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Abstract

In this contribution, we show a method for the boundary feedback stabilization
of the Stokes problem around a stationary trajectory. We derive a formal low-
rank algorithm for solving the stabilization problem in operator notation. The
appearing operator equations are formulated in terms of stationary partial differ-
ential equations (PDEs) instead of using their finite dimensional representations
in terms of matrices. A Galerkin method, satisfying the divergence constraint
pointwise locally is especially appealing since it represents appropriately the ac-
tion of the Helmholtz projection.

The main advantages of the composite technique are the efficient assembly of
element matrices, the reduction of computational costs using static condensation,
and the diagonal mass matrix. The non-conforming character of the composite
element guarantees a better sparsity pattern, compared to conforming elements,
due to the lower number of couplings between basis functions corresponding
to neighboring cells. We also achieve the pointwise mass conservation on sub-
triangles of each element.
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1 Introduction

Feedback stabilization can be seen as the task of making a given working trajectory,
for example from an open-loop controller [10], more robust with respect to distur-
bances. We want to apply a linear quadratic regulator (LQR) approach to stabilize
this open-loop trajectory [17]. Raymond [19] deduces boundary feedback stabilization
of 2D incompressible flow problems and extends this approach to finite dimensional
controllers in [20]. Bänsch/Benner investigate several ideas for the numerical realiza-
tion in [2], where they apply standard Taylor-Hood finite elements [11]. This type of
discretization naturally leads to a discrete differential algebraic system of equations of
differentiation index 2 [22]. The differential algebraic character of the equations causes
several technical difficulties in the regulator approach. Most of these have been solved
by the approach given in [4], which is following ideas from [9]. Still, when solving the
appearing linear systems approximately, i.e., by an iterative linear solver, one can not
guarantee the validity of the divergence freeness condition.

This paper is devoted to two major subjects. On the one hand, we want to show
how the numerical methods for the feedback computation can be reformulated inde-
pendently of the actual spatial discretization. On the other hand, we present a new
type of finite element that overcomes the difficulties regarding the algebraic constraints
by guaranteeing the divergence freeness of the discrete solutions computed in each step
of our algorithm.

To be independent of the numerical discretization, we first formulate the problem
as an ordinary differential equation (ODE) defined in a Hilbert space and apply the
Newton-ADI process [3] to compute the optimal control to the resulting operator
equations in a formal way. We identify the main steps of the algorithm, i.e., the
shifted linear operator equations in terms of stationary linear PDEs containing an
additional reaction term resulting from the shift. These PDEs can be solved by any
spatial discretization method. One efficient realization of the solver for the PDEs is
given by the use of our quadrilateral finite elements.

An advantage of the usage of quadrilateral finite elements is that, in order to de-
compose a two-dimensional domain into simple cells, one needs approximately half the
number of quadrilateral cells compared to triangular cells. In the three-dimensional
case at least about 5 times more tetrahedra compared to hexahedra are required for
decomposing a domain. On the other hand, the reference transformation for quadri-
lateral or hexahedral elements is more complicated than for triangular or tetrahedral
elements where it is simply an affine mapping. For an affine mapping the Jacobian is
constant and has to be computed only once for all integration points when assembling
the local element matrices.

Therefore, we work as a compromise with composite quadrilateral elements where
the reference transformation is continuous and piecewise affine. This is realized by
subdividing each quadrilateral mesh cell into 4 son-triangles and getting profit from
the affine mapping between each son-triangle of the original cell and its corresponding
son-triangle of the reference cell. One can regard this approach also as a blocking of
4 triangular finite elements to one quadrilateral element. The advantage is that one
can eliminate all interior degrees of freedom of the quadrilateral cells by means of the

2



well-known static condensation technique which leads to a much smaller linear system
that has to be solved.

Our motivation for using non-conforming instead of conforming finite elements is
the following:

• it allows us to use the low order element pair of Crouzeix-Raviart (see [7] and
[6, pp. 107-109]) on the son-triangles which is inf-sup stable and has low com-
putational costs,

• it guarantees pointwise mass-conservation within the son-triangles,

• the basis functions for the velocity are L2-orthogonal which leads to a diagonal
mass matrix, and

• after eliminating the interior degrees of freedom of the quadrilateral elements,
the remaining basis functions have a much smaller number of couplings compared
to the conforming case.

The remaining paper is structured as follows. In Section 2, we give a brief overview
of the LQR idea in the operator setting and identify all PDEs we have to solve to com-
pute the optimal control. Afterwards, we introduce our new composite non-conforming
quadrilateral elements in Section 3. We show numerical results in Section 4 and con-
clude the paper at the end.

Finally, before getting to the main part of the paper, we fix some notation. Let
Ω ⊂ R2 be a bounded domain in R2 with boundary Γ := ∂Ω. We denote the outer
unit normal vector on Γ by n and use the standard Sobolev spaces W k,p(G), Hk(G) =
W k,2(G), Hk

0 (G), and Lp(G) = W 0,p(G) for a measurable one- or two-dimensional
set G ⊂ Ω with its measure |G|, where 1 ≤ p ≤ ∞. The norms, semi-norms in the
scalar and vector-valued versions in W k,p(G) are denoted by ‖ · ‖k,p,G and | · |k,p,G,
respectively. The L2 inner product on G is denoted by (·, ·)G. The broken norms
and inner products defined over some partitions Th are indicated by the additional
subscript h. To simplify the notation, we will drop G if G = Ω and p if p = 2. L(X,Y )
stands for the set of linear operators A : X → Y between Hilbert spaces X, Y . The
adjoint operator of A will be denoted by A∗ whereas X ′ stands for the dual space of
X.

2 Feedback Stabilization of Stokes Flow

In this section, we consider the feedback stabilization of flow problems by means of
boundary control. Though Stokes flow is stable, feedback can be used in order to
achieve steady state faster than in the uncontrolled situation. Moreover, external dis-
turbances can be attenuated. In this paper, we consider the Stokes flow as the first
simple candidate for a non-stationary incompressible flow problem. This will be a
prime step on the way to the treatment of non-self-adjoint and non-linear incompress-
ible Navier-Stokes equations.
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2.1 Non-Stationary Stokes Problem

Let Ω be a two-dimensional domain with the boundary Γ = ΓD ∪ Γn consisting of the
Dirichlet part ΓD and the do-nothing part Γn. The Dirichlet part ΓD = Γc ∪ Γd is
further decomposed into the control part Γc and the remaining Dirichlet part Γd. We
consider the following non-stationary Stokes problem:

Find a velocity field v(t) : Ω→ R2 and a pressure field p(t) : Ω→ R such that for all
t ∈ (0,∞) it holds

∂

∂t
v(t)− ν∆v(t) +∇p(t) = f in Ω , (1a)

div v(t) = 0 in Ω , (1b)

v(t) = 0 on Γc , (1c)

v(t) = g on Γd , (1d)

−ν∇v(t) · n+ p(t)n = 0 on Γn , (1e)

v(0) = v0 in Ω . (1f)

Here, ν > 0 denotes the constant dynamic viscosity, ∆, ∇, as well as div , represent
the usual differential operators with respect to the space variable x. f denotes an
external force influencing the system, g some given Dirichlet data, n the unit outer
normal vector on Γ, and v0 the initial velocity. Based on the ideas of Raymond
[19, 20], we want to apply a feedback boundary stabilization technique. The arising
linear-quadratic control problem will be presented in the next subsection.

2.2 Riccati-Based Boundary Feedback Stabilization

Let (w,χ) denote the velocity and pressure solution of the stationary Stokes equations

−ν∆w +∇χ = f in Ω , (2a)

divw = 0 in Ω , (2b)

w = 0 on Γc , (2c)

w = g on Γd , (2d)

−ν∇w · n+ χn = 0 on Γn (2e)

with some special properties we want to achieve. Such properties could be, for example,
that (w,χ) solves a possibly constrained open loop (boundary) control problem. That
means, w(x) is a stationary solution of (1), see [19]. Our aim is to stabilize the
solution (w,χ) by means of a feedback control driven by a time dependent control
vector u(t) =

(
uk(t)

)
∈ RNc . The vector u(t) determines the velocity at the control

boundary Γc =
Nc⋃
k=1

Γ
(k)
c in the way that the component uk(t) is responsible for the

Dirichlet data on the part Γ
(k)
c . To be more specific, we introduce a boundary control
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operator bc : RNc → (H1(Γ))2 which assigns the control vector u(t) to some Dirichlet
data on Γc defined as (

bcu(t)
)
(x) =

Nc∑
k=1

uk(t) ξ(k)(x) ∀x ∈ Γ . (3)

Here, ξ(k) ∈ (H1(Γ))2 with ξ(k)|
Γ\Γ(k)

c
= 0 denotes the prescribed shape function

associated with the control boundary part Γ
(k)
c ∀k = 1, . . . , Nc.

Using the splitting
(v, p) = (w + ṽ, χ+ p̃) ,

we define (ṽ, p̃) as the perturbation in the solution (v, p) of (1) with respect to the
desired solution (w,χ) of (2). Then, the control problem for (ṽ, p̃) reads:

For t ∈ (0,∞), find a velocity field ṽ(t) : Ω → R2 and a pressure field p̃(t) : Ω → R
such that for all t ∈ (0,∞) it holds

∂

∂t
ṽ(t)− ν∆ṽ(t) +∇p̃(t) = 0 in Ω , (4a)

div ṽ(t) = 0 in Ω , (4b)

ṽ(t) = bcu(t) on Γc , (4c)

ṽ(t) = 0 on Γd , (4d)

−ν∇ṽ(t) · n+ p̃(t)n = 0 on Γn , (4e)

ṽ(0) = ṽ0 in Ω. (4f)

The boundary control bcu from (3) describes the influence of the feedback via boundary
stabilization. The feedback stabilization computed via (4) then forces the instationary
solution (v, p) of (1) to the stationary solution (w,χ) of (2) by means of the modified
boundary condition v(t) = bcu(t) on Γc ∀t ∈ (0,∞).

Raymond [19] determines a linear feedback law to stabilize (4). Based on his ideas,
Bänsch/Benner show in [2] initial steps for the numerical realization. Benner et al.
use a mixed finite element method [11] to show first numerical realizations based on a
matrix approximation of (4) in [4]. Thereby, it is shown that one can use the projection
idea presented in [9] to have a matrix approximation of the Leray projection.

In the following, we combine the matrix based approach in [4] with the operator
formulation in [19, 20] in a formal way, using some notations of [21] and avoid the
weak formulation of operators in L2(Ω).

From now on we skip the arguments (t, x) where they are obvious. Furthermore, we
use the following spaces

V 0
n (Ω) = {v ∈ (L2(Ω))2 : div v = 0 in Ω, v · n = 0 on Γ},
V 1

0 (Ω) = {v ∈ (H1(Ω))2 : div v = 0 in Ω, v = 0 on ΓD}.

Let P : (L2(Ω))2 → V 0
n (Ω) denote the so called Leray or Helmholtz projector and let

A be the Stokes operator defined as

Aṽ(t) = νP∆ṽ(t) ∀ ṽ(t) ∈ (H2(Ω))2 ∩ V 1
0 (Ω).

5



Recasting the influence of the Dirichlet control bcu(t) as the action of a control operator
B : RNc → V 0

n (Ω), (4a) – (4b) can be reformulated (using the property ṽ = P ṽ for the
solution ṽ) in the spirit of [19] as

P ∂

∂t
ṽ(t) = AP ṽ(t) + Bu(t). (5)

The computed control u(t) ∈ RNc can be used independently of the approximation
we applied for the underlying PDE. Note, however, that we may introduce a certain
suboptimality when applying the control computed with respect to one approximation,
to a much finer approximation, or even the original system.

We introduce the observation variable

y(t) = CP ṽ(t) , (6)

where the output operator C maps the velocity field onto our observation space RNobs

and can be chosen in different ways, which is explained for our model problem in
Subsection 4.1. The linear-quadratic regulator (LQR) problem reads as follows:

Minimize the cost functional

J (y, u) =
1

2

∫ ∞
0

‖y(t)‖2 + ‖u(t)‖2 dt, (7a)

subject to

P ∂

∂t
ṽ(t) = AP ṽ(t) + Bu(t), (7b)

y(t) = CP ṽ(t). (7c)

It is known (e.g., [16, 14]) that the optimal control t 7→ û(t) ∈ RNc that solves the
LQR problem (7) can be represented as

û = −Kṽ

with the feedback operator

K : V 0
n (Ω)→ RNc , K = B∗X̂ ,

where X̂ = X̂ ∗ ∈ L(V 0
n (Ω), V 0

n (Ω)) is the unique stabilizing weak solution of the Riccati
operator equation

0 = C∗C +A∗X + XA−XBB∗X =: R(X ). (8)

A common way to solve the non-linear operator equation (8) is a Newton-type iteration
as described in [1, 13]. Using the Kleinman reformulation [12], it turns out that we
have to determine X (m+1) from the equation

(A(m))∗X (m+1) + X (m+1)A(m) = −W(m)(W(m))∗, (9)
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where A(m) = A− BB∗X (m) and W(m) =
[
C∗, (B∗X (m))∗

]
in each Newton step m.

Thereby, W(m) is the operator column matrix [21] defined as

W(m) : RNobs × RNc → V 0
n (Ω)′ × V 0

n (Ω)′.

A solution strategy for the matrix version of equation (9) is the low-rank ADI it-
eration [15, 3], where low-rank factors of the solution are computed. The operator
version of the low-rank ADI iteration is presented in [21]. Combing this with the
Newton iteration, we end up with the Operator Newton-ADI iteration presented in
formal operator notation in Algorithm 1 to determine the desired feedback operator
K. In practice, we need finite dimensional approximations of the infinite dimensional
operators. A common way is to use a finite element method to explicitly create the
matrix representations for a fixed finite element basis. The main difficulty is to fulfill
the algebraic constraints given by equation (1b), which means the finite element space
has to fulfill this property by default or we need a numerical realization of the Leray
projector. As mentioned before, Benner et al. show in [4] a realization using mixed fi-
nite elements, like Taylor-Hood elements [11]. Here, we consider a possibly matrix free
approach, where the crucial steps of Algorithm 1 are handled as black-box-functions,
solving the underlying generalized Stokes problems with the algebraic constraints. In
the next subsection, we give a brief overview about the required black-box-functions in
Algorithm 1. The convergence of the ADI iteration depends on the shift parameters
{µi}nADI

i=1 . In the numerical experiments we apply the heuristic Penzl shifts [18].

2.3 Practical Realization of Main Steps in Algorithm 1

The main computational steps in Algorithm 1 are the lines 5 and 9. In line 5, we
have to solve for Ṽ in the equation

(A∗ + µ1I)PṼ =W(m).

Therefore, one main black-box-function is to solve the generalized stationary Stokes
problem

−ν∆v − µ1v +∇p = fW(m) in Ω, (10a)

div v = 0 in Ω, (10b)

v = 0 on ΓD, (10c)

−ν∇v · n+ pn = 0 on Γn (10d)

for severals right hand sides fW(m) depending on the realization of W(m). This means
every column in W(m) creates a different function fW(m) and we arrange all solu-
tions v again in columns of the operator Ṽ. In line 9 there is an additional term
(K(m−1))∗B∗PṼ of two low-rank operators resulting from the formulation of the low-
rank ADI. To avoid this term in (10), we use, analogous to the matrix version [4,
Subsection 3.1], the Sherman-Morrison-Woodburry formula [8] and solve the operator
equation

(A∗ + µiI)PṼ =
[
PVi−1, (K(m−1))∗

]
.
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Algorithm 1 Operator Newton-ADI method

Input: shift parameters {µ1, . . . , µnADI}, with µi ∈ C−
Output: feedback operator K
1: K(0) = 0
2: m = 1
3: while not converged do
4: W(m) =

[
C∗, (K(m−1))∗

]
5: Get Ṽ by solving

(A∗ + µ1I)PṼ =W(m)

6: K(m)
1 = −2 Re (µ1) · B∗ṼṼ∗

7: i = 2
8: while not converged do
9: Get Ṽ by solving (via Sherman-Morrison-Woodburry formula)

(A∗ − (K(m−1))∗B∗ + µiI)PṼ = PṼi−1

10: Vi = Vi−1 − (µi + µ̄i−1)Ṽ
11: K(m)

i = K(m)
i−1 − 2 Re (µi) · B∗ṼiṼ∗i

12: i = i+ 1
13: end while
14: K(m) = K(m)

i

15: m = m+ 1
16: end while
17: K = Km

This means we have to solve the PDE (10) for the right hand sides fV depending on
PVi−1 and fK∗ depending on (K(m−1))∗. We, thus, get different solutions from the
different right hand sides which form the columns of the operator Ṽ. Additionally, we
need the computation of the action of the operators B∗ and K∗ as black-box-functions.
In practice, we have to approximate the solution of (10) by means of discrete solution.
We apply a finite element discretization which we explain in detail in Subsection 3.3.

3 Non-Conforming Composite Quadrilateral Finite
Elements

First, we introduce some notation concerning the used space grids. We denote by Th
an admissible approximate decomposition of Ω into shape-regular quadrilaterals (with
straight edges), where the curved boundary part is polygonally approximated. The
mesh-size parameter h is given by h := max{hK : K ∈ Th}, where hK denotes the
diameter of the cell K ∈ Th.
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0 x1

x2

a0

a1

a2

a3

a4

â0

0

â1 â2

â3â4

x̂1

x̂2

1

1

T̂1

T̂2

T̂3

T̂4

T1,K

T2,K

T3,K

T4,K

K

K̂

Figure 1: The composite cell K = FK(K̂), where FK |T̂i
∈
[
P1(T̂i)

]2
.

From a given mesh Th`
at grid level ` we create the next finer mesh at grid level

`+ 1 by subdividing each quadrilateral mesh cell K ∈ Th`
into 4 quadrilaterals, where

the midpoints of opposite edges of K are connected. For mesh cells K ∈ Th`
having an

edge E located at a curved boundary part of the domain, the midpoint of E is shifted
onto Γ before being used as a new vertex in the new mesh Th`+1

. Thus, a domain
Ω with curved boundary parts is approximated on each grid level by a polygonally
bounded domain Ωh :=

⋃
K∈Th K. However, for the presentation of our theoretical

basics, we will always assume that Ω = Ωh.
In Subsection 3.1, we describe the decomposition of the reference element into son-

triangles and the global space of non-conforming composite quadrilateral finite ele-
ments in Subsection 3.2.

3.1 Composite Quadrilateral Reference Element

Let K̂ = (−1, 1)2 denote the reference cell and T̂ its decomposition into (open) son-

triangles T̂i, i.e.,

T̂ = {T̂1, . . . , T̂4} with K̂ =

4⋃
i=1

T̂ i

such that all son-triangles have a common vertex at x̂ = 0, see Figure 1. The concept
of composite elements consisting of triangular son-cells Ti,K ∀i = 1, . . . , 4, exploits the
fact that one can profit from a continuous and piecewise affine reference transformation
FK : K̂ → K such that

Ti,K = FK |T̂i
(T̂i), FK |T̂i

∈
[
P1(T̂i)

]2
∀i = 1, . . . , 4, (11)
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where the son-triangle Ti,K ⊂ K has the vertices ai, ai+1, and a0 using the conven-
tion that a0 denote the barycenter and a1, . . . , a4 the vertices of K, respectively, with
a5 := a1. The advantage is that the Jacobian of the restriction FK |T̂i

is constant
which simplifies the generation of the element matrices since many terms can be pre-
computed in advance on the reference element. In order to define finite element spaces
and basis functions on the reference element K̂ and the original element K, we have to
introduce some more notation about the decomposition of K̂ and K. The decomposi-
tion of the original cell K into son-triangles will be denoted by T K = {T1,K , . . . , T4,K}.
We define Ê as the set of all edges of the son-triangles of K̂. Furthermore, we denote
by Ê int ⊂ Ê the subset of all edges in the interior of K̂ and by Êbnd the subset of all
edges on the boundary ∂K̂. To an edge Ê ∈ Ê , we assign a unit normal vector n̂Ê on

Ê with an arbitrary, but fixed orientation. For a given possibly discontinuous function
ϕ̂ : K̂ → Rn, we define for each interior edge Ê ∈ Ê int the jump [[ϕ̂]]Ê as the function

[[ϕ̂]]Ê(x̂) := lim
τ→+0

ϕ̂(x̂+ τ n̂Ê)− lim
τ→+0

ϕ̂(x̂− τ n̂Ê) ∀ x̂ ∈ Ê.

In the following, let 〈·, ·〉Ê denote the inner product in L2(Ê). Now, the local non-

conforming composite polynomial space on K̂ can be described as

Pnc
1 (K̂) :=

{
v̂ ∈ L2(K̂) : v̂|T̂ ∈ P1(T̂ ) ∀ T̂ ∈ T̂ ,〈

[[v̂]]Ê , 1
〉
Ê

= 0 ∀Ê ∈ Ê int
}
.

(12)

To ensure the existence of traces of a function on the edges Ê ∈ Ê , we introduce the
broken Sobolev space

H1
b (T̂ ) := {v̂ ∈ L2(K̂) : v̂|T̂ ∈ H

1(T̂ ) ∀ T̂ ∈ T̂ }.

The degrees of freedom of the non-conforming composite P1-element are associated
with the edges of the son-triangles. Therefore, we number the edges in Ê (see Figure 2)
with the convention that

Êbnd = {Ê1, . . . , Ê4}, Ê int = {Ê5, . . . , Ê8},

and assign to each son-edge Êi the nodal functional

N̂i : H1
b (T̂ )→ R with N̂i(v̂) = |Êi|−1 〈v̂, 1〉Êi

∀i = 1, . . . , 8,

where |Êi| denotes the length of the edge Êi. These nodal functionals are unisolvent

with respect to the polynomial space Pnc
1 (K̂) and define uniquely the reference basis

functions φ̂i ∈ Pnc
1 (K̂) by means of the conditions

N̂j(φ̂i) = δij ∀i, j = 1, . . . , 8, (13)

where δij denotes the Kronecker delta.
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Ê1

Ê2

Ê3

Ê4

Ê5 Ê6

Ê7Ê8

Figure 2: Numbering of the edges of the son-triangles on the reference element and
local degrees of freedom (marked by ) of the composite Pnc

1 (K̂)-element.

In order to show the approximation properties of the discrete velocity space on
the reference element we introduce the velocity interpolation operator Îv : H1(K̂) →
Pnc

1 (K̂) as

Îvû(x̂) :=

8∑
i=1

N̂i(û)φ̂i(x̂) ∀ û ∈ H1(K̂).

Applying the Bramble-Hilbert Lemma [5] on each son-triangle T̂ ∈ T̂ , we can show
the estimate

‖û− Îvû‖1,T̂ ≤ C|û|2,T̂ ∀ T̂ ∈ T̂ , û ∈ H2(K̂), (14)

which is the basis to prove optimal approximation properties on the original mesh
Th. For a vector-valued function v̂ ∈ (H1(K̂))2, the operator Îv is applied to each
component of v̂.

3.2 Global Finite Element Spaces for Velocity and Pressure

In this section, we describe the construction of the global finite element spaces Vh and
Qh for approximating velocity and pressure, respectively. We start with the definition
of Vh which is based on the piecewise affine reference transformations FK : K̂ → K and
the previously defined polynomial space Pnc

1 (K̂) on the reference element. In order to
keep the consistency error of the global non-conforming discretization within the right
asymptotic order, we have to ensure for each discrete function vh ∈ Vh that the jumps of
vh across the edges of the son-triangles of all quadrilateral cells are zero in the integral
mean value. Therefore, we need some notation on edges and jumps analogously to the
previous section for the reference element. For a given quadrilateral cell K ∈ Th, the
symbol E(K) denotes the set of all boundary edges of the quadrilateral cell K which
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are the images of the edges Ê ∈ Êbnd via the mapping FK : K̂ → K. Furthermore,
let Eh denote the set of all edges in the union of the E(K) over all cells K ∈ Th and
E int
h , Ebnd

h the subsets of the edges E ∈ Eh in the interior and on the boundary of the
domain Ω. The set Ebnd

h is split as

Ebnd
h = ED

h ∪ EN
h ,

where ED
h denotes the set of boundary edges with prescribed Dirichlet boundary condi-

tions, while EN
h denotes the set where ”do-nothing” boundary conditions are imposed.

To each edge E ∈ Eh, we assign a unit vector nE normal to E which is assumed to
point outwards with respect to Ω if E ∈ Ebnd

h . For a given edge E ∈ Eh and a possibly
discontinuous function ϕ : Ω→ R, which is continuous on each sub-triangle of the cells
K ∈ Th, we define for all x ∈ E the jump [[ϕ]]E as the function

[[ϕ]]E(x) :=

 lim
τ→+0

ϕ(x+ τnE)− lim
τ→+0

ϕ(x− τnE) if E ∈ E int
h ,

lim
τ→+0

ϕ(x− τnE) if E ∈ Ebnd
h .

Now, we are in the position to define the scalar discrete velocity space Sh. It can be
described via the piecewise affine reference mappings FK : K̂ → K as follows:

Sh :=
{
ϕ ∈ L2(Ω) : ϕ|K ◦ FK ∈ Pnc

1 (K̂) ∀ K ∈ Th,

〈[[ϕ]]E , 1〉E = 0 ∀ E ∈ E int
h

}
.

For the test functions in the discrete problem, we need also the subspace S0
h ⊂ Sh with

discretely homogeneous Dirichlet boundary conditions, i.e.,

S0
h :=

{
ϕ ∈ Sh : 〈[[ϕ]]E , 1〉E = 0 ∀ E ∈ ED

h

}
.

The associated vector-valued discrete velocity spaces are Vh := (Sh)2 and V 0
h :=

(S0
h)2. The jump conditions in the definition of Sh are realized by the following choice

of the global basis functions. One subset of basis functions is associated with the set
of the interior edges and the set of the non-Dirichlet boundary edges. Therefore, we
number these edges as

E int
h ∪ EN

h = {E1, . . . , ENEDG
}.

For each edge Ej ∈ E int
h ∪ EN

h , we define an associated scalar basis function φj by its
restriction to an arbitrary element K ∈ Th:

φj |K(x) :=

{
φ̂i(F

−1
K (x)) if Ej ∈ E(K), Ej = FK(Êi),

0 if Ej 6∈ E(K),
∀ x ∈ K.

Due to the Kronecker-delta property (13) of the reference basis functions φ̂i, we get the
jump-property 〈[[φj ]]E , 1〉E = 0 for all edges E ∈ E int

h ∪ED
h which implies φj ∈ Sh. The
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remaining basis functions of Sh are so-called non-conforming bubble functions since
their support is just one cell. For each cell K ∈ Th, there are four of such bubble
functions φbK,i defined for all x ∈ Ω as:

φbK,i(x) :=

{
φ̂4+i(F

−1
K (x)) if x ∈ K,

0 if x 6∈ K,
∀i = 1, . . . , 4.

The scalar velocity space in the case of homogeneous Dirichlet boundary conditions
can be represented by means of its basis functions as

S0
h = span{φj , j = 1, . . . , NEDG, φbK,i, K ∈ Th ∀i = 1, . . . , 4}.

Remark 3.1 It is easy to verify that for each son-triangle T̂m ∀m = 1, . . . , 4 of K̂ it
holds

(φ̂j , φ̂i)T̂m
= 0 ∀ i, j ∈ {1, . . . , 8}, i 6= j.

Since the reference mapping FK : K̂ → K is affine on each T̂m, we get that the
local basis functions φ̂i ◦ F−1

K are orthogonal in L2(K). This implies that the above
constructed global basis functions of Sh and Vh are orthogonal with respect to the inner
products in L2(Ω) and (L2(Ω))2, respectively.

In the following, we will describe the discrete pressure space Qh. Since this space
consists of piecewise constant functions, it is not necessary to define it via the reference
mapping. We start with the definition of the local composite pressure space for an
arbitrary quadrilateral cell K ∈ Th which is given as

Pdc
0 (K) := {q ∈ L2(K) : q|Ti,K

∈ P0(Ti,K) ∀i = 1, . . . , 4} , (15)

where the Ti,K := FK(T̂i) denote the son-triangles of K. The natural basis functions
of Pdc

0 (K) are the characteristic functions χi,K , i = 1, . . . , 4, which are defined to be 1
on the associated son-triangle Ti,K and 0 on the remaining part of the cell K. Using
the local composite spaces Pdc

0 (K), the global pressure space Qh can be described as

Qh : =
{
q ∈ L2(Ω) : q|K ∈ Pdc

0 (K) ∀K ∈ Th
}

= span {χi,K ∀i = 1, . . . , 4, K ∈ Th} .
(16)

3.3 Discretization of the Generalized Stokes Problem

In this subsection, we treat the discretization of the following weak formulation of the
generalized Stokes problem (10), which is the key ingredient in performing the main
steps in Algorithm 1: Find (v, p) ∈ (vb + V )×Q such that

ν(∇v,∇ϕ)− µ(v, ϕ)− (p,divϕ) = (f, ϕ) ∀ ϕ ∈ V, (17)

(div v, q) = 0 ∀ q ∈ Q. (18)
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µ ≤ 0 denotes a given constant (shift parameter from Algorithm 1), the spaces Q and
V are defined by Q := L2(Ω),

V := {ϕ ∈ (H1(Ω))2 : ϕ|ΓD
= 0},

vb ∈ (H1(Ω))2 is an extension to Ω of the given Dirichlet boundary data, and f ∈
(L2(Ω))2 a given body force. The name generalized Stokes problem comes from the
presence of the term with the factor µ which arises from our approach to compute the
feedback control. This extra term does not cause any problems in theory and practice.

In the non-conforming case, the first derivatives of the discrete velocity function
exist only locally on the son-triangles of the quadrilateral mesh cells. Therefore, we
introduce the following discrete bilinear forms

ah(v, ϕ) :=
∑
K∈Th

4∑
i=1

{
ν(∇v,∇ϕ)Ti,K

− µ(v, ϕ)Ti,K

}
,

bh(v, q) := −
∑
K∈Th

4∑
i=1

(div v, q)Ti,K
,

for all v, ϕ ∈ Vh and q ∈ Qh. Let vbh ∈ Vh be a discrete function which interpolates
the Dirichlet data with optimal order. The discrete generalized Stokes problem reads
as follows:

Find (vh, ph) ∈ (vbh + V 0
h )×Qh such that

ah(vh, ϕh) + bh(ϕh, ph) = (f, ϕh) ∀ ϕh ∈ V 0
h ,

bh(vh, qh) = 0 ∀ qh ∈ Qh.
(19)

Since this discrete problem is equivalent to the standard discretization using the non-
conforming Crouzeix-Raviart element pair on the triangular mesh consisting of all
the son-triangles, we know that this problem admits a stable unique solution which
is accurate of optimal order, see [7]. In Section 4, we will confirm this accuracy by
means of a numerical test example.

3.4 Static Condensation

Static condensation is an old principle in finite element technology and means that one
eliminates all ”interior” degrees of freedom in each cell K ∈ Th for which the support
of the associated basis function is contained in K̄. The idea behind this approach is
that, on each cell K, the values of the solution components related to these interior
degrees of freedom can be locally expressed by means of the values of the remaining
non-interior degrees of freedom associated with K. In the following, we will describe
this technique in more detail for the generalized Stokes problem (19).

For a fixed cell K ∈ Th, let EKi := FK(Êi)∀i = 1, . . . , 8, denote the edges of all

son-triangles of K and φKi := φ̂i ◦ F−1
K the associated scalar basis functions for the
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discrete velocity vh on K. The corresponding vector-valued basis functions ϕK
j

: K →
R2 ∀j = 1, . . . , 16, are defined as

ϕK
2i−1

:=

(
φKi
0

)
and ϕK

2i
:=

(
0
φKi

)
∀i = 1, . . . , 8. (20)

An arbitrary discrete velocity function vh ∈ Vh restricted to K can be represented as

vh|K(x) =

16∑
j=1

vKj ϕ
K
j

(x), ∀ x ∈ K,

where the degrees of freedom vKj are given by

vK2i−1 := |EK,i|−1 〈vh,1|K , 1〉EK,i
, vK2i := |EK,i|−1 〈vh,2|K , 1〉EK,i

, (21)

for all i = 1, . . . , 8. Due to Remark 3.1, we get an L2-orthogonal decomposition of an
arbitrary vh ∈ Vh into an interior part vint

h (which can be condensed) and a remaining
part vr

h as follows

vh(x) = vint
h (x) + vr

h(x) ∀ x ∈ Ω,

where for all x ∈ K it holds together with (21)

vint
h |K(x) =

16∑
j=9

vKj ϕ
K
j

(x), vr
h|K(x) =

8∑
j=1

vKj ϕ
K
j

(x). (22)

Similarly, we can define an L2-orthogonal decomposition of an arbitrary discrete
pressure function ph ∈ Vh into an interior part pint

h (which can be condensed) and a
remaining part pr

h as follows

ph(x) = pint
h (x) + pr

h(x) ∀ x ∈ Ω,

where for all x ∈ K it holds

pint
h |K(x) =

4∑
j=2

pKj ψ
K
j (x), pr

h|K(x) = pK1 := |K|−1(ph, 1)K . (23)

Here, |K| denotes the area of the cell K and the local basis functions ψKj ∈ Pdc
0 (K) ∩

L2
0(K) with L2

0(K) := {q ∈ L2(K) : (q, 1)K = 0} are defined as the following linear
combinations of the characteristic functions χi,K from Subsection 3.2:

ψKj (x) := χj,K(x)− |Tj,K |
|T1,K |

χ1,K(x) ∀j = 2, . . . , 4, x ∈ K. (24)

Now, we can eliminate, on each cell K ∈ Th, the interior parts vint
h and pint

h in
dependence of the remaining parts vr

h and pr
h. To this end, we simply choose in (19)

K-local test functions and get the following local generalized Stokes problem:
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For given vrh|K and prh|K , find vinth |K and pinth |K described in (22) and (23) such
that

ah

(
vint
h |K + vr

h|K , ϕKj
)

+ bh

(
ϕK
j
, pint

h |K + pr
h|K
)

=
(
f, ϕK

j

)
∀ j = 9, . . . , 16,

bh
(
vint
h |K + vr

h|K , ψKj
)

= 0

∀ j = 2, . . . , 4.

(25)

It is simple to show that the two subspaces of the interior velocity and pressure func-
tions are inf-sup-stable uniformly with respect to h. Therefore, the K-local prob-
lem (25) admits a unique and stable solution for each given pair (vr

h, p
r
h) and each cell

K ∈ Th. These local problems are equivalent to a linear 11× 11-system which can be
solved directly by means of an optimized linear algebra subroutine. In the implemen-
tation of the static condensation, one solves on each mesh cell K simultaneously the
corresponding local system for all possible pairs of basis functions for (vr

h|K , pr
h|K) and

stores the solutions. Thus, one has an efficient cell-wise matrix representation of the
following solution operators

vint
h = Sv(v

r
h, p

r
h, f) and pint

h = Sp(v
r
h, p

r
h, f)

which assign to an arbitrary pair (vr
h, p

r
h) ∈ (vbh+V r

h)×Qr
h the corresponding interior

parts (vint
h , pint

h ), where the remaining spaces V r
h and Qr

h are given by

V r
h := span

{(
φj
0

)
,

(
0
φj

)
, j = 1, . . . , NEDG

}
and

Qr
h :=

{
q ∈ L2(Ω) : q|K = const ∀K ∈ Th

}
.

Using the solution operators Sv and Sp, the remaining generalized Stokes system reads:
Find (vrh, p

r
h) ∈ (vbh + V r

h )×Qr
h such that

ah (Sv(v
r
h, p

r
h, f) + vr

h, ϕh) + bh (ϕh, Sp(v
r
h, p

r
h, f) + pr

h) = (f, ϕh)

∀ ϕh ∈ V r
h ,

bh (Sv(v
r
h, p

r
h, f) + vr

h, qh) = 0

∀ qh ∈ Qr
h .

The corresponding sparse linear system can be assembled efficiently and has a dimen-
sion of

N r = dim(V r
h) + dim(Qr

h) = 2NEDG +NEL,

where NEL denotes the number of quadrilateral cells in the mesh Th. This dimension
is about 3 times smaller than the dimension of the original system (19).
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Figure 3: The coarse mesh for the feedback control flow problem with L = 1.7, H =

1.0, Nc = 2, I
(1)
c = [ 7

12 ,
8
12 ] and I

(2)
c = [ 11

12 , 1]. The straight-lined control
boundary parts are marked with Γc.

4 Numerical Results

We have implemented a finite element package for quadrilaterals and programs for the
operator Newton-ADI method in MATLAB R©. The resulting algebraic linear systems
have been solved using the sparse direct solver provided by MATLAB. For the 2D-case,
the computational efficiency of this solver is comparable to that of modern multigrid-
solvers.

4.1 Grid and Data

In the following, we describe the problem data and the grid used for our test example
of a channel flow around an obstacle. In this two dimensional example, the domain
Ω = Ωr \ Ωe is defined by a rectangular channel Ωr = (0, L) × (0, H) and a mostly
elliptic-shaped obstacle Ωe as depicted in Figure 3. The boundary Γe of the obstacle

Ωe consists of Nc straight lines Γ
(k)
c forming the control boundary Γc =

Nc⋃
k=1

Γ
(k)
c and

the remaining wall part Γw ∩ Γe which has the elliptic-shaped parametrization

γ(s) =

[
xe01

xe02

]
+

[
r1 cos

(
2π(−s0 − s)

)
r2 sin

(
2π(−s0 − s)

)] ∀ s ∈ (0, 1] \
Nc⋃
k=1

I(k)
c ,

where I
(k)
c denote the parameter intervals of the control parts Γ

(k)
c defined below.
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Figure 4: The parabolic inflow profile at the control boundary part Γ
(1)
c .

Furthermore, (xe01 , x
e0
2 ) = (1, 1

2 ) denotes the center of the ellipse, s0 = 5
24 , and

r1 = 1
10 , r2 = 1

6 are the semiaxes of the ellipse. The parametrization of the control

part Γ
(k)
c ∀k = 1, . . . , Nc, is defined as

γ(s) = γ
(
s(k)
a

) s
(k)
b − s

s
(k)
b − s

(k)
a

+ γ
(
s

(k)
b

) s− s(k)
a

s
(k)
b − s

(k)
a

∀ s ∈ I(k)
c = [s(k)

a , s
(k)
b ].

On each part Γ
(k)
c of the control boundary Γc, we prescribe at each time t ∈ (0,∞) a

parabolic inflow profile of the velocity in normal direction to Γ
(k)
c with the maximum

value uk(t) ∈ R, see Figure 4. The case uk(t) < 0 means that we prescribe an outflow
done by exhausting fluid out of the model. Once the control vector u(t) ∈ RNc is
given for some time t ∈ (0, T ), we know all Dirichlet boundary data for the velocity
at this time on the control boundary Γc. In order to define the remaining boundary
conditions we decompose the whole boundary Γ = ∂Ω into

Γ = ΓD ∪ Γout with ΓD := Γin ∪ Γw ∪ Γc,

where ΓD denotes the Dirichlet-part and

Γin := {(x1, x2) ∈ Γ : x1 = 0}, Γout := {(x1, x2) ∈ Γ : x1 = L},

Γw := Γ \
(
Γin ∪ Γout ∪ Γc

)
,

the inflow-, outflow- and wall-part of the boundary, see Figure 3. On the outflow-part
Γout, we impose the so-called do-nothing boundary condition

− ν∇v(x, t) · n(x) + p(t, x)n(x) = 0 ∀ (t, x) ∈ (0,∞)× Γout, (26)

where n denotes the outer unit normal vector on Γout.
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Figure 5: Refined mesh at level 4.

On the Dirichlet-part ΓD we prescribe

v(t, x) =


gin(x) ∀(t, x) ∈ (0,∞)× Γin,

0 ∀(t, x) ∈ (0,∞)× Γw,

gc(t, x) ∀(t, x) ∈ (0,∞)× Γc.

(27)

The aim of our feedback control is to adjust the control vector u(t) ∈ RNc such that the
resulting horizontal component of the velocity v(t, x) is minimized at the observation

points x = x
(m)
obs ∀m = 1, . . . , Nobs, located on the outflow boundary Γout, see Figure 3

with Nobs = 3. In the following, we choose the channel geometry with L = 1.7, H = 1.0

and set Nc = 2, I
(1)
c = [ 7

12 ,
8
12 ], and I

(2)
c = [ 11

12 , 1], see Figure 3. In our computational
tests, the coarse mesh at grid level ` = 1 consists of NEL = 36 cells, NVT = 52 vertices,
and Nall

EDG = 88 edges. The number of edges located at the Dirichlet boundary ΓD
at grid level ` = 1 is ND = 29, see Figure 3. The refined mesh at grid level ` = 4 is
depicted in Figure 5.

4.2 Convergence Study for Non-Conforming Composite Element

In this subsection, we study the experimental order of convergence (EOC) for our
composite element pair. We consider the generalized Stokes problem with ν = 1.0
and µ = 0.5 on a sequence of uniformly refined meshes starting from the level-1-mesh
shown in Figure 3. In order to be able to measure the actual error, we prescribe the
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exact velocity and pressure solution as

(
v1(x1, x2)
v2(x1, x2)

)
=

 cos
( π

2L
x1

)
sin (πx2)

− 1

2L
sin
( π

2L
x1

)
cos (πx2)

 ,

p(x1, x2) = −ν π
2L

sin
( π

2L
x1

)
sin (πx2)

and choose the right-hand side f and the Dirichlet boundary conditions according to
this solution.

In Table 1 we present, for different grid levels, the total numbers of the degrees of
freedom for the velocity, pressure, and condensed spaces, respectively. We see that
the reduction factor in the dimension of the condensed space compared to the usual
velocity and pressure space is about 3.

Level velocity pressure velocity & pressure condensed
1 464 144 608 212
2 1792 576 2368 784
3 7040 2304 9344 3008
4 27904 9216 37120 11776
5 111104 36864 147968 46592

Table 1: Degrees of freedom for the velocity, pressure, and condensed space.

The error of the discrete velocity vh measured in the L2-norm as well as in the H1-
semi-norm and the error of the pressure approximation ph measured in the L2-norm
are shown in Table 2. The achieved convergence rates are of optimal order.

Level ‖v − vh‖0 EOC |v − vh|1 EOC ‖p− ph‖0 EOC
1 3.773e−2 4.307e−1 2.435e−1
2 1.096e−2 1.783 2.232e−1 0.948 9.278e−2 1.392
3 2.866e−3 1.935 1.128e−1 0.984 3.909e−2 1.247
4 7.252e−4 1.982 5.659e−2 0.996 1.839e−2 1.088
5 1.819e−5 1.995 2.832e−2 0.999 9.039e−3 1.025

Table 2: Errors of velocity and pressure for the composite element pair Pnc
1 /Pdc

0 .

In Table 3, we present the errors in the vertical velocity component vh,2 evaluated at

the observation points x
(1)
obs = (L, 1/6) and x

(2)
obs = (L, 2/3). We see that the computed

errors ei := |v2(x
(i)
obs) − v2,h(x

(i)
obs)| ∀i = 1, 2, are of second order for sufficiently fine

meshes. Note that the observation points have been chosen such that they do not
coincide with any mesh point.
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Level e1 EOC e2 EOC
1 6.861e−1 1.042e−2
2 3.675e−3 0.901 5.481e−4 4.250
3 1.842e−4 4.318 8.768e−5 2.644
4 4.288e−5 2.103 2.800e−5 1.647
5 1.121e−5 1.935 6.240e−6 2.166

Table 3: Errors at observation points for the vertical velocity component.
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Figure 6: Evolution of output for different regularization parameters.

4.3 Feedback Stabilization

In this subsection, we apply Algorithm 1. Therefore, we use the above described grid
at refinement level 2, chose the observation points as

x
(1)
obs = (1.7, 0.9), x

(2)
obs = (1.7, 0.8), x

(3)
obs = (1.7, 0.75),

and compute the feedback operator for the Stokes equation with ν = 0.1 via Algorithm
1. To show the influence of the feedback operator, we solve a discretized version of
equation (7b) in MATLAB by assembling the matrices explicitly, using an initial non-
steady-state condition, and compute a forward simulation of the resulting differential
algebraic system with (closed-loop) and without (open-loop) the influence of the feed-
back. Because the Stokes equations are asymptotically stable, the compute feedback
does not influence the evolution of the output, measured via the first summand ||y||2 in
(7a), too much. To show the effect of feedback stabilization, we add two regularization
parameters in the cost functional (7a) to penalize the output with λ and the control
costs with 1

ρ . This means we computed the feedback for the adapted cost functional

J (y, u) =
1

2

∫ ∞
0

λ ||y||2 +
1

ρ
||u||2 dt.
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Figure 7: Evolution of control for different regularization parameters.

In Figure 6 we compare the evolution of the output for different settings of (λ, ρ).
It shows that the trajectories of the open-loop simulation (without any feedback),
for λ = ρ = 1, and for penalize the control costs are nearly the same. This means
the controller notices that not doing anything is good enough to minimize the cost
functional, especially if a large controller influence is penalized. But if we set ρ = 1
and increase λ, we see that the controller forces the output faster to zero.

Of course, this behavior involves higher control costs. To show this, we compare the
evolution of the optimal control in Figure 7 measured via the second summand ||u||2
in (7a). We plotted the evolution for the same regularization parameter settings as
above. The expected behavior can be observed. If we penalized the control costs, the
controller becomes inactive quite fast, because the system is going to zero fast enough
without any control. But if we force the system to endeavor a zero output faster, by
increasing λ, we need significant higher control costs at the beginning.

These results will become more interesting if we consider unstable Navier-Stokes
flows in the future. Additionally, we want to implement the feedback in a closed-loop
simulation of the flow to see the stabilizing influence of the optimal control within a
visualized simulation.

In the second part of this subsection we want to compare the convergence results
of the operator Newton-ADI method with the matrix version presented in [4]. We
assembled all matrices for the forward simulation explicitly. Now, we use these matrices
to run the matrix based version of Algorithm 1 presented as Algorithm 2 in [4]. In both
methods, we use the heuristic Penzl shifts and a stopping criteria of tolADI = 2.5 ·10−7

for the ADI iteration and tolNewton = 2.5 ·10−5 for the Newton iteration. The stopping
criteria refer to the relative change of the computed feedback.

Table 4 shows that both methods converge within the same number of steps and
achieve nearly the same relative error. Furthermore, we see the influence of the regu-
larization parameters described above.
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matrix-version operator-version

λ ρ ∅nADI nNewton errorNewton ∅nADI nNewton errorNewton

100 100 17.0 3 2.76 · 10−13 17.0 3 2.78 · 10−13

100 10−2 17.0 2 1.49 · 10−6 17.0 2 1.49 · 10−6

100 10−4 17.0 2 1.99 · 10−6 17.0 2 1.99 · 10−6

102 100 17.2 5 1.01 · 10−8 17.2 5 1.01 · 10−8

104 100 20.8 11 1.64 · 10−5 20.9 11 1.64 · 10−5

Table 4: Newton-ADI convergence results for refinement level 2.

If we penalize the output costs with ρ, the algorithm converges faster, because it
knows that it does not need any control as described above. Otherwise, if we penalize
the output with λ, the computation of the feedback needs more iterations to be the
optimal for the chosen cost functional.

Summarizing, we see that computing the optimal control is useful in combination
with the correct cost functional. We also could verify the matrix free approach to
compute the optimal control for this kind of problems independent of the numerical
discretization. This means we can use special discretizations, to avoid the drawbacks
of standard mixed finite elements.

5 Conclusions and Outlook

The proposed non-conforming composite element provides a good compromise of the
advantages of quadrilateral and triangular elements. The numerical experiments show
that the expected asymptotic orders of convergence are observed already for moder-
ately sized meshes. The element is especially well suited for solving the linear quadratic
regulator problem for the Stokes flow by the (operator) Newton-ADI method. This
is due to both the preservation of the divergence constraint on the discrete level and
the L2-orthogonality of the corresponding basis functions. The latter does not only
increase the efficiency due to the diagonal structure of the resulting mass matrix, but
also eliminates some term in the weak form of the equations that need extra treatment
when standard finite elements are used.

Our approach allows a natural extension to the case of the Navier-Stokes equations
and time-dependent working trajectory which will be the subjects of forthcoming re-
search.

23



References

[1] W. Arnold and A. J. Laub, Generalized Eigenproblem Algorithms and Soft-
ware for Algebraic Riccati Equations, Proc. IEEE, 72 (1984), pp. 1746–1754.
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