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FAST ITERATIVE SOLUTION OF REACTION-DIFFUSION

CONTROL PROBLEMS ARISING FROM CHEMICAL PROCESSES

JOHN W. PEARSON∗ AND MARTIN STOLL†

Abstract. PDE-constrained optimization problems, and the development of preconditioned
iterative methods for the efficient solution of the arising matrix system, is a field of numerical
analysis that has recently been attracting much attention. In this paper, we analyze and develop
preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations,
which themselves result from chemical processes. Important aspects in our solvers are saddle point
theory, mass matrix representation and effective Schur complement approximation, as well as the
outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs.

Key words. PDE-constrained optimization, reaction-diffusion, chemical processes, Newton
iteration, preconditioning, Schur complement.
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1. Introduction. Optimal control problems, including PDE-constrained opti-
mization problems, have a number of applications in mathematical and physical prob-
lems [4]. One such field in which problems can be posed in this way is that of chemical
processes [4, 18, 19, 20, 21]. In this case the underlying PDEs are reaction-diffusion
equations, and therefore the PDE constraints in our formulation are nonlinear PDEs.

When solving such reaction-diffusion control problems using a finite element
method, and employing a Lagrange-Newton iteration to take account of the nonlin-
earity involved in the PDEs, the resulting matrix system upon each Newton iteration
will be large, sparse and of saddle point structure. It is therefore desirable to de-
vise preconditioned iterative methods to solve these systems efficiently, and in such a
way that the structure of the matrix is exploited. Work in devising preconditioners
for PDE-constrained optimization problems has been considered for simpler problems
previously, for instance Poisson control [43, 45, 49], Stokes control [48, 50, 35] and
heat equation control [42].

In this paper, we will consider an optimal control formulation of a reaction-
diffusion control problem, which generates a symmetric matrix system upon each
Newton iteration (such an iteration is required to take account of the nonlinear terms
within the underlying PDEs). The solvers for the matrix systems that we will discuss
are Minres [41] and Bicg[13] – the choice of the appropriate method depends on
whether the preconditioner we use is positive definite. We will search for block diag-
onal, symmetric positive definite preconditioners for the matrix systems we examine.
In order to do this, we will need to approximate the (1, 1)-block by accurately repre-
senting the inverse of mass matrices, as well as devise an effective approximation of
the Schur complement of the matrix system. We aim to provide heuristic guidance as
to the effectiveness of the Schur complement approximations we advocate, and also
demonstrate with numerical tests why it these are sensible choices for a number of
practical problems.

This paper is structured as follows. In Section 2, we discuss the underlying
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2 J. W. PEARSON AND M. STOLL

chemical problem (detailing the time-independent and time-dependent variants of the
problem), and represent it in terms of a matrix problem. In Section 3, we introduce
some basic saddle point theory and use this to devise effective preconditioners for the
matrices which arise. In Section 4, we present numerical results to demonstrate the
performance of our iterative solver in practice. Finally, in Section 5, we make some
concluding remarks.

2. Problem formulation and discretization. Throughout this paper we con-
sider an optimal control problem based on that considered in [4]. The objective func-
tion that has to be minimized is given by

J(u, v, c) =
αu

2
‖u− uQ‖2L2(Q) +

αv

2
‖v − vQ‖2L2(Q)

+
αTU

2
‖u(T )− uΩ‖2L2(Ω) +

αTV

2
‖v(T )− vΩ‖2L2(Ω) +

αc

2
‖c‖2L2(Σ) ,

(2.1)

where u and v refer to concentrations of reactants (which in this problem are state
variables), and c is the control variable, which also influences the underlying reaction.
The domains of interest are given by a spatial domain Ω ⊂ R

d with d ∈ {2, 3}. The
time domain is here given by the interval t ∈ [0, T ] and we have then the space-time
domain Q given as Q := Ω × [0, T ] as well as the space-time boundary given by
Σ = ∂Ω× (0, T ). The goal of the optimization is to compute the quantities u, v, and
c, in such a way that they are close in the L2 sense to what is often referred to as
desired states (uΩ,uQ,vΩ,vQ). Note that we have 4 desired states in this problem –
2 which are defined at all time periods, and 2 which are solely defined at the final
time at which the problem is being solved. These are known quantities and typically
can come from measurements and observations. In order for the objective function
to resemble a physical or chemical process the variables need to satisfy the physics
of the process of interest, which are typically modeled using one or more PDEs plus
additional constraints. In our case the constraint of the objective J(u, v, c) is given
by the reaction-diffusion equations, i.e.

ut −D1∆u+ k1u = − γ1uv, in Q, (2.2)

vt −D2∆v + k2v = − γ2uv, in Q, (2.3)

D1∂νu+ b(x, t, u) = c, on Σ, (2.4)

D2∂νv + ǫ̃v = 0, on Σ, (2.5)

u(x, 0) = u0(x), in Ω, (2.6)

v(x, 0) = v0(x), in Ω, (2.7)

c ∈ Cad = {c ∈ L∞(Σ) : ca ≤ c ≤ cb a.e. on Σ}. (2.8)

The constants k1, k2, αu, αv, αTU , αTV , αc, ǫ̃, γ1 and γ2 are non-negative constants.
The function c describing the boundary condition (2.4) is the so-called control vari-
able. Equations (2.6) and (2.7) defines the initial conditions for both concentrations.
Additionally, we can impose so-called box constraints on the control as stated in
Equation (2.8). In [21] Griesse and Volkwein also consider an integral constraint on
c, which we will not consider here. In some cases it might also be sensible to include
state constraints for the concentrations u and v, which would be described by

ua ≤ u ≤ ub, va ≤ v ≤ vb.
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State constraints typically bring additional difficulties to optimal control problems
(see [9, 32]) and are not considered further in this present paper. For the remainder
of this paper we will follow the assumptions of b(x, t, u) = 0 and ǫ̃ = 0 as studied in
[21]. There are typically two ways of how to proceed from the above problem. The first
is the so-called discretize-then-optimize approach, where we discretize the objective
function and constraint to build a discrete Lagrangian, and then impose the optimality
conditions in the discrete setting. The second is the so-called optimize-then-discretize
approach, where we instead build a Lagrangian for the infinite dimensional problem
and then discretize the first-order conditions. There is no preferred approach and we
refer to [29] for a discussion of the two cases. We note that recently it has become
a paradigm to create discretization schemes such that both approaches lead to the
same discrete first order system. We also need to deal with the nonlinearity of the
PDE constraint. We here apply a simple Sequential Quadratic Programming (SQP)
or Lagrange-Newton method. Before we proceed to the derivation of optimality con-
ditions and discretization we split the problem into two stages.

Derivation of the Newton system without control constraints. In this
section we wish to further describe how the above problem can be treated and in
particular focus on the treatment of the nonlinearity. We proceed by formally building
the Lagrangian subject to the reaction-diffusion system, i.e.

ut −D1∆u+ k1u = − γ1uv, in Q,

vt −D2∆v + k2v = − γ2uv, in Q,

D1∂νu = c, on Σ,

D2∂νv = 0, on Σ,

u(x, 0) = u0(x), in Ω,

v(x, 0) = v0(x), in Ω,

to give

L(u, v, c, p, q) = J(v, u, c) +

∫

Q

p(ut −D1∆u+ k1u+ γ1uv)

+

∫

Q

q(vt −D2∆v + k2v + γ2uv)

+

∫

Σ

pΣ(D1∂νu− c) +

∫

Σ

qΣ(D2∂νv).

Here we have split up p and q into interior and boundary parts (p & pΣ, and q & qΣ).
Note that we only included the PDE part without boundary and initial conditions,
which of course would need to be done as well but for reasons of exposition we feel that
the derivation below is more accessible; we refer to [4, 21] for more rigorous discussions.
We now take the Fréchet derivative, and consider for brevity of presentation the case
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where αTU = αTV = 0 of L to obtain the following1:

∂L =
∂

∂ε

(
αu

2

∫

Q

(u+ εdu− uQ)
2 +

∫

Q

(v + εdv − vQ)
2 +

∫

Σ

(c+ εdc)2

+

∫

Q

(p+ εdp)((u + εdu)t −D1∆(u + εdu) + k1(u + εdu) + γ1(u+ εdu)(v + εdv))

+

∫

Q

(q + εdq)((v + εdv)t −D2∆(v + εdv) + k2(v + εdv) + γ2(u+ εdu)(v + εdv))

+

∫

Σ

(pΣ + εdpΣ)(D1∂ν(u+ εdu)− c− εdc) +

∫

Σ

(qΣ + εdqΣ)(D2∂ν(v + εdv))

)
|ε=0.

We now wish to simplify all the expressions involved – we commence by considering
the terms coming from the functional

∂

∂ε

(
αu

2

∫

Q

(u + εdu− uQ)
2 +

αv

2

∫

Q

(v + εdv − vQ)
2 +

αc

2

∫

Q

(c+ εdc)2
)
|ε=0

= αu

∫

Q

(u − uQ)du+ αv

∫

Q

(v − vQ)dv + αc

∫

Σ

cdc.

Further, we obtain that

∂

∂ε

(∫

Q

(p+ εdp)((u + εdu)t −D1∆(u + εdu) + k1(u + εdu) + γ1(u+ εdu)(v + εdv))

)
|ε=0

=

∫

Q

dp(ut −D1∆u+ k1u+ uv) +

∫

Q

p(dut −D1∆du+ k1du+ γ1(vdu + udv)),

where we now rewrite the second term to obtain
∫

Q

(ptdu+ k1pdu−D1∆pdu+ γ1pvdu+ γ1pudv)−
∫

Ω

(pdu)|T0 −
∫

Σ

p∂νdu + du∂νp,

using Green’s first identity twice. Similarly, we simplify

∂

∂ε

(∫

Q

(q + εdq)((v + εdv)t −D2∆(v + εdv) + k2(v + εdv) + γ2(u+ εdu)(v + εdv))

)
|ε=0

=

∫

Q

(vt −D2∆v + k2v + γ2uv)dq +

∫

Q

q((dv)t −D2∆dv + k2dv + γ2(vdu + udv)),

and examine the second part of this expression to obtain
∫

Q

(qt −D2∆q + k2q + γ2qu)dv + γ2qvdu−
∫

Ω

(qdv)|T0 −
∫

Σ

q∂νdv + dq∂νv.

Finally, we simplify

∂

∂ε

∫

Σ

(pΣ + εdpΣ)(D1∂ν(u+ εdu)− c− εdc)|ε=0 +
∂

∂ε

∫

Σ

(qΣ + εdqΣ)(D2∂ν(v + εdv))|ε=0 =

∫

Σ

dpΣ(D1∂νu− c) +

∫

Σ

pΣ(D1∂νdu− dc) +

∫

Σ

dqΣ(D2∂νq) +

∫

Σ

qΣ(D2∂νdv).

1We note that very similar results can be obtained in the case where αTU = αTV = 0 is not
assumed.
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We now use all of the above working to write down the first order or Karush-Kuhn-
Tucker (KKT) conditions. This means that ∂L has to vanish for all du, dv, dp, dq, dc.
Considering this gives straightforwardly that

∫
Σ
p∂νdu =

∫
Σ
du∂νp = 0. Now, us-

ing the Fundamental Lemma of the Calculus of Variations, we obtain the following
optimality system:

−pt −D1∆p+ k1p+ γ1pv + γ2qv + αu(u− uQ) = 0, in Q,

−qt −D2∆q + k2q + γ2qu+ γ1pu+ αv(v − vQ) = 0, in Q,

αcc−D−1
1 p = 0, in Σ,

ut −D1∆u+ k1u+ γ1uv = 0, in Q,

vt −D2∆v + k2v + γ2uv = 0, in Q,

∂νu−D−1
1 c = 0, in Σ,

∂νp = ∂νq = ∂νv = 0, in Σ,

This is now a set of nonlinear equations describing the first order conditions and we
can abbreviate this using the notation Φ(x) = 0. We can now use Newton’s method
to solve this problem via the relation Φ′(xk)sk = −Φ(xk). Note we did not explicitly
state the initial conditions for forward and adjoint PDEs as these carry through the
above process. We now have to construct the Fréchet derivative of Φ, which we
evaluate component-wise

∂

∂ε
(−(q + εsq)t −D2∆(q + εsq) + k2(q + εsq) (2.9)

+γ2(q + εsq)(u+ εsu) + γ1(p+ εsp)(u + εsu) + αu((u+ εsu)− uQ)) |ε=0 = b1,

which then gives

−(sq)t −D2∆sq + k2sq + γ2(qsu + squ) + γ1(psu + spu) + αusu = b1.

We next look at

∂

∂ε
(−(p+ εsp)t −D1∆(p+ εsp) + k1(p+ εsp) + γ1(p+ εsp)(v + εsv) (2.10)

+γ2(q + εsq)(v + εsv) + αv((v + εsv)− vQ)) |ε=0 = b2,

and obtain that

−(sp)t −D1∆sp + k1sp + γ1(psv + spv) + γ2(qsv + sqv) + αvsv = b2.

Next we consider the gradient equation

∂

∂ε
(αcc+ αcεsc + p+ εsp) |ε=0 = b3 (2.11)

and its easily seen that this simplifies to

αcsc + sp = b3.

We are left with looking at the Newton equations for the forward reaction-diffusion
PDEs

∂

∂ε
((u+ εsu)t −D1∆(u + εsu) + k1(u+ εsu) + γ1(u + εsu)(v + εsv)) |ε=0 = b4

(2.12)
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which becomes

(su)t −D1∆(su) + k1(su) + γ1(suv + usv) = b4,

and the second equation

∂

∂ε
((v + εsv)t −D2∆(v + εsv) + k2(v + εsv) + γ2(u+ εsu)(v + εsv)) |ε=0 = b5

(2.13)

is now given by

(sv)t −D2∆sv + k2sv + γ2(usv + suv) = b5.

Here we denoted with b = [b1, b2, b3, b4, b5] := −Φ(xk) the right hand side of the
Newton system. Note that we did not write down the boundary conditions but they
of course carry through to the Newton system. If we now write everything together
into an infinite dimensional system the system matrix describing the Newton process
is given by




αuId γ1p+ γ2q 0 L′
u γ2v

γ2q + γ1p αvId 0 γ1u L′
v

0 0 αcId −D−1
1 Id 0

Lu γ1u −D−1
1 Id 0 0

γ2v Lv 0 0 0



, (2.14)

where

Lu =
∂

∂t
−D1∆+ k1Id+ γ1v, L′

u = − ∂

∂t
−D1∆+ k1Id+ γ1v,

Lv =
∂

∂t
−D2∆+ k2Id+ γ2u, L′

v = − ∂

∂t
−D2∆+ k2Id+ γ2u,

and Id denotes the identity operator.
In order to numerically solve the above problem we need to discretize the system

(2.14) and the right hand side −Φ(xk).
We first note that the system (2.14) is in saddle point form (as defined in Section

3) and its discrete counterpart is given by



τM1 0 KT

0 αcτMc −τD−1
1 N T

K −τD−1
1 N 0






y

c

p


 =: b, (2.15)

with

M1 = blkdiag
(
M

(1)
1 ,M

(2)
1 , . . . ,M

(Nt−1)
1 ,M

(Nt)
1

)
,

Mc = blkdiag(Mc,Mc, . . . ,Mc,Mc),

N =




N 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 N . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . N 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 N




,
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where

M
(i)
1 =

[
αuM γ1Mp(i)

+ γ2Mq(i)

γ1Mp(i)
+ γ2Mq(i) αvM

]
,

M denotes a standard finite element mass matrix, Mc is a boundary mass matrix, the
matrix N consists of evaluations of inner products from the term

∫
∂Ω

wtr(v) with w
a function on the boundary ∂Ω, v a test function for the domain Ω and tr the trace
operator. The matricesMp(i)

and Mq(i) are mass-like matrices whose entries are terms

of the form
∫
Ω p̄φiφj and

∫
Ω q̄φiφj respectively (where p̄ and q̄ represent the previous

Newton iterates of the adjoint variables – or Lagrange multipliers – p and q), and the
vectors y and p correspond to the discretized state (u,v) and adjoint (p,q) variables
respectively. The quantity Nt denotes the number of time-steps used.

Finally the matrix K represents the discretized PDE, and can be written as

K =




L(1)

−Md L(2)

. . .
. . .

−Md L(Nt−1)

−Md L(Nt)




where

Md =

[
M 0
0 M

]
,

and

L(i) =

[
M + τ(D1K + k1M + γ1Mv(i)) τγ1Mu(i)

τγ2Mv(i) M + τ(D2K + k2M + γ2Mu(i)
)

]
,

with K the standard finite element stiffness matrix, and Mu(i)
and Mv(i) mass-like

matrices with terms of the form
∫
Ω
ūφiφj and

∫
Ω
v̄φiφj , where ū and v̄ corresponding

to the previous Newton iterates of the state variables u and v.
Note that if we write




αuId γ1p+ γ2q 0 L′
u γ2v

γ2q + γ1p αvId 0 γ1u L′
v

0 0 αcId −D−1
1 Id 0

Lu γ1u −D−1
1 Id 0 0

γ2v Lv 0 0 0




︸ ︷︷ ︸
A




u(k+1) − u(k)

v(k+1) − v(k)

c(k+1) − c(k)

p(k+1) − p(k)

q(k+1) − q(k)



= b̃.

as

A




u(k+1)

v(k+1)

c(k+1)

p(k+1)

q(k+1)



= A




u(k)

v(k)

c(k)

p(k)

q(k)



+ b̃ =




αuuQ + (γ1p
(k) + γ2q

(k))v(k)

αvvQ + (γ2q
(k) + γ1p

(k))u(k)

0

γ1u
(k)v(k)

γ2v
(k)u(k)



.

we can solve for the updated states, control and adjoints directly.
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Problem with control constraints. The problem we have discussed so far did
not include any additional constraints on the control c. We now wish to briefly discuss
how point-wise constraints on the control, i.e.

c(x, t) ≤ c(x, t) ≤ c̄(x, t).

The treatment of control constraints can typically be dealt with using a semi-smooth
Newton method introduced in [6] and for further information we refer to [26, 29, 53].
For the special case of the reaction-diffusion system we refer to [4, 20, 21, 18, 19].
In general the gradient equation of the Lagrangian becomes a variational inequality,
which is in turn solved using the semi-smooth Newton method or equivalently [26]
a Primal-Dual Active Set method. In contrast to [6] we employ a penalty technique
that has been used very successfully for state-constraint optimization problems called
the Moreau-Yosida penalty function [24, 31, 36] and has also been used to control
constrained problems [51]. There the constraints

c(x, t) ≤ c(x, t) ≤ c̄(x, t).

are incorporated into the objective function via a penalization term, i.e. we now wish
to minimize

J(y, u, c) +
1

2ε̄
‖max {0, c̄− c}‖2L2(Σ) +

1

2ε̄
‖min {0, c− c}‖2L2(Σ)

subject to the above mentioned state equation. We can now proceed using the semi-
smooth Newton approach solving the linear systems of the form




τM1 0 KT

0 αcτLc −τD−1
1 N T

K −τD−1
1 N 0






y

c

p


 =: b̃, (2.16)

where

Lc =




Mc + ε̄−1GA(1)McGA(1) 0 0

0
. . . 0

0 0 Mc + ε̄−1GA(Nt)McGA(Nt)


 .

Here A(i) = A(i)
+ ∪ A(i)

− defines the active sets for every time-step of the discretized
problem, i.e.

A(i)
+ = {j ∈ {1, 2, . . . , N} : (ci)j > (ci)j} (2.17)

A(i)
− = {j ∈ {1, 2, . . . , N} : (ci)j < (ci)j} (2.18)

using the control c from the previous iteration. This method is schematically shown
in Algorithm 1, where we assume here that the problem is already discretized. Here

3. Solving the linear systems.

Krylov solvers. We now discuss how to efficiently solve the linear system that
arises at the heart of the Lagrange-Newton method we have discussed in the previous
section. We here decide to employ Krylov subspace methods which have proven to
be very efficient for optimal control problems subject to PDE constraints [49, 45,
47, 46]. In our case, as the system matrix is symmetric and indefinite we could
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1: Choose initial values for c(0), p(0), q(0), u(0), v(0)

2: Set the active sets A(0)
+ , A(0)

− and A(0)
I by using c(0) in (2.17), (2.18)

3: for k = 1, 2, . . . do

4: Solve (2.16) (a system on the free variables from the previous iteration (A(k−1)
I ))

5: Set the active sets A(k)
+ , A(k)

− and A(k)
I by using c(k) as given in (2.17), (2.18)

6: if A(k)
+ = A(k−1)

+ , A(k)
− = A(k−1)

− , and A(k)
I = A(k−1)

I then

7: STOP (Algorithm converged)
8: end if

9: end for

Algorithm 1: Active Set algorithm

employ the Minres [41] method introduced by Paige and Saunders. As a short term
recurrence method [11] it only uses a minimal amount of storage and one matrix-
vector-multiplication per iteration. Minres minimizes the 2-norm of the residual
rk = b − Axk over the current Krylov subspace where xk is the approximation at
step k of this procedure. Of course, any Krylov method will only be effective if a
preconditioner P is introduced such that the properties of the left-preconditioned
system

P−1Ax = P−1b,

where P is constructed in order to resemble well the matrix A, and also be easy to
invert. For excellent introductions to the topic of constructing preconditioners for
saddle point problems we refer to [5, 10] and the references mentioned therein. As a
guideline for constructing good preconditioners we use a result that was presented in
[38, 37], where it is shown that if the saddle point matrix

A =

[
A BT

B 0

]
,

is invertible, then the (ideal) block preconditioner

P =

[
A 0
0 S

]
,

where A is the unchanged (1, 1)-block of the saddle point matrix and S = BA−1BT

is the (negative) Schur complement of A satisfies λ(P−1A)
{
1, 1±

√
5

2

}
. Therefore P

is an extremely effective preconditioner for A. Of course, in practice we would not
wish to explicitly invert A and S to apply the ideal preconditioner – however if we
construct good approximations to the (1, 1)-block and the Schur complement of the
system (2.15) an appropriate iterative solver is should converge rapidly when used
with this preconditioner. As we already pointed out earlier the (1, 1)-block of the
preconditioner might be indefinite and in this case we cannot employ a symmetric
Krylov subspace solver. Now faced with the decision of choosing a nonsymmetric
Krylov method, we wish to point out that it is not straightforward to pick the “best
method” (see [39]) and even the convergence of the Krylov subspace solver might
not be adequately described by the matrix eigenvalues [17]. Nevertheless, in practice
a good clustering of the eigenvalues often leads to fast convergence of the iterative
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scheme and it can be seen that for a good preconditioner many methods behave in a
similar way.

It is also possible to employ multigrid approaches to such saddle point problems.
This class of methods has previously been shown to demonstrate good performance
when applied to solve a number of PDE-constrained optimization problems, subject
to both steady and transient PDEs [27, 28, 52, 7, 8, 2, 23, 22, 1].

We emphasize again that the matrix systems we seek to solve fit into this saddle
point framework, with

A =

[
τM1 0
0 αcτMc

]
, B =

[
K −τD−1

1 N
]
.

Approximating the (1, 1)-block. In the case of a PDE-constrained optimiza-
tion problem with a linear PDE as the constraint, the (1, 1)-block of the resulting ma-
trix system is a block diagonal matrix containing mass matrices (see e.g. [49, 45, 47]),
which can be handled very efficiently. In our case we have to take into account that
the (1, 1)-block now contains blocks of the form

[
αuM γ1Mpi

+ γ2Mqi

γ1Mpi
+ γ2Mqi αvM

]
,

which demonstrates one of the major complexities encountered when attempting to
solve such nonlinear problems numerically. When we seek to approximate these blocks,
we use the saddle point theory as stated above to take as our approximation

A
(i)
0 =

[
αuM − α−1

v (γ1Mpi
+ γ2Mqi)M

−1α−1
v (γ1Mpi

+ γ2Mqi) 0
0 αvM

]
.

Note that these complicated looking matrices are actually straightforward to handle as
we assume that the mass matrices are lumped here2. The block Mc, which also forms
part of the (1, 1)-block of our matrix systems, may be approximated using Chebyshev
semi-iteration [15, 16, 54] for consistent mass matrices, or by simply inversion for
lumped mass matrices.

Approximating the Schur complement. We now focus on the approximation
of the Schur complement, which is given by

S = τ−1KM−1
1 KT + τα−1

c D−2
1 NM−1

c N T .

One approach that proved successful for moderate values of the parameter αc is to
use the approximation

Ŝ = τ−1KM−1
1 KT (3.1)

(see [45]) for smaller values this approximation did not provide satisfying results.
Hence, approximations that provide robustness with respect to the crucial problem
parameters have been investigated (see [49, 55, 34, 44, 42]). The idea presented in
[44] uses an approximation

Ŝ = τ−1(K + M̂)M−1
1 (K + M̂)T

2In the case where mass matrices are not lumped, we believe that we may take a similar approx-
imation, but replace the mass matrices by their diagonals within the preconditioner.
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where M̂ is chosen to accommodate a better approximation of the term that was
initially dropped from S. Before we go into the details we wish to state that we use
the approximation for the (1, 1)-block within the Schur complement approximation,
i.e.

S ≈ τ−1KM̂−1
1 KT + τα−1

c D−2
1 NM−1

c N T .

We will use this as the basis for our Schur complement approximation. Starting with
the assumption that we wish our approximation to look like

Ŝ = τ−1(K + M̂)M̂−1
1 (K + M̂)T

where we have to determine M̂. Studying Ŝ more closely reveals that

Ŝ = τ−1
(
KM̂−1

1 KT + M̂M̂−1
1 M̂+ M̂M̂−1

1 KT +KM̂−1
1 M̂

)

and we wish the first two terms in Ŝ to match the Schur complement as closely as
possible. Therefore, we wish that

τα−1
c D−2

1 NM−1
c N T ≈ τ−1M̂M̂−1

1 M̂.

We now recall the block structure (assuming M̂ to be block diagonal) of the matrices
to see that the last equation gives

[
τα−1

c D−2
1 NM−1

c NT 0
0 0

]
≈

[
τ−1M̂1A

−(i)
0 M̂1 0

0 τ−1α−1
v M̂2M

−1M̂2

]
.

where A
−(i)
0 :=

(
A

(i)
0

)−1

. We will set M̂2 to zero and choose the entries of M̂1 such

that τα−1
c NM−1

c NT = τ−1M̂1A
−(i)
0 M̂1, i.e. the diagonal elements of M̂1 assuming

for now that Mc is a mass matrix for the whole domain to give

τα−1
c D−2

1 mjj = τ−1
m̂2

jj

a0i,jj

or equivalently

m̂2
jj = τ2α−1

c D−2
1 a0i,jjmjj ⇒ m̂jj = τ

√
α−1
c D−2

1

√
a0i,jjmjj . (3.2)

Note that so far we have ignored that Mc is a boundary mass matrix that scales
differently to a mass matrix on the whole domain by an order of h. We illustrate how
to deal with this on a simple example when we wish the following to hold

M̂M−1M̂ = NM−1
b NT ,

where M is the mass matrix on the whole domain and Mb on the boundary. Using
the approximations M ≈ h2I and M ≈ hI we get

h−2M̂2 ≈ M̂M−1M̂ = NM−1
b NT ≈ h−1NNT .

As all matrices in the last expression are diagonal (N is a rectangular matrix with
entries only when boundary degree of freedom is paired with boundary degree of
freedom) we get

m̂2
jj = hm2

jj ⇒ m̂jj =
√
hmjj .
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We can now incorporate the different orders of scaling into (3.2) using
√
h to give

m̂jj = τ

√
ha0i,jjmjj

D2
1αc

.

The approach we presented so far was relying on the fact that the matrix

A
(i)
0 =

[
αuM − α−1

v (γ1Mpi
+ γ2Mqi)M

−1 (γ1Mpi
+ γ2Mqi) 0

0 αvM

]

is positive definite, which is in general not satisfied. In this case even though the sys-
tem matrix is symmetric we could chose a nonsymmetric solver using a nonsymmetric

preconditioner, which contains blocks of the form A
(i)
0 that are indefinite. We again

only formulate our results for a block diagonal preconditioner even though a block
triangular preconditioner may also be appropriate. It is straightforward to use our
techniques for block triangular preconditioners and we will show results using them
in Section 4. We can therefore approximate the Schur complement using

Ŝ = τ−1(K + M̂1)M−1
1 (KT + M̂2)

where in general M̂1 is not equal to M̂2. In a similar fashion to the above we get
that

τα−1
c D−2

1 mjj = τ−1 m̂1,jjm̂2,jj

a0i,jj
,

which leads to

τ2a0i,jjα
−1
c D−2

1 mjj = m̂1,jjm̂2,jj .

If we also incorporate the difference in scalings for the boundary mass matrix we have

hτ2a0i,jjα
−1
c D−2

1 mjj = m̂1,jjm̂2,jj

and we can now choose m̂1,jj and m̂2,jj in a balanced fashion to give

m̂1,jj = τ

√
h

αc
D−1

1 a0i,jj and m̂2,jj = τ

√
h

αc
D−1

1 mjj (3.3)

or the following, which we found to work very well in practice:

m̂1,jj = τ

√
h

αc
D−1

1

√
mjj

√
|a0i,jj | and m̂2,jj = τ

√
h

αc
D−1

1

√
mjj

√
|a0i,jj |. (3.4)

Preconditioning for control constraints. The system (2.16) again needs to be
preconditioned effectively. The (1, 1)-block now contains the matrix αcτLc, which is a
simple block-diagonal matrix that can be treated in the same way as the (1, 1)-block
of the problem without control constraints. Approximating the Schur complement

S = τ−1KM−1
1 KT +

τ

αcD2
1

NL−1
c N T

is again the more challenging task. We now wish to use the technique employed
earlier, i.e.,

Ŝ = τ−1(K + M̂)M̂−1
1 (K + M̂)T
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where M̂1 approximates the (1, 1)-block. We again wish that

τ−1M̂M̂−1
1 M̂ =

τ

αcD2
1

NL−1
c N T .

Note that τ
αcD2

1
NL−1

c N T is a block-diagonal matrix with a block of the form

τ

αcD2
1

N
(
Mc + ε̄−1GA(i)McGA(i)

)−1
NT

alternating with a zero block. Hence, we see that M̂ has also an alternating block-
diagonal structure. Using the notation lci,jj for the diagonal entries of

(
Mc + ε̄−1GA(i)McGA(i)

)
,

the special structure of N (N only has entries on the diagonal belonging to boundary
degrees of freedom) and that all mass matrices are lumped, It holds for all nonzero

entries in M̂, as only entries corresponding to the boundary degrees of freedom will
be nonzero,

τ−1m̂i,jja
−1
0i,jjm̂i,jj =

τ

αcD2
1

mc,jj l
−1
ci,jjmc,jj ,

where the index i always refers to the entries corresponding to the i-th grid point in
time. This gives

m̂i,jj =

√
τ2

αcD2
1

a0i,jj l
−1
ci,jjm

2
c,jj

with

m̂1i,jj =
(
αuM − α−1

v (γ1Mpi
+ γ2Mqi)M

−1 (γ1Mpi
+ γ2Mqi)

)
jj

and

lci,jj =
(
Mc + ε̄−1GA(i)McGA(i)

)
jj
.

3.1. Eigenvalue analysis. In this section, we aim to provide guidance as to
how to establish the effectiveness of our Schur complement approximations stated
above, by analyzing what we expect the behaviour of the eigenvalues of Ŝ−1

1 S and

Ŝ−1
2 S to be. Due to the complexity of the underlying problems and the linear alge-

braic issues involved, we make a few simplifying assumptions for our analysis – the
resulting eigenvalue estimates should thus be regarded as heuristic guidance, rather
than rigorous proof.

In this section, we consider the preconditioned Schur complements in the case
without further control constraints (we find that in practice, the control-constrained
case results in very similar eigenvalue spectra). One simplifying assumption that we
make throughout in our analysis is to ignore the single zero eigenvalue of K, that is to
consider the matrix K corresponding to a Dirichlet problem rather than a Neumann
problem – we find that this makes little difference in practice, but the presence of a
zero eigenvalue of K would make our analysis much harder to proceed with. Finally,
we consider only the case where the (1, 1)-block of the matrix system is positive
definite as we believe this is the only case for which analyzing this problem in detail
would be feasible using our methodology – we find that our solvers may work well if
this is not the case, but not as effectively as in the positive definite case.
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When analyzing this problem, we consider only the more physically complex 3D
problem; results for the 2D problem are similar.

To begin our analysis, we make use of Theorem 2 of [12], in which Feingold and
Varga establish Gershgorin-type theorems for block matrices:

Theorem 1. For the partitioned matrix

Λ =




A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

AN1 AN2 . . . ANN


 ,

where Ajj , j = 1, ..., N are square, each eigenvalue λ of Λ satisfies

(∥∥(Ajj − λIj)
−1

∥∥)−1 ≤
n∑

k=1,k 6=j

‖Ajk‖

for at least one j, 1 ≤ j ≤ N .

We may use this to state the following Lemma (for the 3D problem)3:
Lemma 1. The eigenvalues of L(j) (and hence (L(j))T ), j = 1, ..., Nt, are within

sets of the type (excluding multiplicative constants of O(1))
{∣∣λ−

(
h3 + τ(D1η + k1h

3 + γ1h
3v̄)

)∣∣ ≤ τγ1h
3ū

}
∪

{∣∣λ−
(
h3 + τ(D2η + k2h

3 + γ2h
3ū)

)∣∣ ≤ τγ2h
3v̄
}
,

where h denotes the mesh-size used, and η denotes an eigenvalue of K (which is in
the range [h3, h], using our simplifying assumption). Therefore, for each eigenvalue λ
of L(j):

h3 + τ
(
D1η + k1h

3 + γ1h
3(v̄ − ū)

)
≤ Re(λ) ≤ h3 + τ

(
D1η + k1h

3 + γ1h
3(ū+ v̄)

)

or h3 + τ
(
D2η + k2h

3 + γ2h
3(ū− v̄)

)
≤ Re(λ) ≤ h3 + τ

(
D2η + k2h

3 + γ2h
3(ū+ v̄)

)
.

Furthermore, we may prove a similar result for the matrix M1, as follows:
Lemma 2. The eigenvalues of the j-th block of M1, that is (the symmetric

matrix)

[
αuM γ1Mp(j)

+ γ2Mq(j)

γ1Mp(j)
+ γ2Mq(j) αvM

]
, for j = 1, ..., Nt, are within sets

of the type (excluding multiplicative constants of O(1))
{∣∣λ− αuh

3
∣∣ ≤ γ1h

3p̄+ γ2h
3q̄
}
∪
{∣∣λ− αvh

3
∣∣ ≤ γ1h

3p̄+ γ2h
3q̄
}
.

Therefore, for each eigenvalue λ of

[
αuM γ1Mp(j)

+ γ2Mq(j)

γ1Mp(j)
+ γ2Mq(j) αvM

]
(which

are all real due to symmetry of the relevant matrices):

(αu − γ1p̄− γ2q̄)h
3 ≤ λ ≤ (αu + γ1p̄+ γ2q̄)h

3

or (αv − γ1p̄− γ2q̄)h
3 ≤ λ ≤ (αv + γ1p̄+ γ2q̄)h

3,

3We use here that the eigenvalues of M are given by h3 up to constants of O(1), and that the
eigenvalues of Mu(j)

and Mv(j)
are of the form ūh3 and v̄h3 up to constants of O(1), with ū and v̄

representing the values of the most recent Newton iterates of u and v.
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and so if M1 is positive definite, its largest eigenvalue is

λmax = (max{αu, αv}+ γ1p̄+ γ2q̄)h
3.

Eigenvalues of Ŝ−1
1 S. Lemmas 1 and 2 lead to the following statement about

the eigenvalues of Ŝ−1
1 S, where

S =
1

τ
KM−1

1 KT +
τ

αcD2
1

NM−1
c N T , Ŝ1 =

1

τ
KM−1

1 KT ,

in the case where M1 is positive definite.
Lemma 3. Suppose M1 is positive definite. Then the eigenvalues of Ŝ−1

1 S are
contained within the following interval:

λ(Ŝ−1
1 S) ∈ [1, 1 + µ] ,

where

µ =
C1h

5(max{αu, αv}+ γ1p̄+ γ2q̄)

αcD2
1 min {(D1η + k1h3 + γ1h3(v̄ − ū)) , (D2η + k2h3 + γ2h3(ū− v̄))}2

,

and C1 is a constant of O(1).

Proof. As both S and Ŝ1 are symmetric matrices, we may prove the result using
a Rayleigh quotient argument. We write that

vTSv

vT Ŝ1v
=

1
τ v

TKM−1
1 KTv + τ

αcD2
1
vTNM−1

c N Tv

1
τ v

TKM−1
1 KTv

= 1 +
τ2

αcD2
1

vTNM−1
c N Tv

vTKM−1
1 KTv

.

This quantity is clearly bounded below by 1, as the numerator of the second term
is non-negative and the denominator positive.4 For the upper bound, we need to
consider the upper bound of vTNM−1

c N Tv and the lower bound of vTKM−1
1 KTv.

In the (frequently occurring) case v ∈ null(NT ), the term vTNM−1
c N Tv is equal

to zero, and we are done – Ŝ1 is the exact Schur complement in this case. In the case
v /∈ null(NT ), the term vTNM−1

c N Tv is bounded above by h2 in the 3D case,
excluding multiplicative constants of O(1).

The lower bound of vTKM−1
1 KTv will correspond to the smallest real eigen-

value(s) of K (and KT ) and the largest eigenvalue(s) of M1. For this, we may use
Lemmas 1 and 2 to give that

vTKM−1
1 KTv ≥

(
τ min

{(
D1η + k1h

3 + γ1h
3(v̄ − ū)

)
,
(
D2η + k2h

3 + γ2h
3(ū− v̄)

)})2

(max{αu, αv}+ γ1p̄+ γ2q̄)h3
.

Therefore, inserting our bounds for vTNM−1
c N Tv and vTKM−1

1 KTv into our

expression for v
TSv

vT Ŝ1v
gives (reintroducing our multiplicative constant of O(1))

vTSv

vT Ŝ1v
≤ 1 +

h5(max{αu, αv}+ γ1p̄+ γ2q̄)

αcD2
1 min {(D1η + k1h3 + γ1h3(v̄ − ū)) , (D2η + k2h3 + γ2h3(ū− v̄))}2

,

4Once again, we do not take account of the zero eigenvalue of K; to deal with this issue (and

ensure that Ŝ1 invertible) we recommend introducing an artificial Dirichlet boundary condition within
the preconditioner.
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and so the result is proved. 2

We are able to bound the minimum of λ(Ŝ−1S) robustly in this case. We are
naturally interested in the limits of the upper bound as h → 0 and τ → 0, as we wish
the preconditioner to behave as robustly as possible as the matrix system grows in
size. Clearly, the upper bound is independent of the parameter τ . As h → 0, the upper
bound may tend to a term proportional to h−1 in the worst case (corresponding to a

value of η of O(h3)). So a Schur complement approximation Ŝ−1
1 S will not generate

a totally robust solver for h (and certainly not for many of the other parameters),
but as the value of η can vary within the interval [h3, h], we observe that dependence

on h is reasonably mild in practice. However, we believe that the choice Ŝ1 of Schur
complement approximation is not the optimal one.

Eigenvalues of Ŝ−1
2 S. We now wish to demonstrate a bound for Ŝ−1

2 S, where:

Ŝ2 =
1

τ
(K + M̂)M̂−1

1 (K + M̂)T ,

and M̂ is such that τ−1M̂M̂−1
1 M̂ = τα−1

c D−2
1 NM−1

c N T , in the case where M1 and

M̂1 are positive definite. In order to do this, we make use of the following Lemma:
Lemma 4. The smallest eigenvalues of the matrix

K




ω1Ī
ω2Ī

. . .

ωNt−1Ī
ωNt

Ī



+




ω1Ī
ω2Ī

. . .

ωNt−1Ī
ωNt

Ī



KT ,

where Ī = blkdiag(I, 0) and ωj > 0, j = 1, ..., Nt − 1, in the case where K has no zero
eigenvalue, are bounded below by values of the following order:

−τh3 max
j=1,...,Nt

{ωjγ2v̄j} ,

where v̄j corresponds to the most recent Newton iterates of v at the j-th time-step
Proof. Expanding out the above matrix gives the following:




ω1Π1 −ω1Md

−ω1Md ω2Π2 −ω2Md

−ω2Md
. . .

. . .

. . .
. . . −ωNt−1Md

−ωNt−1Md ωNt
ΠNt



,

︸ ︷︷ ︸
K̄

where

Πj =

[
2M + τN(j) + τNT

(j) τγ2Mv(j)

τγ2Mv(j) 0

]

and N(j) = D1K + k1M + γ1Mv(j) for j = 1, ..., Nt.

We may now work with the Rayleigh quotient wT K̄w, where we denote that

w =
[
w1 w2 · · · wNt

]T
, withwj vectors of the same dimension as the matrices
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Πj and Md. By expanding out the terms, similarly to the working carried out to prove
Theorem 1 in [42], we then obtain

wT K̄w =

Nt∑

j=1

2ωjw
T
j

[
M 0
0 0

]
wj +

Nt∑

j=1

ωjw
T
j Πjwj

−
Nt−1∑

j=1

ωjw
T
j

[
M 0
0 0

]
wj+1 −

Nt∑

j=2

ωj−1w
T
j

[
M 0
0 0

]
wj−1

=

Nt−1∑

j=1

ωj(wj −wj+1)
T

[
M 0
0 0

]
(wj −wj+1)

+ ω1w
T
1

[
M 0
0 0

]
w1 + ωNt

wT
Nt

[
M 0
0 0

]
wNt

+

Nt∑

j=1

ωjw
T
j Πjwj

≥ wTblkdiag (ω1Π1, ..., ωNt
ΠNt

)w

using the positive semi-definiteness of the matrix Md. Therefore, the minimum pos-
sible value of wT K̄w is certainly bounded above by the largest negative value of the
block diagonal matrix written above. This will be given by an eigenvalue of the form
(using Theorem 1)

−ωjτγ2v̄jh
3,

for some j = 1, ..., Nt, where v̄j is as defined above. The result follows directly from
this bound. 2

We will use this result to demonstrate a heuristic bound for the eigenvalues of
Ŝ−1
2 S. As we are again dealing with symmetric matrices, we seek to use a Rayleigh

quotient argument to do this. We consider the quantity

vTSv

vT Ŝ2v
=

τ−1vTKM−1
1 KTv + τα−1

c D−2
1 vTNM−1

c N Tv

τ−1vTKM̂−1
1 KTv + τα−1

c D−2
1 vTNM−1

c N Tv + 2τ−1vTM̂M̂−1
1 M̂v

=
1

τ−1vTKM̂−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv

τ−1vTKM−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv
+

2τ−1vTM̂M̂−1
1 KTv

τ−1vTKM−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv

.

We observe that the term
v
TKM̂−1

1 KT
v

vTKM−1
1 KTv

is likely to be an important one, so we

seek to analyses it in more depth. We see that the term corresponds to the spec-
trum of (KM−1

1 KT )−1(KM̂−1
1 KT ), and therefore, by a simple Rayleigh quotient ar-

gument, the spectrum of M̂−1
1 M1. Now, by the way M̂1 is constructed, we know

that λ(M̂−1
1 M1) ∈

{
1, 1±

√
5

2

}
. Now, as M1 and M̂1 are positive definite (by as-

sumption), we may apply Sylvester’s law of inertia (see [30]) to deduce that, in this

case, λ(M̂−1
1 M1) ∈

{
1, 1+

√
5

2

}
, and therefore that

v
TKM̂−1

1 KT
v

vTKM−1
1 KTv

∈
[
1, 1+

√
5

2

]
.
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We may now demonstrate a lower bound for v
TSv

vT Ŝ2v
as follows:

vTSv

vT Ŝ2v
≥ 1

1+
√
5

2 +max
(

2τ−1vTM̂M̂−1
1 KTv

τ−1vTKM−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv

)

=
1

1+
√
5

2 +max


 2τ−1vTM̂M̂−1

1 KTv

v
T KM

−1
1 KT

v

v
T KM̂

−1
1 KT

v

τ−1vTKM̂−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv




≥ 1

1+
√
5

2 +max


 2τ−1vTM̂M̂−1

1 KTv

min

(
v
T KM

−1
1

KT
v

v
T KM̂

−1
1

KT
v

)
τ−1vTKM̂−1

1 KTv+τα−1
c D−2

1 vTNM−1
c NTv



.

At this point we note that
v
TKM−1

1 KT
v

vTKM̂−1
1 KTv

can be bounded below by 2
1+

√
5
(by previous

working), so we may write

vTSv

vT Ŝ2v
≥ 1

1+
√
5

2 + 1+
√
5

2 max
(

2τ−1vTM̂M̂−1
1 KTv

τ−1vTKM̂−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv

) .

The quantity
2τ−1

v
TM̂M̂−1

1 KT
v

τ−1vTKM̂−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv
may be written as 2aT

b

aT a+bTb
, where

a = τ−1/2M̂−1/2
1 KTv and b = τ1/2α

−1/2
c D−1

1 M−1/2
c N Tv. As aTa > 0 (by assump-

tion of positive definiteness of M̂1, and again ignoring the zero eigenvalue of K), we
may use the same trick as in our previous work (see [43, 42]) to bound this above by
1. Therefore, putting all the pieces together we may write that

vTSv

vT Ŝ2v
≥ 1

1 +
√
5
,

excluding multiplicative constants of O(1).

For the upper bound of v
TSv

vT Ŝ2v
, we may now write

vTSv

vT Ŝ2v
≤ 1

1 + min
(

τ−1vTKM̂−1
1 M̂v+τ−1vTM̂M̂−1

1 KTv

τ−1vTKM−1
1 KTv+τα−1

c D−2
1 vTNM−1

c NTv

) , (3.5)

for which we need to establish the smallest eigenvalue (that is to say largest negative
eigenvalue) of

(
τ−1KM̂−1

1 KT + τα−1
c D−2

1 NM−1
c N T

)−1 (
τ−1KM̂−1

1 M̂+ τ−1M̂M̂−1
1 KT

)
.

We may do this by considering the Rayleigh quotient

vT
(
τ−1KM̂−1

1 M̂ + τ−1M̂M̂−1
1 KT

)
v

vT
(
τ−1KM̂−1

1 KT + τα−1
c D−2

1 NM−1
c N T

)
v
.
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Now, using the fact that M̂−1
1 M̂ = blkdiag(Mpq,1, 0, ...,Mpq,2, 0, ...,Mpq,Nt

, 0),
where Mpq,j := αuI − α−1

v (γ1Mpj
+ γ2Mqj )

−1M(γ1Mpj
+ γ2Mqj )

−1M , we may as-
sume (by arguing based on the assumption that the (1, 1)-block is positive defi-

nite and hence that the αuI term of M̂−1
1 M̂ is dominant) that this is of the form

blkdiag(ω1Ī , ..., ωNt
Ī) of Lemma 4, with ωj = αu − αv(γ1p̄j + γ2q̄j)

−2, (and ωj > 0
by the assumption of positive definiteness of the (1, 1)-block. We may therefore apply

Lemma 4 to write that the vT
(
τ−1KM̂−1

1 M̂+ τ−1M̂M̂−1
1 KT

)
v term is bounded

below by

−h3 max
j=1,...,Nt

{ωjγ2v̄j} = −h3 max
j=1,...,Nt

{(
αu − αv(γ1p̄j + γ2q̄j)

−2
)
γ2v̄j

}
.

We now aim to find the smallest (positive) value of the denominator of the

Rayleigh quotient, that is the vT
(
τ−1KM̂−1

1 KT + τα−1
c D−2

1 NM−1
c N T

)
v term. This

is of course at least τ−1vTKM̂−1
1 KTv, which we observe

τ−1vTKM̂−1
1 KTv = τ−1v

TKM̂−1
1 KTv

vTKM−1
1 KTv

vTKM−1
1 KTv

≥ τ−1λmin

(
M̂−1

1 M1

)
· vTKM−1

1 KTv

= τ−1vTKM−1
1 KTv,

where we now have considered a Rayleigh quotient relating to the eigenvalues of
M̂−1

1 M1. We may use that in Lemma 3 we showed

vTKM−1
1 KTv

≥
(
h3 + τ min

{(
D1η + k1h

3 + γ1h
3(v̄ − ū)

)
,
(
D2η + k2h

3 + γ2h
3(ū− v̄)

)})2

(max{αu, αv}+ γ1p̄+ γ2q̄)h3
,

and hence we can write that

vT
(
τ−1KM̂−1

1 KT + τα−1
c D−2

1 NM−1
c N T

)
v

≥
(
h3 + τ min

{(
D1η + k1h

3 + γ1h
3(v̄ − ū)

)
,
(
D2η + k2h

3 + γ2h
3(ū− v̄)

)})2

τ(max{αu, αv}+ γ1p̄+ γ2q̄)h3
.

where we have used that vTNM−1
c N Tv ≥ 0.

Hence:

vT
(
τ−1KM̂−1

1 M̂+ τ−1M̂M̂−1
1 KT

)
v

vT
(
τ−1KM̂−1

1 KT + τα−1
c D−2

1 NM−1
c N T

)
v

≥ − τh6γ2 maxj=1,...,Nt
{ωj v̄j(max{αu, αv}+ γ1p̄j + γ2q̄j)}

(h3 + τ min {(D1η + k1h3 + γ1h3(v̄j − ūj)) , (D2η + k2h3 + γ2h3(ūj − v̄j))})2
.

Examining this expression shows that the Rayleigh quotient is bounded above by
a parameter which should behave uniformly as h decreases, and will not increase in
magnitude as τ decreases. Therefore, the size of this Rayleigh quotient will not worsen
as the problem size becomes larger, either from step-size or time-step decreasing.
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Putting all our working together, we have demonstrated heuristically that

λ(Ŝ−1
2 S) ∈

[
c1,1,

1

1− C1,τ

]
,

where c1,1 is a positive constant which is robust with respect to h and τ , and C1,τ ≤ 1
is a parameter5 which is robust as h → 0 and gets smaller as τ → 0.

The above result indicates that as the problem size gets larger (as either h or

τ gets smaller), the eigenvalue spectrum of our approximation Ŝ2 to the (positive
definite) Schur complement should not worsen – this is the property we desire.

We note that proving similar results as those above for the case where M1 is
indefinite would be a much harder task. However, we observe that in practice, our
strategy of “matching” the first and last terms of the Schur complement by choosing
a suitable approximation of the form (K + M̂)M̂−1

1 (K + M̂)T often “captures” the
dominant terms as h and τ decreases (the first term) and αc and D1 decreases (the
second term).

To motivate our choices for the next section even further we wish to illustrate
the eigenvalue distribution coming from our Schur complement approximation. In
Figures 3.1 and 3.2 we show the eigenvalue distribution of Ŝ−1S (left) for two values
of the regularization parameter αc and for each Schur complement approximation.
The right plots in Figures 3.1 and 3.2 show the performance of Gmres using these
approximations for the preconditioner. The term robust symmetric refers to the
approximation (3.4), robust unsymmetric to (3.3) and non-robust to (3.1). It can
be seen from the results that the approximation (3.4) provides the best eigenvalue
distribution and lowest number of iterations. This reflects our experience for larger
test problems such as the ones provided in the next section. Thus, we will use this
approximation for the remainder of the paper.

4. Numerical Experiments. In this section we present numerical results for
the above mentioned algorithm with Schur complement approximation Ŝ2. We have
implemented this methodology using the finite element package deal.II [3] with Q1
finite elements. For the AMG preconditioner, we used the Trilinos ML package [14]
that implements a smoothed aggregation AMG. Within the algebraic multigrid we
typically used a Chebyshev smoother (10 steps) in combination with the application
of 6 of V-cycles. Our implementation is currently a proof-of-concept implementation
as at present we reinitialize the AMG preconditioner upon each application. Another
option would be to store various preconditioners, which is prohibitive from a computer
memory point-of-view. The development of an efficient technique using multigrid or
a fixed number of a simple iterative solver such as a Gauss-Seidel or Jacobi method
should be investigated in the future. We therefore wish to emphasize that the tim-
ings presented here are not as rapid as they would be were the recomputation of the
preconditioner at each application not required. We expect that if the varying precon-
ditioners are handled efficiently the timings being reduced drastically. This could also
lead to the now relatively larger number of V-cycles can be reduced – we choose to use
this number of V-cycles as from our experience the performance of the AMG can be
sensitive to parameter changes, which we wished to avoid here. Our implementation

5It is clear from practical considerations that the parameter C1,τ ≤ 1, as otherwise Ŝ−1

2
S would

have an infinite eigenvalue, which is not the case as Ŝ−1

2
S is clearly invertible. Our working indicates

also that C1,τ is not too close to 1 either, and numerical tests validate this hypothesis.
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(a) Eigenvalues αc = 1e− 3.
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(b) Iterations αc = 1e− 3.

10
−2

10
0

10
2

10
4

10
6−0.04

−0.02

0

0.02

0.04

Eigenvalue Real Part

E
ig

en
va

lu
e 

Im
ag

in
ar

y 
P

ar
t

 

 

Robust symmetric
Robust unsymmetric
Nonrobust

(c) Eigenvalues αc = 1e− 5.
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(d) Iterations αc = 1e− 5.

Fig. 3.1: Small problem (dim(S) = 1080): Eigenvalues of Sv = λŜv for various
approximations of the Schur complement (left). Gmres iterations for the saddle
point problem using the three different Schur complement approximations (right).
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(a) Eigenvalues αc = 1e− 3.
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(b) Iterations αc = 1e− 3.
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(c) Eigenvalues αc = 1e− 5.
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(d) Iterations αc = 1e− 5.

Fig. 3.2: Slightly larger problem (dim(S) = 5000): Eigenvalues of Sv = λŜv for vari-
ous approximations of the Schur complement (left). Gmres iterations for the saddle
point problem using the three different Schur complement approximations (right).
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(a) Domain (b) Desired state for first reactant

Fig. 4.1: Cylindrical Shell domain for computations and desired state for the first
reactant.

of Bicg was stopped with a tolerance of 10−4 for the relative residual. Additionally,
we stopped the SQP method whenever the relative change between two consecutive
solutions was smaller than a given tolerance, which we will specify in our examples.
More sophisticated techniques [40] for this could be employed in the future. We feel
that as our purpose is to illustrate the performance of our preconditioner the choice
made here is appropriate. Our experiments are performed for T = 1 and τ = 0.05, i.e.
20 time-steps. We have taken the parameters αTU = αTV = 0 in all our numerical
experiments, though we find it makes little difference computationally if this is not
the case. We only consider three-dimensional examples here and will specify Ω ⊂ R

3

for each example. All results are performed on a Centos Linux machine with Intel(R)
Xeon(R) CPU X5650 @ 2.67GHz CPUs and 48GB of RAM.

No Control Constraints.

Example 1. The first example we show is a cylindrical shell domain shown in
Figure 4.1a with inner radius 0.8, outer radius 1.0 and height 3.0. The parameter
setup for this problem is as follows: the desired state for the first reactant is shown
in Figure 4.1b and is given by

uQ = t |sin(2x0x1x2)| ,

and the desired state for the second reactant is given by vQ = 0. Additionally, we
have k1 = k2 = D1 = D2 = 1 and γ1 = γ2 = 0.15.

In Table 4.1 we show the iteration numbers for the SQP method as well as the
number of Bicg iterations needed for one SQP step. CPU timings are also provided.
The results indicate that there is some mesh-dependence of the preconditioner, which
for our experience can often be observed for boundary control problems. We also see
a very benign growth with respect to the regularization parameter. This illustrates
the robustness of our approach with respect to the regularization parameter for the
control term.
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(a) Computed state for first reactant at time
step 7

(b) Computed control at time step 7

Fig. 4.2: Computed control and state for the first reactant at time step 7 for αc = 1e−5
and αu = αv = 1.0.

DoF time Bicg time Bicg

αc = 1e− 5 αc = 1e− 3

538 240 1175 step 1 46 1145 step 1 44
step 2 46 step 2 44

3 331 520 17701 step 1 96 14910 step 1 80
step 2 98 step 2 82

Table 4.1: Results for the cylindrical shell for varying mesh-size and regularization
parameter αc.

Example 2. The setup used for the second example is similar to the one we
presented previously. We again use the desired states

uQ = t |sin(2x0x1x2)| , vQ = 0

with the parameters k1 = k2 = D1 = D2 = 1 and γ1 = γ2 = 0.15. In contrast to the
last example we now solve the optimization problem on a Hyper L consisting of the
cube on [−1, 1]

3
with the cube (0, 1]

3
removed (see Figure 4.3). Again, we wish to vary

the control regularization parameter αc and the mesh-parameter. Table 4.2 shows the
results for the setup presented here including timings and iteration numbers. We can
again observe a mild growth in iteration numbers with varying mesh-size and also a
growth for very small values of αc, however we find all iteration numbers are very
reasonable considering the complexity of the matrix system being solved.

We consider the same problem as before but now wish to vary some values that
have been previously been assumed to be fixed. The default setup is again k1 = k2 =
D1 = D2 = 1, and γ1 = γ2 = 0.15. In the remainder of this section we will vary one
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(a) Computed state first reac-
tant

(b) Desired state (c) Computed control

Fig. 4.3: Desired state, computed control and state for the first reactant at time step
18 for αc = 1e− 5 and αu = αv = 1.0.

DoF time Bicg time Bicg

αc = 1e− 5 αc = 1e− 3

382 840 1523 step 1 60 1131 step 1 40
step 2 66 step 2 48

2 670 200 19511 step 1 116 18615 step 1 75
step 2 119 step 2 75

Table 4.2: Results for the Hyper L for varying mesh-size and regularization parameter
αc.

of these parameters and keep the other ones fixed. Obviously, this does not cover all
the relevant choices that might be possible but this should indicate the effectiveness
of our approach for a large range of parameter regimes. All computations are carried
out on a fixed mesh that leads to a saddle point system of dimension 382840. We also
note that each of these problems represents a completely different setup of the PDE
and the optimization problem. The sole purpose of presenting the results in Table
4.3 is to show that the iteration numbers for all of these scenarios are reasonable, or
sometimes very low. Clearly, there are some specific parameter regimes for which this
approach will not be as effective as for the cases presented,6 but for a wide range of
parameters (h, τ , αu, αv, αc, D1, D2, k1, k2, γ1, γ2) we find that our approach works
very well.

6Experimental evidence indicates that the main case where the method is less effective occurs
when γ1 and γ2 are large (i.e. when the (1, 1)-block of the matrix system may have large negative
eigenvalues) and αc is small (i.e. when the term of the Schur complement corresponding to the indef-
inite part of the (1, 1)-block does not dominate the positive semi-definite second term). From a linear
algebra perspective, this is a difficult regime, as it involves approximating an indefinite (1, 1)-block
and Schur complement with little specific structure which can be exploited in our preconditioners.
We also note that such a parameter regime may lead to an indefinite Hessian within the SQP step
being carried out – in this case more sophisticated SQP schemes incorporating line-search or trust
region approaches may be needed and could be explored in future work.
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parameter time Bicg time Bicg

αc = 1e− 5 αc = 1e− 3

D1 = D2 = 0.1 3397 step 1 40 2866 step 1 36
step 2 43 step 2 36
step 3 45

D1 = D2 = 100 2119 step 1 20 4195 step 1 12
step 2 26 step 2 13

γ1 = γ2 = 0.05 1285 step 1 60 732 step 1 44
step 2 64 step 2 48

γ1 = γ2 = 0.75 3382 step 1 60 2532 step 1 44
step 2 71 step 2 53

Table 4.3: Results for varying parameters on the Hyper L domain for fixed dimension
382840 and varying regularization parameter αc.

Control Constraints. We now present results for the case when control con-
straints are present. The domain of interest is again the the Hyper L presented earlier,
with the desired states given by

uQ = t |sin(2x0x1x2) cos(2x0x1x2)| , vQ = 0,

and k1 = k2 = D1 = D2 = 1, γ1 = γ2 = 0.15. We only work with an upper bound on
the control given by

c = 0.5.

The results for varying αc and different mesh-parameters are shown in Table 4.4. We
note that the convergence of the outer Newton method was observed to depend on
the tolerance we used for the solution of the linear system (see [33]). The smaller
value for αc shown in Table 4.4 required the tolerance for the iterative solver to be
reduced as otherwise we could not observe convergence of the Newton method. Our
stopping criterion for the Newton method is based on the coincidence of subsequent
active sets but a more sophisticated stopping criterion might be able to avoid the
convergence issue of the Newton method [25, 40]. Table 4.4 shows the number of
SQP steps, the number of semi-smooth Newton steps for the control constraints and
the average number of Bicg iterations for one SQP step. We see that in both cases
there is a benign growth with respect to the mesh-size. The difference between the
two different values of αc is probably due to the fact that as we change αc the values
for the control c change, which means that more variables will be active than in the
case for the larger value of αc.

In addition, we wish to illustrate robustness with respect to the penalty parameter
ε̄. We here keep the mesh and the regularization parameter (αc = 1e− 3) fixed and
consider different values of ε̄. Table 4.5 illustrates that again the resulting iteration
numbers are rather low. We also observed that the performance of the Newton method
depended on the tolerance with which the linear systems were solved. For the rather
low tolerance of 1e−9 we found the Newton scheme and the SQP-scheme to converge
with very few iterations. We observe that for rather small values of the penalty
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DoF time NM/∅ Bicg time NM/∅ Bicg

αc = 1e− 5 αc = 1e− 3

60 920 3014 step 1 6/78.2 2070 step 1 5/35.6
step 2 6/93.2 step 2 5/40.6

382 840 14502 step 1 6/92 12087 step 1 5/42.4
step 2 6/107.6 step 2 5/48.4

Table 4.4: Results for the Hyper L for varying mesh-size and regularization parameter
αc.

(a) Computed state first reactant (b) Computed control

Fig. 4.4: Desired state, computed control and state for the first reactant at time step
18 for αc = 1e− 5 and αu = αv = 1.0.

parameter the convergence of the outer SQP method was slower than for larger values.
This might be caused by the use of our simple SQP scheme and as we mentioned before
more sophisticated schemes might be able to avoid this.

DoF NM/∅ Bicg NM/∅ Bicg NM/∅ Bicg

ε̄ = 1e− 2 ε̄ = 1e− 4 ε̄ = 1e− 6

60 920 step 1 5/41.2 step 1 5/33.6 step 1 5/24.8
step 2 5/44.2 step 2 5/34.8 step 2 5/25.2

step 3 5/25.2
step 4 5/25.2
step 5 5/25.2

Table 4.5: Results on Hyper L domain for varying penalty parameter ε̄.
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5. Conclusions. In this paper we have established a Lagrange-Newton system
for a reaction-diffusion optimization problem typically used in modeling chemical
processes. At the heart of the nonlinear solvers lies the solution of large-scale linear
systems in saddle point form that we have shown can be solved using efficient precon-
ditioning techniques for a wide range of cases. We have introduced a preconditioner
that efficiently approximates the (1, 1)-block of the saddle point system and addi-
tionally derived robust approximations to the Schur complement. We have provided
guidance on the eigenvalues of the preconditioned Schur complement and our numeri-
cal results illustrate that for a variety of problem setups (including box constraints on
the control) our method produces low iteration numbers. The method presented here
not only enables the accurate solution of chemical process models but also provides
fast techniques to do this.
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