in the controller. Later in this paper we
show that for stable systems

qC(E, A, B, C) =

{

1
‖G‖

H∞

if G 6≡ 0,

∞ if G ≡ 0,

so a high value of qC(E, A, B, C) corresponds to a small H∞-norm of the transfer
function G(s).

We also introduce the structured complex stability radius for a transfer function
G ∈ RHp×m

∞ (iω) which slightly differs from the one for matrix pencils. We define the
numbers

rf
C(E, A, B, C) : = inf

{

‖∆‖2 : Πf(E, A + B∆C, B, C) ∩ iR 6= ∅ with ∆ ∈ C
m×p

}

,

r∞
C (E, A, B, C) : = inf

{

‖∆‖2 : Π∞(E, A + B∆C, B, C) 6= ∅ with ∆ ∈ C
m×p

}

= inf
{

‖∆‖2 : C (sE − (A + B∆C))
−1

B with ∆ ∈ C
m×p

is improper
}

,

where Π∞(E, A, B, C) is the set of infinite poles of G(s). Then the structured complex
stability radius of a transfer function G(s) is defined by

rC(E, A, B, C) := min
{

rf
C(E, A, B, C), r∞

C (E, A, B, C)
}

.

For stable or minimal descriptor systems we have that qf
C
(E, A, B, C) = rf

C
(E, A, B, C)

and qC(E, A, B, C) = rC(E, A, B, C). However, G ∈ RHp×m
∞ (iω) can also be realized

by an unstable descriptor system when all unstable eigenvalues are uncontrollable or
unobservable. In this case, the definitions of qf

C
(E, A, B, C) and qC(E, A, B, C) do

not make sense whereas those of rf
C
(E, A, B, C) and rC(E, A, B, C) do. It is very

important to well distinguish between these definitions.

4



3. Theoretical Framework. In this section we derive the theoretical basis of
our algorithm. First of all we prove the relationship between the H∞-norm and the
structured complex stability radius.

Lemma 3.1. It holds that

r∞
C (E, A, B, C) =







1
lim

ω→∞

σmax(G(iω)) if G 6≡ 0,

∞ if G ≡ 0.

Proof. If G ≡ 0, we cannot make the system improper by any structured pertur-
bation, and therefore r∞

C
(E, A, B, C) = ∞. Consider the non-trivial case. W.l.o.g. we

can assume that we have a minimal realization of a proper G(s) given in Weierstraß
canonical form, i.e.,

Σ =

(

λ

[

Inf
0

0 0

]

−

[

J 0
0 In∞

]

,

[

B1

B2

]

,
[

C1 C2

]

)

.

Note that due to the assumptions, the nilpotent matrix N in the Weierstraß canonical
form is zero. Using this realization it holds

lim
ω→∞

G(iω) = −C2B2.

We consider structured perturbations of the matrix pencil which lead to

λ

[

Inf
0

0 0

]

−

([

J 0
0 In∞

]

+

[

B1

B2

]

∆
[

C1 C2

]

)

= λ

[

Inf
0

0 0

]

−

[

J + B1∆C1 B1∆C2

B2∆C1 In∞
+ B2∆C2

]

,

where ∆ ∈ C
m×p. In [2, Theorem 3] it is shown that the perturbed transfer function

is improper if and only if In∞
+ B2∆C2 is singular. Therefore we have to determine

the value of

pC : = inf
{

‖∆‖2 : In∞
+ B2∆C2 is singular with ∆ ∈ C

m×p
}

= inf
{

‖∆‖2 : −In∞
+ B2∆C2 is singular with ∆ ∈ C

m×p
}

.

We consider the structured stability radius rC(0, −In∞
, B2, C2) of −In∞

with respect
to B2 and C2. By employing [13, Proposition 2.1] we obtain

rC(0, −In∞
, B2, C2) =

1

max
ω∈R

σmax(C2((iω + 1)In∞
)−1B2)

(3.1)

=
1

σmax(C2B2)

=
1

lim
ω→∞

σmax(G(iω))
.

Since the maximum in (3.1) is attained at ω = 0, we have pC = rC(0, −In∞
, B2, C2).

This shows the assertion.
Proposition 3.2. It holds

rC(E, A, B, C) =

{

1
‖G‖

H∞

if G 6≡ 0,

∞ if G ≡ 0.
(3.2)

5



Proof. The proof is similar to the corresponding one for state-space systems
in [13]. First we analyze the case that the value of the H∞-norm is attained at some
finite ω ∈ R.

Assume that for some ∆ ∈ C
m×p, 0 6= x ∈ C

m, and ω ∈ R we have

(A + B∆C)x = iωEx,

or equivalently

x = (iωE − A)−1B∆Cx.

Since G(s) is stable, we have u := Cx 6= 0, i.e.,

u = G(iω)∆u. (3.3)

If G ≡ 0 this leads to a contradiction and so rf
C
(E, A, B, C) = ∞, otherwise (3.3)

implies ‖G(iω)‖2 ‖∆‖2 ≥ 1.
Now suppose that ‖G‖H∞

is attained at ω0, i.e., ‖G(iω0)‖2 = ‖G‖H∞
. Let

G(iω0) =
k

∑

j=1

σjujvH
j

be a singular value decomposition of G(iω0) with uj ∈ C
p, vj ∈ C

m, ‖uj‖2 = ‖vj‖2 =
1, for j = 1, . . . , k := min {m, p}, and ‖G(iω0)‖2 = σ1 ≥ σ2 ≥ . . . ≥ σk. With
∆ := σ−1

1 v1uH
1 it follows that

G(iω0)∆u1 = C(iω0E − A)−1B∆u1 = u1.

Defining x := (iω0E − A)−1B∆u1 leads to Cx = u1 and hence x 6= 0. This yields

x := (iω0E − A)−1B∆Cx,

and consequently

(A + B∆C) x = iω0Ex.

From

xH
[

iω0ET − (A + B∆C)
T

CT
]

=
[

0 xHCT
]

=
[

0 u1

]

,

with u1 6= 0, we conclude that iω0 is an observable pole of the perturbed transfer
function

C (sE − (A + B∆C))
−1

B.

Similarly we can prove controllability of iω0.
From that we conclude ‖∆‖2 = 1

‖G‖
H∞

, where ∆ is a perturbation of infimal

norm such that Πf(E, A + B∆C, B, C) ∩ iR 6= ∅.
This shows that ‖G‖H∞

= ‖G(iω)‖2 for some ω ∈ R if and only if rC(E, A, B, C) =

rf
C
(E, A, B, C). The case that the norm value is attained at infinity is covered by

Lemma 3.1.

6
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Fig. 3.1: Poles (blue crosses) and structured pseudospectra of a transfer function to
different perturbation levels

For the remainder of the article we need the following definitions.
Definition 3.3. The structured ε-pseudospectrum of the transfer function G(s)

with respect to B and C is defined by

Πε(E, A, B, C) = {s ∈ C : s ∈ Πf(E, A + B∆C, B, C)

for some ∆ ∈ C
m×p with ‖∆‖2 < ε

}

.

Furthermore, the structured ε-pseudospectral abscissa is given by

αε(E, A, B, C) := max {Re s : s ∈ Πε(E, A, B, C)} .

A graphical interpretation of the terms defined in Definition 3.3 is given in Figure
3.1.

From these definitions it is clear that αrf
C

(E, A, B, C) = 0. So the main idea of

our algorithm is to find the (unique) root of the function α(ε) := αε(E, A, B, C). To
get an efficient algorithm we need to evaluate α(ε) for different values of ε in a cheap
way.

3.1. Computation of the Structured ε-Pseudospectral Abscissa. In this
subsection we derive a fast algorithm for computing α(ε). The following fundamental
results are generalizations of the corresponding ones in [20].

Lemma 3.4. Let s ∈ C\Πf(E, A, B, C) be given and ε > 0. Then the following
statements are equivalent:
(a) s ∈ Πε(E, A, B, C).
(b) σmax(G(s)) > ε−1.
(c) There exist vectors u ∈ C

m and v ∈ C
p with ‖u‖2 < 1 and ‖v‖2 < 1 such that

s ∈ Πf

(

E, A + εBuvHC, B, C
)

.

7



Proof. “(a)=⇒(b)”: From s ∈ Πε(E, A, B, C) it follows that there exist a matrix
∆ ∈ C

m×p with ‖∆‖2 < ε and a vector y ∈ C
n such that

(sE − (A + B∆C)) y = 0.

This is equivalent to

(sE − A) y = B∆Cy

and therefore

Cy = C (sE − A)
−1

B∆Cy.

Now we can estimate

‖Cy‖2 ≤
∥

∥

∥
C (sE − A)

−1
B

∥

∥

∥

2
‖∆‖2 ‖Cy‖2 ,

and hence

ε−1 < ‖∆‖−1
2 ≤ ‖G(s)‖2 .

“(b)=⇒(c)”: Let σmax(G(s)) > ε−1. Define σ := σmax(G(s)) with corresponding
singular vectors u ∈ C

m, v ∈ C
p satisfying ‖u‖2 = ‖v‖2 = 1. Then

G(s)u = σv, vHG(s) = σuH , σ > ε−1. (3.4)

Multiplying the first equation of (3.4) by vH from the left and by vHC from the right
yields

vHC(sE − A)−1BuvHC = σvHvvHC = σvHC.

By setting ṽH := vHC(sE − A)−1 we obtain

ṽHBuvHC = σṽH(sE − A).

The vector ṽH 6= 0 since vHC 6= 0, otherwise σ = 0 which is excluded since ε > 0.
Therefore sE − Â := sE −

(

A + σ−1BuvHC
)

is singular. It remains to show that s
is indeed a pole of the perturbed transfer function

C
(

sE − Â
)−1

B,

i.e., we have to prove controllability and observability of s. Since ṽ is a left eigenvector
of sE − Â it holds

ṽH
[

sE − Â B
]

=
[

0 ṽHB
]

=
[

0 vHC(sE − A)−1B
]

=
[

0 σuH
]

.

Since σuH 6= 0, s is a controllable eigenvalue. Observability can be proven in an
analogous manner and is therefore omitted. This yields statement (c).

“(c)=⇒(a)”: This statement is trivial since with ∆ := εuvH we obtain s ∈
Πf(E, A + B∆C, B, C).

From Theorem 3.4 we can conclude that

Πε(E, A, B, C) = Πf(E, A, B, C) ∪
{

s ∈ C : σmax (G(s)) > ε−1
}

8



with boundary

∂Πε(E, A, B, C) =
{

s ∈ C : σmax (G(s)) = ε−1
}

. (3.5)

In other words, also the rightmost structured pseudopole is arbitrarily close to the
curve ∂Πε(E, A, B, C). Thus, our strategy consists of computing a sequence of suit-
able structured rank-1 perturbed pencils λE − (A + εBuvHC) such that one of the
perturbed eigenvalues converges to the rightmost structured pseudopole of G(s). A
similar technique has already been successfully applied to compute the pseudospectral
abscissa of a matrix, see [12]. We need the following result for the first order pertur-
bation theory of matrix pencils. By C[λ]n×n we denote the set of all polynomials in
λ with coefficients in C

n×n.
Lemma 3.5. [25] Let λE−A ∈ C[λ]n×n be a given matrix pencil and let x, y ∈ C

n

be right and left eigenvectors corresponding to a simple finite eigenvalue λ = yH Ax
yH Ex

.

Let λE − (A+ tBuvHC) be a perturbed matrix pencil with eigenvalue λ̃. Then it holds

λ̃ = λ + t
yHBuvHCx

yHEx
+ O

(

t2
)

.

Furthermore, Lemma 3.5 directly yields

dλ̃(t)

dt

∣

∣

∣

∣

t=0

=
yHBuvHCx

yHEx
.

Now, we describe how such rank-1 perturbations can be constructed in an optimal
way. Therefore, let λE − A with a simple eigenvalue λ and corresponding right and
left eigenvectors x, y with yHEx > 0 be given. Furthermore let u ∈ C

m and v ∈ C
p

with ‖u‖2 = ‖v‖2 = 1 be given vectors. Then, it holds

Re

(

dλ̃(t)

dt

∣

∣

∣

∣

t=0

)

=
Re

(

yHBuvHCx
)

yHEx

≤

∥

∥yHB
∥

∥

2
‖Cx‖2

yHEx
. (3.6)

Equality in (3.6) holds for u = BH y
‖BH y‖

2

, v = Cx
‖Cx‖

2

. Hence, local maximal growth in

Re
(

λ̃(t)
)

as t increases from 0 is achieved for this choice of u and v. In this way we
generate the initial perturbation. Next we consider subsequent perturbations. Let
therefore λE − Â := λE − (A + εBûv̂HC) with a simple eigenvalue λ̂ and associated
right and left eigenvectors x̂, ŷ with ŷHEx̂ > 0 be the perturbed matrix pencil. Let
in addition vectors u ∈ C

m, v ∈ C
p with ‖u‖2 = ‖v‖2 = 1 be given. We consider the

family of perturbations of the matrix pencil λE − Â of the form

λE −
(

Â + tB
(

uvH − ûv̂H
)

C
)

,

which are structured ε-norm rank-1 perturbations of λE − A for t = 0 and t = ε. For
the perturbed eigenvalue, for simplicity called again λ̃, we obtain

Re

(

dλ̃(t)

dt

∣

∣

∣

∣

t=0

)

=
Re

(

ŷHB
(

uvH − ûv̂H
)

Cx̂
)

ŷHEx̂

≥

∥

∥ŷHB
∥

∥

2
‖Cx̂‖2 − Re

(

ŷHBûv̂HCx̂
)

ŷHEx̂
(3.7)

≥ 0.
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Similar as above, equality in (3.7) holds for u = BH ŷ
‖BH ŷ‖

2

, v = Cx̂
‖Cx̂‖

2

. So, the basic

algorithm consists of successively choosing an eigenvalue and constructing the per-
turbations described above by using the corresponding eigenvectors. However, an
important question is how to actually choose these eigenvalues. This will be discussed
in the next subsection.

3.2. Choice of the Eigenvalues. Recall, that we want to construct structured
ε-norm rank-1 perturbations of the pencil λE − A such that one of the perturbed
eigenvalues converges to the rightmost structured ε-pseudopole of the correspond-
ing transfer function G(s). Intuitively, in each step one would choose the rightmost
eigenvalue of the perturbed pencil to construct the next perturbation. However, that
might not be a good choice. Note, that the perturbability of an eigenvalue λ with
right and left eigenvectors x and y highly depends on

∥

∥BHy
∥

∥

2
and ‖Cx‖2. If these

values are small, no large perturbation is possible. We recall, that these values are
strongly related to the controllability and observability concepts introduced in Sec-
tion 1. Roughly speaking, the “larger”

∥

∥BHy
∥

∥

2
is, the “larger” is the distance of

the system to uncontrollability at λ. So, large values of
∥

∥BHy
∥

∥

2
indicate a good

controllability at λ. Similar considerations can also be made for observability.
Consequently, for our algorithm we look for eigenvalues that have both sufficiently

large real part and a high controllability and observability. An algorithm which unites
both concepts and can compute the desired eigenvalues is the (subspace accelerated
MIMO) dominant pole algorithm (SAMDP), introduced by Rommes and Martins
[21–24]. The algorithm has actually been designed to find the poles which have the
highest influence on the frequency response of the transfer function G(s). Assume
that λE − A has only simple eigenvalues λk with left and right eigenvectors yk and
xk, normalized such that yH

k Exk = 1. Then

G(s) =

n
∑

k=1

Rk

s − λk

+ R∞ (3.8)

with the residues

Rk = CxkyH
k B, and R∞ = lim

ω→∞
G(iω).

Then, ‖Rk‖2 = ‖Cxk‖2

∥

∥BHyk

∥

∥

2
is a measure for simultaneous controllability and

observability of λk. We observe that if λj is close to the imaginary axis and ‖Rj‖2 is
large, then for ω ≈ Im(λj) it holds

G(iω) ≈
Rj

− Re(λj)
+

n
∑

k=1
k 6=j

Rk

iω − λk

+ R∞,

and therefore ‖G(iω)‖2 is large, too. These considerations give the motivation for the
following definition. We call an eigenvalue λj ∈ Λ(E, A) dominant pole of G(s), if

‖Rk‖2

|Re(λk)|
<

‖Rj‖2

|Re(λj)|
, k = 1, . . . , n, k 6= j. (3.9)

The most dominant poles can be determined by SAMDP and are essentially what
we are looking for. However, we also deal with positive structured pseudospectral
abscissae. By using the definition (3.9), the eigenvalues tend to loose dominance
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as soon as they have crossed the imaginary axis into the right half-plane. Then,
in subsequent iterations eigenvalues in the left half-plane tend to be determined as
most dominant. This is of course an undesired behavior since this could lead to
convergence problems when the rightmost pseudoeigenvalue is “far” in the right half-
plane. Therefore we use an alternative dominance measure which does not have that
drawback. We call an eigenvalue λj ∈ Λf(E, A) exponentially dominant pole of G(s),
if

‖Rk‖2 exp(β Re(λk)) < ‖Rj‖2 exp(β Re(λj)), k = 1, . . . , n, k 6= j. (3.10)

The parameter β is a weighting factor which defines the trade-off between the influence
of the residue and real part of the eigenvalues. In our numerical experiments it turned
out that β = 100 is a good choice for many examples (high weight on the real part).
Since SAMDP delivers the poles which have the highest influence on the frequency
response of a system and due to the relation (3.2), we can determine very good initial
estimates for rf

C
(E, A, B, C). We compute some of the dominant poles λk, k = 1, . . . , ℓ

and determine an estimate rest
C

(E, A, B, C) as

rest
C (E, A, B, C) = 1/ max

1≤k≤ℓ
σmax (G (iωk)) (3.11)

with ωk = Im(λk), k = 1, . . . , ℓ.

3.3. Algorithmic Details. In this subsection we present some pseudocode of
the algorithms that have been derived. Algorithm 1 summarizes the procedure for
the computation of the structured ε-pseudospectral abscissa. In our implementation
of the algorithm we use estimates of the eigenvectors x and y that are used to con-
struct the optimal perturbation. This is possible since we can take the eigenvectors
returned by the previous α(ε)-evaluations of the root-finding algorithm. This acceler-
ates the computation drastically since in the final root-finding steps the eigenvectors
also converge to x and y.

We mention the drawback that the algorithm not necessarily converges to the
globally rightmost value on the boundary of the ε-pseudospectrum ∂Πε(E, A, B, C)
in (3.5). Mostly it does but in some rare situations the algorithm converges only to
a local maximizer. This especially happens in the first iteration of the root-finding
algorithm when no good estimates of the optimal eigenvectors are available. There-
fore, sometimes one has to try several dominant poles to find the global maximizer
in the beginning. To find the root of α(ε) we use a simple secant method [18], sum-
marized by Algorithm 2 which has a superlinear convergence with convergence rate
1+

√
5

2 ≈ 1.618. As the numerical examples show, we only need very few (3-5) itera-
tions of this method in most cases to find the root with a sufficient accuracy. When
computing the dominant poles of the system we already obtain a very good estimate
of rest

C
(E, A, B, C) as in (3.11). This value is used as first initial value of Algorithm 2.

The other one is obtained by multiplying the estimate rest
C

(E, A, B, C) by a factor γ.
For many examples, rest

C
(E, A, B, C) is so good, that we can take a rather large value

of γ such as 0.8. Furthermore, we estimate limω→∞ G(iω) by evaluating G(iω) for a
sufficiently large ω. The largest singular value of G(iω) will converge quickly due to
fact that for large ω there are no close finite poles which can introduce peaks. We
can give the following upper bound using the residue representation of the transfer

11



Algorithm 1 Computation of the structured pseudospectral abscissa

Input: System Σ = (λE −A, B, C), perturbation level ε, tolerance on relative change
τ .

Output: αε(E, A, B, C).
1: Compute the exponentially dominant pole λ0 of (λE −A, B, C) with left and right

eigenvectors y0 and x0.

2: Compute the perturbation Â = A + ε
BBH y0xH

0 CH C

‖BH y0‖
2
‖Cx0‖

2

.

3: for j = 1, 2, . . . do

4: Compute the exponentially dominant pole λj of (λE − Â, B, C) with left and
right eigenvectors yj and xj .

5: if |Re (λj) − Re (λj−1)| < τ |Re (λj)| then

6: Set k = j.
7: Break.
8: end if

9: Compute the perturbation Â = A + ε
BBH yjxH

j CH C

‖BH yj‖
2
‖Cxj‖

2

.

10: end for

11: αε(E, A, B, C) = Re (λk).

Algorithm 2 Computation of the structured complex stability radius

Input: System Σ = (λE − A, B, C) with transfer function G(s), control parameter
0 < γ < 1.

Output: ‖G‖H∞
.

1: Set ε1 = rest
C

(E, A, B, C) as in (3.11).
2: Set ε2 = γε1.
3: for j = 1, 2, . . . , k do

4: Compute εj+2 = εj+1 − εj+1−εj

α(εj+1)−α(εj) α(εj+1).

5: end for

6: Compute r∞
C

(E, A, B, C) = 1/ lim
ω→∞

σmax(G(iω)).

7: Set ‖G‖H∞
= max

{

ε−1
k , r∞

C
(E, A, B, C)−1

}

.

function (3.8) with λk = νk + iωk, k = 1, . . . , n:

‖G(iω)‖2 =

∥

∥

∥

∥

∥

n
∑

k=1

Rk

iω − iωk − νk

+ R∞

∥

∥

∥

∥

∥

2

≤
n

∑

k=1

‖Rk‖2

|iω − iωk − νk|
+ ‖R∞‖2 . (3.12)

For ω ≫ max1≤k≤n ωk we can neglect the real parts of the denominators νk, k =
1, . . . , n. Since usually there are only very few dominant poles, we can control the
desired accuracy by, e.g., choosing ω such that for the most dominant pole λj we have

‖Rj‖2

|ω − ωj |
≤ η

for some small η > 0.

4. Numerical Results.
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4.1. Test Setup. In this section be present some numerical results of our imple-
mentations. The tests have been performed on a 2.6.32-23-generic-pae Ubuntu ma-
chine with Intel R© CoreTM2 Duo CPU with 3.00GHz and 2GB RAM. The algorithms
have been implemented and tested in MATLAB 7.11.0.584 (R2010b). To compute
the (exponentially) dominant poles we use a (modified) implementation of Rommes’
MATLAB codes∗. The data for the numerical examples was taken from [9,11,16,22]
and it can also be downloaded from Rommes’ website or from the NICONET page†.
In the dominance measure in (3.10) we use β = 100. The tolerance on the relative
change of the iterates in Algorithm 1 is set to τ = 10−3. We also abort the iteration
when the iterates are smaller than 1000u, where u denotes the machine precision, or
when the iterates start to cycle which typically happens when they are approaching
zero. In Algorithm 2 we set γ = 0.8. We abort this iteration when the relative change

of the iterates is below 10−6, i.e., if
∣

∣

∣
1 − εk

εk+1

∣

∣

∣
< 10−6. To obtain rest

C
(E, A, B, C) we

compute 20 dominant poles using the original version of SAMDP. For every further
outer iteration we compute only 5 dominant poles using the modified algorithm with
the exponential dominance measure.

4.2. Test Results. In Table 4.1 we summarize the results of 34 numerical tests.
The first 13 examples are standard or generalized state space systems whereas the
other 21 ones are descriptor systems (with singular E). With nouter we denote the
number of outer iterations, i.e., the number of steps needed by Algorithm 2 to find
the root. With ninner we refer to the total number of inner iterations, i.e., the total
number of steps needed by Algorithm 1.

For all but one test (peec), the correct value of ‖G‖H∞
was found. In 29 tests

the first outer iteration returned a positive value. However, for 3 tests (M10PI_n1,
M10PI_n, bips07_1693), a negative value was returned and therefore we had to try
more dominant poles (one for each M10PI_n1, M10PI_n and four for bips07_1693)
to converge to the correct initial value. In one test (iss), rest

C
(E, A, B, C) underesti-

mated rf
C
(E, A, B, C) due to inaccuracies when evaluating the largest singular values

of G(iω). Then, for this example a correct negative structured pseudospectral was re-
turned. Also the second initial guess was negative. However, the secant method does
not require the initial guesses to enclose the root and therefore a correct norm value
was returned. Note also that the convergence speed of the algorithm highly depends
on the properties of the examples, e.g., for bips07_1998 the convergence was signifi-
cantly slower than for the rest in the bips07 group, although they are comparable in
size.

For a more detailed impression of the behavior of the algorithm, Table 4.2 summa-
rizes the convergence history for the M20PI_n and the bips07_2476 examples, listing
each intermediate iterate for each iteration of the root-finding algorithm.

Finally, in Figure 4.1 the transfer functions for the M20PI_n and the bips07_2476

examples are evaluated on the imaginary axis including the computed H∞-norm. We
see that for M20PI_n, the algorithm computes the correct value, even though there
are lots of close-by peaks of similar height.

4.3. Limitations of the Method. In this subsection we explain limitations
of our method. We have already mentioned that the algorithm fails for the peec

example. We plotted the transfer function of this example in Figure 4.2, once in
the interval (0, 10) and once for the interval (5.2, 5.5) where the maximum peak is

∗http://sites.google.com/site/rommes/software
†http://www.icm.tu-bs.de/NICONET/benchmodred.html
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Table 4.1: Numerical results for 34 test examples

# example n m p ‖G‖H∞
αrf

C

(E, A, B, C) nouter ninner time in s

1 build 48 1 1 5.27633e-03 7.7500e-13 4 17 2.07
2 pde 84 1 1 1.08358e+01 2.0964e-15 2 6 2.25
3 CDplayer 120 2 2 2.31982e+06 8.6537e-16 3 9 3.10
4 iss 270 3 3 1.15885e-01 1.4302e-16 7 23 17.49
5 beam 348 1 1 4.55487e+03 -1.1269e-12 3 10 48.53
6 S10PI_n1 528 1 1 3.97454e+00 -5.5702e-13 4 14 3.16
7 S20PI_n1 1028 1 1 3.44317e+00 8.0050e-12 4 15 5.19
8 S40PI_n1 2028 1 1 3.34732e+00 1.3020e-10 4 18 9.33
9 S80PI_n1 4028 1 1 3.37016e+00 -1.1361e-12 4 14 15.76
10 M10PI_n1 528 3 3 4.05662e+00 1.9585e-13 5 18 4.93
11 M20PI_n1 1028 3 3 3.87260e+00 1.3484e-12 4 14 5.71
12 M40PI_n1 2028 3 3 3.81767e+00 1.1625e-12 4 15 9.25
13 M80PI_n1 4028 3 3 3.80375e+00 1.3691e-12 4 14 16.18
14 peec 480 1 1 3.79802e-02 6.19760e-11 5 21 22.07
15 S10PI_n 682 1 1 3.97454e+00 1.1684e-12 4 14 3.93
16 S20PI_n 1182 1 1 3.44317e+00 7.7902e-12 4 15 5.42
17 S40PI_n 2182 1 1 3.34732e+00 1.3191e-10 4 18 10.01
18 S80PI_n 4182 1 1 3.37016e+00 -6.3183e-13 4 14 15.96
19 M10PI_n 682 3 3 4.05662e+00 9.2788e-13 5 18 5.50
20 M20PI_n 1182 3 3 3.87260e+00 7.0597e-13 4 14 6.37
21 M40PI_n 2182 3 3 3.81767e+00 3.0692e-13 4 14 9.26
22 M80PI_n 4182 3 3 3.80375e+00 -2.0151e-13 4 14 18.16
23 bips98_606 7135 4 4 2.01956e+02 2.4138e-12 4 16 44.30
24 bips98_1142 9735 4 4 1.60427e+02 -5.8626e-11 4 28 88.51
25 bips98_1450 11305 4 4 1.97389e+02 4.5911e-13 5 26 97.61
26 bips07_1693 13275 4 4 2.04168e+02 3.9603e-14 9 52 191.83
27 bips07_1998 15066 4 4 1.97064e+02 7.2725e-14 4 28 140.63
28 bips07_2476 16861 4 4 1.89579e+02 1.2551e-11 4 57 282.32
29 bips07_3078 21128 4 4 2.09445e+02 1.0384e-13 5 19 145.20
30 nopss_11k 11685 1 1 8.52671e-02 -6.4347e-14 6 42 127.49
31 xingo_afonso_itaipu 13250 1 1 4.05605e+00 -3.0780e-14 3 9 47.60
32 mimo8x8_system 13309 8 8 5.34292e-02 3.4737e-13 4 24 107.60
33 mimo28x28_system 13251 28 28 1.18618e-01 1.2423e-13 3 11 104.14
34 mimo46x46_system 13250 46 46 2.05631e+02 -4.4721e-14 3 11 157.40
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Table 4.2: Convergence history for the M20PI_n example

k
1 2 3 4

R
e(

λ
d

o
m

) -6.7945e-02 -6.0215e+00 -3.7397e-04 3.6361e-11
2.3140e-03 -6.0212e+00 -3.4533e-05 3.9060e-11
3.0285e-03 — -3.2591e-05 3.8927e-11
3.0355e-03 — -3.2572e-05 —
3.0356e-03 — — —

εk 2.582502e-01 2.066001e-01 2.582241e-01 2.582244e-01

Table 4.3: Convergence history for the bips07_2476 example

k
1 2 3 4

R
e(

λ
d

o
m

)

-8.1617e-02 -2.4866e-01 -2.1375e-02 5.7642e-09
-9.6637e-03 -2.1398e-01 -4.5199e-03 6.9168e-09
-2.6717e-03 -2.0953e-01 -1.5636e-03 7.5480e-09
-9.8184e-04 -2.0946e-01 -6.5744e-04 7.8936e-09
-3.9561e-04 — -3.0633e-04 8.0829e-09
-1.5362e-04 — -1.5235e-04 8.1865e-09
-4.3525e-05 — -7.9712e-05 8.2433e-09
9.6185e-06 — -4.3824e-05 8.2744e-09
3.6273e-05 — -2.5544e-05 8.2914e-09
4.9989e-05 — -1.6037e-05 8.3007e-09
5.7173e-05 — -1.1022e-05 8.3059e-09
6.0984e-05 — -8.3478e-06 —
6.3022e-05 — -6.9119e-06 —
6.4120e-05 — -6.1368e-06 —
6.4714e-05 — -5.7167e-06 —
6.5036e-05 — -5.4883e-06 —
6.5211e-05 — -5.3640e-06 —
6.5307e-05 — -5.2962e-06 —
6.5359e-05 — -5.2591e-06 —

— — -5.2389e-06 —
— — -5.2278e-06 —
— — -5.2218e-06 —
— — -5.2185e-06 —

εk 5.275154e-03 4.220124e-03 5.274825e-03 5.274850e-03

located. First of all we see, the transfer function has lots of peaks which is due to
the high amount of poles close to the imaginary axis. We plotted the eigenvalues of
the corresponding pencil λE − A in Figure 4.3, together with the ten most dominant
poles. It is very hard for SAMDP to find the most dominant pole. In fact, if we only
compute 20 dominant poles, the actually most dominant one is not found. This is
only the case if we increase the number of wanted poles up to 30. Another problem
is that the maximum peak is extremely thin and spiky. We do not even see it with
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Fig. 4.1: Transfer function plots for the M20PI_n and bips07_2476 test examples with
computed H∞-norm (red circle)
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Fig. 4.2: Transfer function plots for the peec example

the resolution used for plotting Figure 4.2(a). To find it we would actually need
very good approximations the eigenvectors which are needed to construct the optimal
rank-1 perturbation. However, our eigenvector approximations are not that good
and therefore we only find a close-by peak. However, we can check if the computed
norm value is larger than the 2-norms of the transfer function evaluated at the test
frequencies. For this example, the test is not satisfied and therefore we can at least
return an error indicator.

Other critical problems are those where λE −A has only real eigenvalues. For this
kind of examples we observed an extremely slow convergence of SAMDP. Furthermore,
it might happen that the most dominant poles are not the rightmost ones. Then,
Algorithm 1 might only converge to inner eigenvalues of the perturbed pencils which
forces the iteration to fail. Typically, the circuit examples from the MNA group of [9]
are of this kind. However, for these problems, the H∞-norm is attained at zero, i.e.,
‖G‖H∞

= ‖G(0)‖2, see [19].

5. Conclusions and Future Research Perspectives. In this paper we have
introduced a new iterative scheme for computing the H∞-norm of a transfer function.
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Fig. 4.3: Eigenvalues of λE − A for the peec example (blue pluses) and the 10 most
dominant poles (red circles)

This routine uses the relationship between the H∞-norm the structured complex
stability radius of a matrix or a pencil. Based on the method introduced in [12],
the algorithm computes a sequence of structured pseudospectral abscissae. This is
done by computing an optimal rank-1 perturbation of the system such that one of the
eigenvalues of the perturbed matrix or pencil converges to the rightmost structured
pseudopole of the transfer function. This algorithm can be seen as a basis to solve
certain related problems. Open questions are concerned with the computation of
unstructured stability radii. Another interesting problem is the computation of real
stability radii where the perturbation matrix is only allowed to be real. Finally, we
also mention the passivity radius of a dynamical system which might also be put into
this framework.
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